
A Self-Learning Musical Grammar, or "Associative Memory of the Second Kind"

Teuvo Kohonen

Helsinki University of Technology
Laboratory of Computer and Information Science
Rakentajanaukio 2 C, SF-02150 Espoo, Finland

Abstract

A context-sensitive generative grammar that learns its
production rules automatically from examples and
optimizes the length of context for each individual
production rule on the basis of conflicts occurring in the
source material is described. It has been applied to the
generation of new melodic passages and counterpoint
according to a certain style. Music produced by this
method generally sounds smooth, continuous, and
pleasant.

1. Introduction

The "Composing Machines" have a longer history than
generally thought. For instance, the Prague Cistercian M.
Vogt (1719) bent nails to different shapes to designate
melodic turns, and tossing them in the air, recorded the
melodic successions as they lay on the floor.

It is not possible to survey here the development of ideas
in computer music. One of the traditional approaches,
however, may be mentioned. It is based on Markov
processes. Each note (pitch, duration) is thereby regarded
as a stochastic state in a succession of states. The
probability Pr = Pr(Si I Si-1, Si-2, ...) for state Si, on the
condition that the previous states are Si-1, Si-2, ..., is
recorded from given examples. Usually three predecessor
states are enough. New music is generated by starting
with a key sequence to which, on the basis of Pr and, say,
the three last notes, the most likely successor state is
appended. The augmented sequence is used as a new key
sequence, and so the process generates melodic
successions ad infinitum. Auxiliary operations or rules
are necessary to make typical forms (structures) of music
out of pieces of melodic passages.

In Artificial Intelligence approaches, the music
programmers, on the basis of their expertise, usually
heuristically construct a number of rules which describe
different aspects of music: forms, melodic and rhythmic
rules, the counterpoint etc. Melodies and accompanying
parts are then automatically produced by generative
grammars into which the rules are built (cf., e.g., [l]).

Among the main problems encountered in computer
music one may mention the following. First, it is rather
difficult to find the start and stop of a possible theme
from productions automatically. Second, it is difficult to
maintain a certain "style" over a passage and to switch to
a new one, which often, especially in classic music,
would need a modulation (change of scale). Third,

4

although, e.g., certain interval d e s are frequently
applied to prevent bad melodic turns, there is no
guarantee for a melody constructed on the basis of such
rules being beautiful at all.

As I had worked since 1985 with a new type of self-
learning grammar termed Dynamically Expanding
Context [2,3], the idea of applying it to music had several
times come to my mind. After many attempts I finally
succeeded in generating pieces of melodies which
sounded promising. It has to be emphasized that we are
not constructing any rules heuristically; all the
"grammatical" productions are derived from examples,
for which we initially took the well-known Inventions of
J.S. Bach. The rules of the grammar in fact describe what
might be called a motive in music; i.e. a rather short
elementary sequence, say, three to six successive notes
which do not yet form a theme. It turned out that the
original motives convey the style and beauty to the
results.

Our productions, however, should not be regarded as
"scrambled Bach'. The special grammar that I am
describing below is in fact able to pick up from memory
long sequences of motives of the same style, thereby
maintaining a high degree of "coherence" in music. This
is due to the fact that while this grammar belongs to the
category of context-sensitive grammars, the length of
context (corresponding to the number of predecessor
states in a Markov process) is a variable number; the
necessary amount of context is defined dynamically, on
the basis of conflicts that occur in the examples, and so a
very delicate compromise between generality and
selectivity of the rules is achievable. The resulting
melodies, although not containing long copies of the
original pieces, generally sound very smooth and
pleasant, and rather faithful to the original style.

There already exist several variants of the grammar. As
context, we may use either previous notes, or a couple of
previous notes preceded by symbols which describe
chords of the previous bars or their parts. The grammar is
neither restricted to one-part melodies; it is rather
straightforward to edit the second, third, etc. part or voice
to the melody, by taking the context from the first part,
and generating the notes of the other parts in the same
way as new notes to the melody are produced. For
practical reasons, and to guarantee the best possible
counterpoint, the whole melody is constructed first, and
after that the accompanying parts in separate passes.

I- I

2.

In general, a grammar describes regularities in a series of
events. Consider first a very simple example where the
letters describe a sequence of states, e.g., notes:

ABCDEFG ... IKFH ... LEFJ ...
If we would try to deduce the next letter on the basis of
one letter, say , F (which occurs several times) we would
see a threefold conflict: the continuation may be G, H, or
J. If we would try to increase specificity of letter patterns
by taking the symbol in front of F for context, we could
still see that a twofold conflict prevails: the successor of
EF could be G or J. With two symbols in front of F, all
the conflicts would be resolved. However, KF would
already uniquely define H as its successor (denoted KF
+ H, and meaning that KF is uniquely followed by H or
that KF implies H, or that KF generates the production
H). It would then be superfluous to have a longer context
for it (IKF + H). Too long context means a too specific
and stiff rule.

The basic idea behind the Dynamically Expanding
Context is that the optimal length of context, for each
symbol (like F) separately, is determined on the basis of
examples and in particular, by the conflicts of the above
type occurring in them.

To construct the variable-context rules systematically, we
first think of a series of hypothetical contexts of
gradually increasing length at a particular symbol; e.g.,
around the first occurrence of F in the previous example
we then define the context levels by

Level Context
0
1 E
2 DE
3 CDE

Simple exemplification of the Dynamically
Expanding Context method

...
up to a certain maximum limit (we had 8 levels).
Whenever we start recording production rules, we always
start at level 0. (The same is due when we apply the rules,
say, for the generation of music.) For the first tentative
rule, refemng to F, we then take F + G. Upon scanning
the example, we then also find F + H, indicating that
both of these rules should be invalidated and replaced by
EF + G and KF + H, respectively. At the third place,
we again start with F + J, and then because there is a
conflict with a previous case, continue with EF + J;
since the conflict persists, we must take for the last rule
LEF + J, and also update the previous, still conflicting
rule to DEF + G.

We must not delete the invalidated rules, because they
are needed both for checking of the conflicts, and to
construct the valid rule when generating new
productions. Instead, we provide each rule with a validity
indicator, a conflict bit which is initially 0. When a
conflict is encountered, and a rule is invalidated, the
conflict bit is changed to 1.

The constructed rules are best stored in memory like
entries in the so-called relational data base. Each entry is
a triplet, consisting of the left part of the production rule

(like F), the right part of the production rule (like G), and
the conflict bit. The entries are always searched on the
basis of the left part.

Although updating of all counterparts of the conflicting
cases might be done immediately when a conflict is
found, it is far simpler if only the last of the conflicting
rules is updated, and the previous one (at which the
conflict occurred) is tentatively only invalidated by
changing its conflict bit to 1. If the examplary data are
then scanned iteratively a sufficient number of times (in
fact, at maximum half of the number of levels, or four in
our case) then it is possible to show that all the earlier
counterpart rules will sooner or later become updated,
too. To show that this is true for the above example,
consider the construction of rules only around symbol F
(although all the storing operations must be done for all
the other symbols, too). A memory location is the triple
(left part, right part, conflict bit).

Example.

Construction of the memory and the grammar (around
F only):

Row in Left part Right part Conflict
memory bit

(Check first that F was not yet stored in any left-part
field. Store the first occurrence of F with level 0
context.)

1 F G 0

(Next, the second occurrence of F is considered;
searching on the basis of F, G is found from memory,
indicating a conflict with H. The conflict bit of row 1
must now be changed, and the second occurrence
stored with level 1 context on row 2, first checking that
it was not yet in memory.)

1 F G 1

2 K F H 0

(Next, the third occurrence of F is considered;
searching on F, G is found from the memory and also
that the conflict bit is already 1, and need not be
changed. The third occurrence must thus be stored with
level 1 context, first checking that it was not yet
stored.)

3 EF J 0

(Next, iterate over the first occurrence of F. Searching
on the basis of F, find conflict bit 1. Expand context,
find on the basis of EF that there was still a conflict,
namely, J in memory. Change the conflict bit on row 3,
and store the first item with level 2 context.)

3 EF J 1

4 DEF G 0

(Iterate over the second occurrence of F. On the basis
of F, the conflict bit 1 is found. On the basis of KF, no
conflict exists any longer. Now continue with the third
occurrence of F. On the basis of F, the conflict bit 1 is
found. On the basis of EF, the conflict bit 1 is still

found. Now LEF is not yet in memory, and is stored.)

5 LEF J 0

(Further iterations do not cause any changes in
memory. We see that the valid rules are left on rows 2,
4, and 5, where the conflict bit is 0.)

Generation of a new symbol to a key sequence:

Let us start with a key sequence, say, CDEF. A search
on the basis of F indicates that the conflict bit is 1, and
such a rule is invalid. A search on the basis of EF still
yields the conflict bit 1. The second-level context,
search on the basis of DEF, finds a valid rule on row 4,
and the new symbol is thus the production G.

It is no surprise that the new symbol is the same as in
one of the original occurrences, from which the
memory was formed. If we had preferred a random
choice from several alternatives to have more variance
in the productions, we might have considered, e.g.,
level-2 and level-1 productions found in this searching
process (not caring about the conflict bit); then we
would have had two alternatives, J and G, of which we
could have randomly selected either one for the new
symbol, still having a certain degree of continuity
(context-dependence).

The structure of information stored in memory can be
visualized by a graph which interrelates the rules. For
each particular symbol (such as F above) there exists a
tree, and its root corresponds to context level 0. If there
was a conflict in the examples, at least two arcs then
emanate from the root and lead to the nodes of level 1.
The corresponding productions (right sides), like in
formal grammars, can be written at the arcs. The nodes
which represent leaves, and at which the respective last
productions are also written, correspond to the valid final
rules (with conflict bit 0), whereas for all the other nodes
the conflict bit is 1, indicating that the respective rule has
been invalidated.

Generation of new, partly random sequences can now be
illustrated in the following way. Assume that the key
sequence again is CDEF, and start at the root F,
following the arcs until the corresponding leaf is found.
Along the path from the root to the leaf one eventually
finds several productions (alternatives for new symbols).
By a given depth parameter it is possible to define how
many nodes backwards from the leaves at maximum one
shall take into consideration, to randomly pick up one of
their productions for the new symbol (note).

If such a randomizing is used, it may happen that when
tracing the tree, a mismatch of the context happens at
some level. The same is due if the maximum defined
context level is exeeded (due to many conflicts at a
particular symbol). This, however, does not cause any
serious problems in the present application in which the
grammar is only used as an "intelligent random number
generator". Starting with the root, the tree is anyway
traced up to the last matches, whereafter, according to the
depth parameter, the new symbol is picked up from the
last nodes below it.

Fig. 2 exemplifies typical context levels in a good-
sounding melody. The numbers indicate the levels of
context which have resulted at each consecutive
production step, each number thereby corresponding to
one generated note. Two facts are salient: 1. The context
level has indeed a great variance, which is expected to
make a big distinction, e.g., with respect to Markov-
process music. 2. There are several level-0 productions.
This is due, because we used parameter values which
were supposed to imply greater random variations.
Context level 0 in fact means that only two successive
notes at that place have been copied from the original
material (which typically contains 2000 or more notes in
one grammar or memory).

G P G
root

Context level 0 1 2 ...

Fig. 1

3 2 2 3 3 1 1 2 2 1 2 3 4 2 2 1 2 3 2 1
1 1 1 2 1 2 1 1 3 2 4 1 2 2 4 5 1 2 5 3
3 4 2 1 2 3 4 4 1 1 3 1 1 2 1 2 2 4 2 2
3 4 1 2 2 2 0 2 1 1 1 1 2 2 1 2 2 1 3 0
2 3 4 0 1 2 1 4 3 3 1 1 2 2 4 2 6 3 4 3
2 2 2 2 3 3 2 2 3 3 2 2 3 3 2 2 2 2 3 2
1 6 2 3 2 2 3 3 2 1 1 1 2 2 1 2 2 1 1 1
2 1 1 1 0 2 0 2 0 1 2 2 2 1 2 2 4 4 3 2
2 3 2 1 6 2 3 2 2 2 2 3 3 2 2 2 2 2 2 1
2 2 4 5 1 2 2 1 2 3 2 1 6 2 3 2 5 5 3 1
2 0 2 0 1 2 2 2 2 3 3 2 2 2 2 1 2 2 4 0
1 2 1 4 2 3 2 2 3 2 1 6 3 3 1 1 2 2 4 4
3 2 2 3 3 2 6 5 3 2 2 3 2 1 1 1 1 2 2 2

Fig. 2

1-3

3. Taking harmonic successions into account

It may be obvious from the above that the "scope" of the
basic grammar is still rather short, covering a few
successive notes only. It does not deal with any higher
forms at all. While, due to the correlation of the melodic
segments, the music produced by this method still yields
the feeling of longer continuity, the traditions in western
music would anyway prefer more regular and "coherent"
chord progressions. A modification of the grammar to
that end is easy.

We found experimentally that the last two symbols of the
key sequence should always consist of absolute notes
(pitch, length), whereas for the previous symbols in the
grammatical rules describing the productions, one could
take symbols of chords formed of the melody notes over
the preceding bars, half-bars, quarter-bars, etc. Since
there may be passing notes in the melody which do not
belong to the intended chord, identification of a chord
over a short succession of notes must be based on
approximate pattern recognition techniques. For instance,
one may form a histogram of the various pitches
(actually, degrees modulo 12 in the chromatic scale),
thereby also taking into account the lengths of the notes,
and comparing such a histogram to those formed of the
pure chords, to find the best match. Although this method
may not yield a hundred per cent sure identification of
chords, say, in classic-romantic music, absolute accuracy
is neither necessary, since a progression of approximate
chords will generally also sound pleasant, and it is still
descriptive of the original style.

When the new melody is generated, the chords of its
segments can similarly be estimated by this pattern
recognition method, yielding the symbols needed in the
production rules of the grammar.

4. Anexample

The two-part music, shown in Fig. 3 has been made with
a grammar described in section 3 into which the three-
part Inventions ("Symphonies") of J.S. Bach were
encoded, and of which only two parts were utilized. All
these pieces were first transposed into the C major (or A
minor) scale (in which the productions are generated).
This is perhaps not the most convincing example
musically, since there exist many short copies from most
of the original pieces. Nonetheless these copies have
been merged in a graceful way. None of the copies
extends over a bar. On the other hand, it is very easy to
avoid copies of themes even completely, e.g., by diatonic
transformation of the source material or of the
productions. In this way we have generated many totally
new melodies.

Each production rule, however, is equivalent to an
Associative Recall operation. As a matter of fact, the
rules were encoded in the program code by a software
content-addressing method (hash coding). The left part in
the rules assumes the role of a key input, but in contrast
to usual Associative Memories, there are two outputs
from the memory: the production, and the conflict bit.
The latter represents some kind of "credibility
information". So, if the rule system were stored in an
Associative Memory and made accessible on the basis of
their left parts, the conflict bit would tell about the
production: "That's it", or, "That's not it yet, keep
looking". In the latter case, one must assume an external
supervision which modifies the range of context at input.
From another point of view, this algorithm then describes
an architecture, a memory system which is monitored by
an "attention control" external to it.

While the formats of input fields in usual Associative
Memory schemes are fixed, the above "attention control"
now introduces an elementary system organization or
control architecture to the system which varies the input
format. This feature might be regarded as a paragon to
further developments in Associative Memory
architectures. For this reason, I have also nicknamed the
above principle "Associative Memory of the Second
Kind'.

Acknowledgement.

The author is indebted to Mr. Pauli Laine and Mr. Kalev
Tiits for the collection of musical source material and
synthesis of numerous productions by this method.
Thanks are also due to Mr. Kari Torkkola for developing
new versions of the program codes.

Caution. This report only describes some of the principal
ideas, and what was done. Straightforward
implementation of these examples may not yet guarantee
musically good results. In order to make a practical
algorithm, one also has to introduce a great many other
details, such as special randomizing processes, diatonic
transformations, various checks, etc., not yet discussed
above.

References

1. K. Ebcioglu, "An Expert System for Harmonizing
Four-part Chorales", Computer Music Journal, vol.
12, no. 3,43-51 (1988).

2. T. Kohonen, "Dynamically Expanding Context, with
Application to the Correction of Symbol Strings in
the Recognition of Continuous Speech", Proc. of the
Eighth International Conference on Pattern
Recognition, Paris, France, October 28-31, 1986, pp.
1 148-1 15 1.

3. T. Kohonen, "Self-Learning Inference Rules by
Dynamically Expanding Context", Proc. of the IEEE

5. Why should this method be discussed in the First Annual International Conference on Neural
Networks, San Diego, Cal., June 21-24, 1987, pp. 11-3

Certainly the present method does not belong to the pure
Neural Network algorithms. It is rather to be regarded as
an abstract scheme which exemplifies the competence of
idealized learning algorithms.

context of Associative Memory?
- 11-9.

1-4

h n

