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Abstract 

A context-sensitive generative grammar that learns its 
production rules automatically from examples and 
optimizes the length of context for each individual 
production rule on the basis of conflicts occurring in the 
source material is described. It has been applied to the 
generation of new melodic passages and counterpoint 
according to a certain style. Music produced by this 
method generally sounds smooth, continuous, and 
pleasant. 

1. Introduction 

The "Composing Machines" have a longer history than 
generally thought. For instance, the Prague Cistercian M. 
Vogt (1719) bent nails to different shapes to designate 
melodic turns, and tossing them in the air, recorded the 
melodic successions as they lay on the floor. 

It is not possible to survey here the development of ideas 
in computer music. One of the traditional approaches, 
however, may be mentioned. It is based on Markov 
processes. Each note (pitch, duration) is thereby regarded 
as a stochastic state in a succession of states. The 
probability Pr = Pr(Si I Si-1, Si-2, ...) for state Si, on the 
condition that the previous states are Si-1, Si-2, ..., is 
recorded from given examples. Usually three predecessor 
states are enough. New music is generated by starting 
with a key sequence to which, on the basis of Pr and, say, 
the three last notes, the most likely successor state is 
appended. The augmented sequence is used as a new key 
sequence, and so the process generates melodic 
successions ad infinitum. Auxiliary operations or rules 
are necessary to make typical forms (structures) of music 
out of pieces of melodic passages. 

In Artificial Intelligence approaches, the music 
programmers, on the basis of their expertise, usually 
heuristically construct a number of rules which describe 
different aspects of music: forms, melodic and rhythmic 
rules, the counterpoint etc. Melodies and accompanying 
parts are then automatically produced by generative 
grammars into which the rules are built (cf., e.g., [l]). 

Among the main problems encountered in computer 
music one may mention the following. First, it is rather 
difficult to find the start and stop of a possible theme 
from productions automatically. Second, it is difficult to 
maintain a certain "style" over a passage and to switch to 
a new one, which often, especially in classic music, 
would need a modulation (change of scale). Third, 
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although, e.g., certain interval d e s  are frequently 
applied to prevent bad melodic turns, there is no 
guarantee for a melody constructed on the basis of such 
rules being beautiful at all. 

As I had worked since 1985 with a new type of self- 
learning grammar termed Dynamically Expanding 
Context [2,3], the idea of applying it to music had several 
times come to my mind. After many attempts I finally 
succeeded in generating pieces of melodies which 
sounded promising. It has to be emphasized that we are 
not constructing any rules heuristically; all the 
"grammatical" productions are derived from examples, 
for which we initially took the well-known Inventions of 
J.S. Bach. The rules of the grammar in fact describe what 
might be called a motive in music; i.e. a rather short 
elementary sequence, say, three to six successive notes 
which do not yet form a theme. It turned out that the 
original motives convey the style and beauty to the 
results. 

Our productions, however, should not be regarded as 
"scrambled Bach'. The special grammar that I am 
describing below is in fact able to pick up from memory 
long sequences of motives of the same style, thereby 
maintaining a high degree of "coherence" in music. This 
is due to the fact that while this grammar belongs to the 
category of context-sensitive grammars, the length of 
context (corresponding to the number of predecessor 
states in a Markov process) is a variable number; the 
necessary amount of context is defined dynamically, on 
the basis of conflicts that occur in the examples, and so a 
very delicate compromise between generality and 
selectivity of the rules is achievable. The resulting 
melodies, although not containing long copies of the 
original pieces, generally sound very smooth and 
pleasant, and rather faithful to the original style. 

There already exist several variants of the grammar. As 
context, we may use either previous notes, or a couple of 
previous notes preceded by symbols which describe 
chords of the previous bars or their parts. The grammar is 
neither restricted to one-part melodies; it is rather 
straightforward to edit the second, third, etc. part or voice 
to the melody, by taking the context from the first part, 
and generating the notes of the other parts in the same 
way as new notes to the melody are produced. For 
practical reasons, and to guarantee the best possible 
counterpoint, the whole melody is constructed first, and 
after that the accompanying parts in separate passes. 
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2. 

In general, a grammar describes regularities in a series of 
events. Consider first a very simple example where the 
letters describe a sequence of states, e.g., notes: 

ABCDEFG ... IKFH ... LEFJ ... 
If we would try to deduce the next letter on the basis of 
one letter, say , F (which occurs several times) we would 
see a threefold conflict: the continuation may be G, H, or 
J. If we would try to increase specificity of letter patterns 
by taking the symbol in front of F for context, we could 
still see that a twofold conflict prevails: the successor of 
EF could be G or J. With two symbols in front of F, all 
the conflicts would be resolved. However, KF would 
already uniquely define H as its successor (denoted KF 
+ H, and meaning that KF is uniquely followed by H or 
that KF implies H, or that KF generates the production 
H). It would then be superfluous to have a longer context 
for it (IKF + H). Too long context means a too specific 
and stiff rule. 

The basic idea behind the Dynamically Expanding 
Context is that the optimal length of context, for each 
symbol (like F) separately, is determined on the basis of 
examples and in particular, by the conflicts of the above 
type occurring in them. 

To construct the variable-context rules systematically, we 
first think of a series of hypothetical contexts of 
gradually increasing length at a particular symbol; e.g., 
around the first occurrence of F in the previous example 
we then define the context levels by 

Level Context 
0 
1 E 
2 DE 
3 CDE 

Simple exemplification of the Dynamically 
Expanding Context method 

... 
up to a certain maximum limit (we had 8 levels). 
Whenever we start recording production rules, we always 
start at level 0. (The same is due when we apply the rules, 
say, for the generation of music.) For the first tentative 
rule, refemng to F, we then take F + G. Upon scanning 
the example, we then also find F + H, indicating that 
both of these rules should be invalidated and replaced by 
EF + G and KF + H, respectively. At the third place, 
we again start with F + J, and then because there is a 
conflict with a previous case, continue with EF + J; 
since the conflict persists, we must take for the last rule 
LEF + J, and also update the previous, still conflicting 
rule to DEF + G. 

We must not delete the invalidated rules, because they 
are needed both for checking of the conflicts, and to 
construct the valid rule when generating new 
productions. Instead, we provide each rule with a validity 
indicator, a conflict bit which is initially 0. When a 
conflict is encountered, and a rule is invalidated, the 
conflict bit is changed to 1. 

The constructed rules are best stored in memory like 
entries in the so-called relational data base. Each entry is 
a triplet, consisting of the left part of the production rule 

(like F), the right part of the production rule (like G), and 
the conflict bit. The entries are always searched on the 
basis of the left part. 

Although updating of all counterparts of the conflicting 
cases might be done immediately when a conflict is 
found, it is far simpler if only the last of the conflicting 
rules is updated, and the previous one (at which the 
conflict occurred) is tentatively only invalidated by 
changing its conflict bit to 1. If the examplary data are 
then scanned iteratively a sufficient number of times (in 
fact, at maximum half of the number of levels, or four in 
our case) then it is possible to show that all the earlier 
counterpart rules will sooner or later become updated, 
too. To show that this is true for the above example, 
consider the construction of rules only around symbol F 
(although all the storing operations must be done for all 
the other symbols, too). A memory location is the triple 
(left part, right part, conflict bit). 

Example. 

Construction of the memory and the grammar (around 
F only): 

Row in Left part Right part Conflict 
memory bit 

(Check first that F was not yet stored in any left-part 
field. Store the first occurrence of F with level 0 
context.) 

1 F G 0 

(Next, the second occurrence of F is considered; 
searching on the basis of F, G is found from memory, 
indicating a conflict with H. The conflict bit of row 1 
must now be changed, and the second occurrence 
stored with level 1 context on row 2, first checking that 
it was not yet in memory.) 

1 F G 1 

2 K F  H 0 

(Next, the third occurrence of F is considered; 
searching on F, G is found from the memory and also 
that the conflict bit is already 1, and need not be 
changed. The third occurrence must thus be stored with 
level 1 context, first checking that it was not yet 
stored.) 

3 EF J 0 

(Next, iterate over the first occurrence of F. Searching 
on the basis of F, find conflict bit 1. Expand context, 
find on the basis of EF that there was still a conflict, 
namely, J in memory. Change the conflict bit on row 3, 
and store the first item with level 2 context.) 

3 EF J 1 

4 DEF G 0 

(Iterate over the second occurrence of F. On the basis 
of F, the conflict bit 1 is found. On the basis of KF, no 
conflict exists any longer. Now continue with the third 
occurrence of F. On the basis of F, the conflict bit 1 is 
found. On the basis of EF, the conflict bit 1 is still 



found. Now LEF is not yet in memory, and is stored.) 

5 LEF J 0 

(Further iterations do not cause any changes in 
memory. We see that the valid rules are left on rows 2, 
4, and 5, where the conflict bit is 0.) 

Generation of a new symbol to a key sequence: 

Let us start with a key sequence, say, CDEF. A search 
on the basis of F indicates that the conflict bit is 1, and 
such a rule is invalid. A search on the basis of EF still 
yields the conflict bit 1. The second-level context, 
search on the basis of DEF, finds a valid rule on row 4, 
and the new symbol is thus the production G. 

It is no surprise that the new symbol is the same as in 
one of the original occurrences, from which the 
memory was formed. If we had preferred a random 
choice from several alternatives to have more variance 
in the productions, we might have considered, e.g., 
level-2 and level-1 productions found in this searching 
process (not caring about the conflict bit); then we 
would have had two alternatives, J and G, of which we 
could have randomly selected either one for the new 
symbol, still having a certain degree of continuity 
(context-dependence). 

The structure of information stored in memory can be 
visualized by a graph which interrelates the rules. For 
each particular symbol (such as F above) there exists a 
tree, and its root corresponds to context level 0. If there 
was a conflict in the examples, at least two arcs then 
emanate from the root and lead to the nodes of level 1. 
The corresponding productions (right sides), like in 
formal grammars, can be written at the arcs. The nodes 
which represent leaves, and at which the respective last 
productions are also written, correspond to the valid final 
rules (with conflict bit 0), whereas for all the other nodes 
the conflict bit is 1, indicating that the respective rule has 
been invalidated. 

Generation of new, partly random sequences can now be 
illustrated in the following way. Assume that the key 
sequence again is CDEF, and start at the root F, 
following the arcs until the corresponding leaf is found. 
Along the path from the root to the leaf one eventually 
finds several productions (alternatives for new symbols). 
By a given depth parameter it is possible to define how 
many nodes backwards from the leaves at maximum one 
shall take into consideration, to randomly pick up one of 
their productions for the new symbol (note). 

If such a randomizing is used, it may happen that when 
tracing the tree, a mismatch of the context happens at 
some level. The same is due if the maximum defined 
context level is exeeded (due to many conflicts at a 
particular symbol). This, however, does not cause any 
serious problems in the present application in which the 
grammar is only used as an "intelligent random number 
generator". Starting with the root, the tree is anyway 
traced up to the last matches, whereafter, according to the 
depth parameter, the new symbol is picked up from the 
last nodes below it. 

Fig. 2 exemplifies typical context levels in a good- 
sounding melody. The numbers indicate the levels of 
context which have resulted at each consecutive 
production step, each number thereby corresponding to 
one generated note. Two facts are salient: 1. The context 
level has indeed a great variance, which is expected to 
make a big distinction, e.g., with respect to Markov- 
process music. 2. There are several level-0 productions. 
This is due, because we used parameter values which 
were supposed to imply greater random variations. 
Context level 0 in fact means that only two successive 
notes at that place have been copied from the original 
material (which typically contains 2000 or more notes in 
one grammar or memory). 

G P G  
root 

Context level 0 1 2 ... 

Fig. 1 

3 2 2 3 3 1 1 2 2 1 2 3 4 2 2 1 2 3 2 1  
1 1 1 2 1 2 1 1 3 2 4 1 2 2 4 5 1 2 5 3  
3 4 2 1 2 3 4 4 1 1 3 1 1 2 1 2 2 4 2 2  
3 4 1 2 2 2 0 2 1 1 1 1 2 2 1 2 2 1 3 0  
2 3 4 0 1 2 1 4 3 3 1 1 2 2 4 2 6 3 4 3  
2 2 2 2 3 3 2 2 3 3 2 2 3 3 2 2 2 2 3 2  
1 6 2 3 2 2 3 3 2 1 1 1 2 2 1 2 2 1 1 1  
2 1 1 1 0 2 0 2 0 1 2 2 2 1 2 2 4 4 3 2  
2 3 2 1 6 2 3 2 2 2 2 3 3 2 2 2 2 2 2 1  
2 2 4 5 1 2 2 1 2 3 2 1 6 2 3 2 5 5 3 1  
2 0 2 0 1 2 2 2 2 3 3 2 2 2 2 1 2 2 4 0  
1 2 1 4 2 3 2 2 3 2 1 6 3 3 1 1 2 2 4 4  
3 2 2 3 3 2 6 5 3 2 2 3 2 1 1 1 1 2 2 2  

Fig. 2 
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3. Taking harmonic successions into account 

It may be obvious from the above that the "scope" of the 
basic grammar is still rather short, covering a few 
successive notes only. It does not deal with any higher 
forms at all. While, due to the correlation of the melodic 
segments, the music produced by this method still yields 
the feeling of longer continuity, the traditions in western 
music would anyway prefer more regular and "coherent" 
chord progressions. A modification of the grammar to 
that end is easy. 

We found experimentally that the last two symbols of the 
key sequence should always consist of absolute notes 
(pitch, length), whereas for the previous symbols in the 
grammatical rules describing the productions, one could 
take symbols of chords formed of the melody notes over 
the preceding bars, half-bars, quarter-bars, etc. Since 
there may be passing notes in the melody which do not 
belong to the intended chord, identification of a chord 
over a short succession of notes must be based on 
approximate pattern recognition techniques. For instance, 
one may form a histogram of the various pitches 
(actually, degrees modulo 12 in the chromatic scale), 
thereby also taking into account the lengths of the notes, 
and comparing such a histogram to those formed of the 
pure chords, to find the best match. Although this method 
may not yield a hundred per cent sure identification of 
chords, say, in classic-romantic music, absolute accuracy 
is neither necessary, since a progression of approximate 
chords will generally also sound pleasant, and it is still 
descriptive of the original style. 

When the new melody is generated, the chords of its 
segments can similarly be estimated by this pattern 
recognition method, yielding the symbols needed in the 
production rules of the grammar. 

4. Anexample 

The two-part music, shown in Fig. 3 has been made with 
a grammar described in section 3 into which the three- 
part Inventions ("Symphonies") of J.S. Bach were 
encoded, and of which only two parts were utilized. All 
these pieces were first transposed into the C major (or A 
minor) scale (in which the productions are generated). 
This is perhaps not the most convincing example 
musically, since there exist many short copies from most 
of the original pieces. Nonetheless these copies have 
been merged in a graceful way. None of the copies 
extends over a bar. On the other hand, it is very easy to 
avoid copies of themes even completely, e.g., by diatonic 
transformation of the source material or of the 
productions. In this way we have generated many totally 
new melodies. 

Each production rule, however, is equivalent to an 
Associative Recall operation. As a matter of fact, the 
rules were encoded in the program code by a software 
content-addressing method (hash coding). The left part in 
the rules assumes the role of a key input, but in contrast 
to usual Associative Memories, there are two outputs 
from the memory: the production, and the conflict bit. 
The latter represents some kind of "credibility 
information". So, if the rule system were stored in an 
Associative Memory and made accessible on the basis of 
their left parts, the conflict bit would tell about the 
production: "That's it", or, "That's not it yet, keep 
looking". In the latter case, one must assume an external 
supervision which modifies the range of context at input. 
From another point of view, this algorithm then describes 
an architecture, a memory system which is monitored by 
an "attention control" external to it. 

While the formats of input fields in usual Associative 
Memory schemes are fixed, the above "attention control" 
now introduces an elementary system organization or 
control architecture to the system which varies the input 
format. This feature might be regarded as a paragon to 
further developments in Associative Memory 
architectures. For this reason, I have also nicknamed the 
above principle "Associative Memory of the Second 
Kind'. 
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Caution. This report only describes some of the principal 
ideas, and what was done. Straightforward 
implementation of these examples may not yet guarantee 
musically good results. In order to make a practical 
algorithm, one also has to introduce a great many other 
details, such as special randomizing processes, diatonic 
transformations, various checks, etc., not yet discussed 
above. 
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