
15-323/15-623	Project	6	

	 1	

15-323/15-626	Spring	2019	
Project	6:	Music	Information	Retrieval	–	Genre	Classification

Due	May	3	

1. Overview

In this project, you will use what you learned from the lecture about music understanding and
classification to build a genre classification system. The purpose of the project is to give you
some hands-on experience with audio feature extraction and machine learning, as well as some
widely used toolbox and software (we will introduce Weka1 for machine learning, jAudio2 for
audio feature extraction). Machine learning is both powerful and applicable to a wide range of
problems, including music systems and information processing!

This project is in fact very open-ended. There is no standard correct answer (there are
expectations of what the results should look like though). This write-up is only intended to
provide all the possible approaches to accomplish the task, and the remainder is left for you to
explore. There will be some benchmark objectives, which are pretty simple given what the write-
up introduces. You need to finish all of these to get the full score. For those of you who want to
explore deeper, we also provide as much help as possible, and a significant amount of bonus
points will be rewarded depending on what you end up with.

2. Specifications and Implementation Guide

Specifications:

We will provide audio files for 4 different genres (classical, jazz, metal, and pop), chosen from
the 10-genre dataset GTZAN Genre Collection3 (Yes, this is the dataset used in the milestone
paper by Tzanetakis et al.4 as Roger mentioned in the lecture) widely used by music information
retrieval community for genre classification task. You will extract different features using jAudio,
and save as the arff5 format appropriate for Weka (jAudio will do this automatically). With the
data, choose different classifiers in Weka. Evaluate the results using cross-validation.

Implementation guide:

1. Arff file format

Before talking about feature extraction, we will first briefly introduce the arff file format used
by Weka as this will help explain some of the data processing in next few sections.
Arff format is actually pretty straightforward to read. It begins with a header including
relation names and feature (called attribute in Weka) definitions:

																																																								
1	http://www.cs.waikato.ac.nz/ml/weka/	
2	https://sourceforge.net/projects/jaudio/	
3	http://marsyas.info/downloads/datasets.html	
4	http://webhome.cs.uvic.ca/~gtzan/work/pubs/tsap02gtzan.pdf	
5	http://www.cs.waikato.ac.nz/ml/weka/arff.html	

15-323/15-623	Project	6	

	 2	

@RELATION <relation-name>
@ATTRIBUTE <attribute-name> <data-type>

The data type can one of the following:
• NUMERIC
• {class1, class2, class3…}
• STRING
• DATE [<date-format>]

The data begins with the indicator @DATA. Each line is an instance containing values for each
defined attributes. A very simple arff file with 2 attributes and 4 instances will like this:

@RELATION test

@ATTRIBUTE temperature NUMERIC
@ATTRIBUTE day {sunny, cloudy, snow}

@DATA
90,sunny
28,snow
56,cloudy
43,sunny

2. jAudio tutorial.

Download jAudio from link provided. Open the jar file, the main UI will show up. The right
column shows all the available features – you will have the chance to explore different
features. However, in genre classification, the instrumentation/voices will definitely be an
important factor. An important feature originated in speech recognition called mel-frequency
cepstrum coefficients1 (MFCC), not covered in the lecture, is designed to represent the sound
texture, which is also used as one of the main features in Tzanetakis et al. jAudio provides
MFCC, along with many variations, as their names suggest.

Besides MFCC, there are some other features that will help as well. Since the
instrumentation/voices are better reflected in the frequency domain, features like spectral
flux, spectral centroid, and zero-crossings will also help with the task. For more features,
Tzanetakis et al. will be a good reference.

In order to extract features using jAudio, a few configurations are needed:

1) Change the output file format.

Since we will use Weka, the output format should be changed from xml to arff. This can
be done in Analysis -> Output Format as shown below. And you should also change the
save path at the bottom left accordingly.

																																																								
1	http://en.wikipedia.org/wiki/Mel-frequency_cepstrum	

15-323/15-623	Project	6	

	 3	

2) Change the sample rate to match the audio files.

The sample rate for audio files should be changed to 22.05kHz, which also can be found
in Analysis -> Sample Rate (kHz).

3) Change the features calculating scheme.

As talked about in class, normally the audio features are extracted within a very small
time window (usually called frame) with overlapping. For each audio file, you will have
many instances of the features. In the jAudio UI, you should select ‘Save Features for
Each Window’ as shown below.

Notice that the window length and overlapping fraction are also configurable. You could
try different windows sizes and overlapping fractions as well (the default 512 window
size with 0 overlapping is OK).

After these configurations, now you could start extracting features from jAudio by clicking
on ‘Add Recordings’ button to select the audio files you would like to work on. We would
recommend extracting features for each genre separately then manually combine the arff files
for different genres into a final arff file, as the course staff failed to find an easy way to add
‘class label’ (in this case, genre) directly from UI as an attribute into the output arff file.
Therefore, we provide a hacky helper code for you to add one more attribute to the arff file
for a certain genre (it cannot add different genres in one arff file). The helper code is
Addgenre.jar. In order to use it, you should first cd to the folder that contains the
Addgenre.jar and the arff file. Then just type java –jar Addgenre.jar <file.arff> <genre>.
You can of course write some hacky code by yourself once you fully understand the arff
format.

3. Weka tutorial

After all the data preparation, now we can start learning! Start Weka and choose Explorer. In
the preprocessing step, load data from arff file by clicking ‘Open file…’ button. Then in the
‘Attributes’ panel, be sure to include All the attributes. By clicking on the different attribute,
the data distribution will be virtualized on the right side. One of the 14 dimensions of my
example data MFCC and the genre labels will look like this in Weka:

15-323/15-623	Project	6	

	 4	

Now we are ready to go to classify step. Below is a set up which uses ‘Genre’ as the class
label, train a Naïve Bayes classifier (bayes.NaiveBayes), evaluating with 10-fold cross-
validation. Click ‘Start’ and wait for the magic!

Try a different classifier as well (not limit to the following):

15-323/15-623	Project	6	

	 5	

• Sequential Minimal Optimization (functions.SMO): a fast implementation of Support
Vector Machine (SVM). SVM is a O(n2) algorithm, thus it’s still much slower than Naïve
Bayes. But, as the math underlying SVM indicates, SVM is the best linear classifier in
general.

• Logistic Regression (functions.Logistic): A learning algorithm which has similar property
with Naïve Bayes. As proved by Andrew Ng1, given infinite data, Logistic Regression
will always outperform Naïve Bayes. But Naïve Bayes converges faster than Logistic
Regression. It’s interesting to compare the accuracy between them in our case.

• Neural Networks (functions.MultilayerPerceptron): Old-fashioned machine learning
algorithm. You could see this algorithm will take forever to run, as it’s trained using a
sophisticated iterative algorithm (part of the reason why it’s not favored by machine
learning people). But the non-linear natural of neural networks could give even better
result then linear SVM (SVM can also be modified for non-linear classification). For this
algorithm, Weka may run out of the Java heap size. This page2 will help.

The results provided by Weka are too detailed for us to observe for this project. Just pay
attention to accuracy (overall performance) and confusion matrix (the classification results
within each genre). Does the result make sense to you?

4. A few comments

As you may see, this project is very open-ended, and the only expectation from us is to hope
you feel the power of machine learning and like it. Feel free to do the project with
software/language other than what provided here, and a few suggestions: MATLAB (be sure
to check Dan Ellis’ chroma code3), Marsyas4, and Vamp Plugin5. If genre classification task
cannot satisfy you (as it cannot for the researchers nowadays), free feel to contact the course
staff for more advanced and state-of-art music information retrieval project. Have fun!

3. Grading Criteria:

1) Benchmark: Extract MFCC from audio files. Train a Naïve Bayes classifier or some other
classifier for genre classification using the provided data, evaluate by 10-fold cross-
validation. Report the results and your observation on the overall accuracy and confusion
matrix.

2) 15-623 students should train on 3 classifiers and describe differences observed, if any.
Which classifier works best? How would you explain your results? (Speculation that
indicates an understanding of what you are doing is expected; rigorous analysis is not
expected.)

3) Bonus points are assigned flexibly, a few suggestions:
a. Logical and rigorous experiments design and report writing.
b. Adding different features and different features combinations. If a feature doesn’t

perform well alone, you should not expect it to get better when used with other
features.

																																																								
1	http://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf	
2	http://weka.wikispaces.com/Java+Virtual+Machine	
3	http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/	
4	http://marsyas.info/	
5	http://www.vamp-plugins.org/	

15-323/15-623	Project	6	

	 6	

c. Write your own code instead of using jAudio and/or Weka if you have prior
knowledge on signal processing and/or machine learning. Using other software
/language also counts based on the difficulty.

4. Hand-in Instructions:

Please put any codes you wrote and a short report <andrew_id>.pdf into a zip file, named
<andrew_id>_p6.zip. Submit the zip file via Autolab.

