
A System for Computer Music Performance

DAVID P. ANDERSON
University of California, Berkeley
and
RON KUIVILA
Wesleyan University

A computer music performance system (CMPS) is a computer system connected to input devices
(including musical keyboards or other instruments) and to graphic and audio output devices. A
human performer generates input events using the input devices. The CMPS responds to these events
by computing and performing sequences of output actions whose intended timing is determined
algorithmically. Because of the need for accurate timing of output actions, the scheduling requirements
of a CMPS differ from those of general-purpose or conventional real-time systems.

This paper describes the scheduling facilities of FORMULA, a CMPS used by many musicians. In
addition to providing accurate timing of output action sequences, FORMULA provides other basic
functions useful in musical applications: (1) per-process virtual time systems with independent
relat.ionships to real time; (2) process grouping mechanisms and language-level control structures
with time-related semantics, and (3) integrated scheduling of tasks (such as compiling and editing)
whose real-time constraints are less stringent than those of output action computations.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-based Systems]:
Real-time Systems; D.1.3 [Programming Techniques]: Concurrent Programming; D.4.1 [Oper-
ating Systems]: Process Management-multiprocessing/multiprogramming, scheduling, synchroni-
zation; D.4.7 [Operating Systems]: Organization and Design-inteructiue systems, real-time systems;
5.5 [Arts and Humanities]: Music

General Terms: Design, Human Factors, Languages, Performance

Additional Key Words and Phrases: Action buffering, deadline scheduling, message-passing, process
groups, virtual time systems

1. INTRODUCTION

A computer music performance system (CMPS) provides a programmable inter-
face between human performers and digitally controlled output devices. A typical
CMPS environment involves several components (see Figure 1):

(1) A human performer, while hearing ongoing musical output, generates perfor-
mance gestures. These gestures may be discrete (such as pressing and releas-
ing keys) or continuous (such as varying the pressure on a key).

Authors’ addresses: D. P. Anderson, Computer Science Division, EECS Dept., University of Califor-
nia, Berkeley, CA 94720; R. Kuivila, Music Department, Wesleyan University, Middletown, CT
06457.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0734-2071/90/0200-0056 $01.50

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990, Pages 56-82.

A System for Computer Music Performance * 57

human pctformcr

output actions

other I/O dcviccs

synthcsizcr

sound

recording

Fig. 1. The components of a computer music performance system.

(2) Input devices convert performance gestures into a digital form. Continuous
gestures are sampled at a low rate (less than 200 samples per second). Input
devices may include (a) general-purpose input devices (computer keyboards
and pointing devices), (b) musical keyboards and other traditional instru-
ments modified to produce digital output, and (c) specially designed musical
input devices [37, 401.

(3) The CMPS itself is a computer system that accepts input from these devices
and produces output actions. If these actions are restricted to note start and
end commands, the output rate is usually low (less than 100 commands per
second). If the CMPS controls continuous note parameters (such as timbre),
then the bandwidth may be higher. In addition, the CMPS may be interfaced
to other I/O devices such as disks, computer keyboards, and displays.

(4) Synthesizers accept commands from the control computer (the MIDI inter-
face standard [28] is a popular means of conveying these commands). The
synthesizers generate audio waveforms that are amplified and played back to
the performer and audience, and perhaps recorded as well.

The applications of a CMPS include real-time algorithmic composition, auto-
mated accompaniment [14, 15, 391, and interactive environments for human
performers [9,40]. To accommodate this range of applications, a CMPS must be
programmable. Depending on the application, the programmer has the role of
instrument designer, composer, or both. The system software environment of a
CMPS includes (1) a language by which the musician can program the CMPS
and (2) a run-time library and operating system supporting the semantics of the
language. Figure 2 shows the major system software components of a CMPS;
arrows represent functional dependencies. Programming languages for computer
music are described in [7, 11, 16, 25, 33, 34, 361. We concentrate here on the
operating system level and, in particular, the real-time facility responsible for
scheduling processes and output actions while meeting the stringent timing
requirements of music.

FORMULA (Forth Music Language) is a CMPS that is currently being used
for instruction and experimentation in several universities and by many individ-
ual musicians and composers. It includes a Forth-based programming language
and an operating system supporting the language. This paper describes the

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

58 l D. P. Anderson and R. Kuivila

Fig. 2. The software structure of a computer music
performance system.

4
interactive

II0 devices

A
other II0 devices

structure of FORMULA’s operating system. Other aspects of FORMULA are
described in [2]-[6].

The paper is structured as follows: Section 2 explains how the timing of musical
output is represented and specified in FORMULA, and Section 3 describes
scheduling mechanisms used to increase timing accuracy. Section 4 deals with
the advanced programming features of FORMULA, including time deformations,
process groups, time-control structures, mutual exclusion, and background pro-
cesses. Section 5 gives implementation details. Section 6 surveys other CMPS
designs. Section 7 summarizes the novel aspects of FORMULA and discusses
areas of future research.

2. TIMING IN A CMPS

A CMPS responds to input events by performing computations and generating
output actions. For example, a program might sound a note immediately after the
performer presses a key on a musical keyboard (in practice, of course, there is a
slight delay). We call this a simple response because the timing of output actions
need not be specified.

An input event may also trigger a series of actions that occur over time. These
response sequences are algorithmically generated: The timing of the actions, and
the actions themselves, are dynamically computed by the application program.
For example, the response to a key-down event might be (a) several dela;ed
repetitions of the key (an echo effect); (b) a predefined musical phrase or piece,
perhaps with some algorithmic variation; or (c) a variation in the tempo of an
ongoing “accompaniment” process to match the tempo of the human performer.

To support multiple simultaneous response sequences, FORMULA provides
the abstraction of concurrent processes. Processes have separate stacks, and
their state is maintained in activation records on these stacks. A new process is
created using’

create-process(procedure, arguments);

The new process executes the given procedure with the given arguments and
exits on return from this procedure.

The system maintains a time position for each process-a new process inherits
the time position of its parent process. If the process is created in response to
external input, its time position is the time when the input was received. A

1 For understandability we use C-like notation throughout. The actual interfaces are in Forth.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A System for Computer Music Performance l 59

process can advance its time position using

time-advance(delay);

Delay is expressed in the units of a virtual time system not necessarily equal to
wall-clock time. Notated time in music is an example of a virtual time system:
As tempo fluctuates, time intervals notated as equal are performed with different
durations.

Different processes have different virtual time systems, and these systems can
run at different rates. This allows different processes to follow distinct tempo
changes and rubato. For example, a melody played espressiuo may require tempo
changes that do not affect the rhythm of the accompaniment [30].

Virtual time is expressed in integer units. Programs can also specify time
intervals in rational (n/m) form. A per-process scaling factor is used to convert
rational time intervals to virtual time. This allows the programmer to use familiar
rhythmic units (quarter notes, triplets, and so on).

Although processes may have distinct virtual time systems, these systems all
have an unambiguous relationship to the two “global” time coordinate systems
FORMULA uses. Real time (or “wall-clock” time) is maintained by a periodic
clock interrupt. System time (ST) differs from real time in two ways. First, ST
is related to real time by a scaling factor global-tempo, defined as units of
ST per unit of real time. Second, if processes fall too far behind schedule, ST
stops advancing to allow them to catch up. The degree of tolerated lateness is
specified by the parameter ma x-l ate n e s s, whose value is in ST units.

Global speed can be changed by modifying global-tempo; this is convenient
for matching the speed of an external timing source. For example, overdubbing
on a multitrack tape deck may require periodically adjusting global-tempo to
match the speed of a “click track” generated by the tape deck.

The virtual time position T of a process corresponds to a particular system
time S. However, the system times during which the process has time position T
can lie, within certain bounds, ahead of or behind S. This serves two purposes:

-It allows eventual synchronization of late processes. For example, a burst of
input events may saturate the system, causing the response processes to be
late. However, the initial time position of each process is the time of its
triggering input event, so subsequent timing is not permanently affected. The
response sequence can eventually synchronize with ongoing music, like a
musician whose attention has wandered.

-By allowing processes to run ahead of schedule, action buffering is possible.
This is explained in the next section.

3. SCHEDULING COMPUTATIONS AND ACTIONS

As observed by Loy [22], the timing accuracy requirements for output actions
are bounded by the “motor and psychoacoustic capacities” of the performer and
the listener. The “simultaneity tolerance” for human perception of the onset
time of a sound depends on its frequency content and may be as low as a
millisecond. Because computations can take significant CPU time, specialized
scheduling mechanisms are needed to attain the requisite timing accuracy.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

60 . D. P. Anderson and R. Kuivila

FORMULA uses a technique called action buffering to improve timing accuracy.
In this approach, action generation is factored into an action computation that
may require significant CPU time and the performance of an action routine that
does not. Typically, the action computation determines parameters for the action
routine. For example, a computation might determine arguments specifying pitch,
waveform, and envelope information for an action routine that starts a note on
a synthesizer by sending a few bytes on a bus or MIDI channel.

The central idea of action buffering is to allow action computation to run
ahead of performance, exploiting the otherwise unused CPU time “between”
actions. Action performance can preempt action computation and does not
require a context switch to execute. Action buffering can improve the timing
accuracy of response sequences that require significant computation (see the
Appendix). However, user interaction will suffer a buffer delay equal to the
amount of time the process has run ahead [181.

3.1 Action-Generating Processes

Action-generating processes produce sequences of output actions. The timing
of the actions is a function of time position, which is manipulated by calls to
time-advance () . An action-generating process does not call action routines
directly. Instead it calls

schedule-action(procedure, arguments);

giving the address of the action routine and the arguments to be passed to it.
The scheduler will call the action routine at (or near) the real time corresponding
to the process’s current time position. If this time position is less than the current
ST, the scheduler performs the action immediately. A process may also call

schedule-future-action(delay, procedure, arguments);

to schedule actions at times relative to its time position. Without this facility,
simple musical concepts would become needlessly difficult to program. For
example, a legato note sequence requires note release actions to be scheduled
after subsequent note attack actions,, whereas in a staccato sequence the releases
precede the attacks. Future actions make it possible to eliminate these consid-
erations by defining a function

play-note(pitch, volume, duration);

that schedules both the attack and the release.

3.2 Scheduling Parameters

In addition to time position, the FORMULA scheduler maintains the following
scheduling parameters for each process P:

(1) The nonnegative max-de lay determines how far ahead of the current ST
P is allowed to compute. If P advances to a time position such that

time-position > ST + max-delay

then P is suspended and becomes dormant. It remains dormant until the
condition no longer holds, whereupon it becomes runnable. This allows per-
process limits to be placed on the buffer delay suffered by user interaction.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A System for Computer Music Performance - 61

j mu-delay i minedelay

computatioij interval system time
-.- 2*.

wakeup-time timegosition deadline

(T - mar_delay) 0”) (T - min-delay)

Fig. 3. For a given time position, a process’s scheduling parameters determine
a “window” during which it can execute.

(2) Mi n-de lay determines P’s deadline as a function of its time position
according to the relation

deadline = time-position - min-delay

At any moment, the runnable process with the earliest deadline has control of
the CPU. The running process will be preempted if a process with an earlier
deadline becomes runnable.

A process inherits its scheduling parameters from its parent process. A process
can directly modify its max.-delay and min-delay parameters at any time,
but it must call time-advance (0) to have these changes take effect (that is,
to change its deadline and perhaps become dormant).

What is the practical significance of max-delay and min-delay? One can
observe that a process’s computation at a time position T takes place while the
current ST lies between T - max-delay and T - min-delay (see Figure 3).
However, this fact by itself is of little practical use, and we will now explore the
question in more depth.

We will say that a process is in start-up state if it has been recently awakened
or created in response to an input event and has therefore not yet had a chance
to compute ahead of real time; otherwise it is in steady state.

For steady-state processes, the value of max-delay reflects a trade-off
between timing accuracy and buffer delay. If max-delay is small, the process
will respond quickly to input but may experience action timing errors if system
load is heavy or its own computations are long. If max-delay is large, the
process will be more immune to timing errors, at the expense of an increase in
input response time. Max-delay can be changed as the role of the process
changes during performance. For example, max-de 1 a y can be temporarily
reduced during a period of frequent user interaction with the process.

The min-de 1 a y parameter can be used to prioritize startup-state processes
having approximately the same time position. (The value of max-delay is not
immediately relevant for such a process since the current ST will be greater than
its time position.) If processes P and Q have the same time position and P has a
larger (more positive) min-delay than Q, then P will have an earlier deadline,
and will therefore run first (see Figure 4).

For example, suppose that process P is awakened in response to key up/down
events, while process Q is awakened in response to changes in a volume control
knob. They both schedule actions with no intervening time advance. In principle,
P and Q should both generate their actions as soon as possible. If, however, the

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

62 l D. P. Anderson and R. Kuivila

minedelay
*

minedelay j
l

.

system rime

t t t

I I deadline(P)

timegosition(Q) system-time deac

timegosition(P)

: 16

line(Q)

Fig. 4. The min-delay parameter determines deadline as a function
of time position, so it can be used to prioritize processes created or
awakened at about the same time.

two types of input events occur almost simultaneously, then P should execute
before Q since the timing of its output is more audible. This can be done by
giving P a larger min-delay. (This example also illustrates why deadline
and time-posit ion are separate parameters.)

Min-delay can also be used to prioritize steady-state processes. Suppose
schedule-future-action() is used to schedule actions before the caller’s
time position. A process P positioned at a particular beat could use this feature
to play grace notes occurring slightly before the beat. P should be given priority
over other processes at the same time position that do not use this feature by
increasing its min-delay. P’s max-delay should also be larger than the
“grace period” so that the grace note does not occur late.

3.3 Illustrations and Examples

The major concepts of the FORMULA scheduler (action buffering and scheduling
parameters) can be illustrated in several ways. First, the states of an action-
generating process are shown in Figure 5. Newly created processes are always
runnable. When a runnable process’s deadline becomes the earliest, it starts
to run. It continues until it calls wait-for-input(device) or time-
advance(delay). The effect, of time-advance(delay) depends on the
magnitude of delay. If delay advances the new time position beyond the
current STplus max-delay, theprocessbecomes dormant;otherwiseitremains
runnable. A dormant process becomes runnable as soon as ST plus max-
delay catches up with its time position. Wait-for_input(device) puts
the caller to sleep until there is input from the specified device.

Second, Figure 6 graphs the time position of action computations and
performances versus the real time when they occur. The graph is broken into
dormant, runnable, and lute regions by the lines time position = real time and
time position = real time + max-delay.

The graph depicts the following scheduling scenario. An input interrupt occurs
at ST = 1, and its handler creates a process P with its time-position = 1,
max-delay =3,and min-delay= 0. The execution of P is delayed slightly
by processes with earlier deadlines. P schedules its first action (Al) late, so the
action is performed immediately. P then does a time-advance () to 5 and
schedules an action (A2) for that time. The action is buffered and performed
ACM Transactions on Computer Systems, Vo, 8, No. 1, February 1990.

A System for Computer Music Performance l 63

Fig. 5. States of action-generating processes.

y = real time + mor_delay

‘,

l
0 1 2 3 4 5 6 7 8

real time

Fig. 6. A graph of time position versus real time for a scenario in
which a process, responding to an input, executes action computa-
tions Cl, C2, and C3, which schedule actions with performance
routines Al, A2, and A3.

later. P’s next time advance, to time 7, exceeds its max-delay, and it becomes
dormant until ST = 4. Its execution is interrupted at ST = 5 by the performance
of action A2.

3.4 Dealing with Lateness

We use the term system buffer delay to mean the deadline of the currently running
process minus the current ST. Since process deadlines advance independently of

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

64 l D. P. Anderson and R. Kuivila

ST, the buffer delay varies with time. It is positive when the system is ahead of
schedule and negative when it has fallen behind.

The system’s response to lateness can be parameterized by imposing a lower
bound max-la tenes s on the system buffer delay. When the system buffer
delay falls below max-1 a t e n e s s, ST stops advancing, and action performance
is postponed. When the buffer delay again exceeds max-latenes s, the ST
resumes. If ST is stopped for a period X, then the entire subsequent schedule of
actions is delayed by X, and synchronization with the external timing source is
lost.

The value of max-lateness represents a trade-off. If max-lateness is
negative, then a limited amount of lateness is tolerated without stopping ST. If
max-la t eness = -03, then ST is never stopped; this is desirable for applica-
tions that must remain synchronized with an external timing source. On the
other hand, negative buffer delays can compress the timing of subsequent actions.
If the buffer delay assumes a negative value Y, then actions whose scheduled
performance times differ by less than Y may be performed arbitrarily close
together. Musically, this distortion of action timing may be less desirable than
simply shifting the subsequent action schedule. If this is the case, max-
1 ate n e s s should have a nonnegative value.

4. ADVANCED PROGRAMMING FEATURES

4.1 Time Coordinate Systems and Time Deformations

Musical applications require flexible tempo (speed) control. The variable
global-tempo varies the speed of all processes. FORMULA also provides
two mechanisms that allow processes to have distinct tempo variations (see
Figure 7).

First, FORMULA provides a function that converts rational numbers into
integers with a per-process scaling factor and accumulates truncation error on a
per-process basis. A process’s tempo can be subjected to simple (piecewise
constant) variation by modifying the scaling factor. FORMULA provides a
function beats-per-minute(n) that adjusts the scaling factor to provide
the given number of (quarter note) beats per minute.

Second, FORMULA provides a time deformation (TD) mechanism for more
complex tempo variation [6]. A TD defines a tempo function that determines the
rate of advance of one virtual time system with respect to another. TD definitions
are procedures that call TD primitive functions, each of which represents a
segment of the tempo function. This procedural concatenation style of function
definition is convenient for musical purposes since syntactic order corresponds
to temporal order (this is not the case with conventional function definitions).

An instance of a TD is implemented as a process that maintains a time position
t. A TD process is scheduled as a coroutine that, on each call, accepts an
undeformed time interval X > 0 and returns a deformed time interval, obtained
by integrating the tempo function from t to t + X. X is then added to t. A TD
primitive accepts a time advance, integrates its segment of the tempo function
over this advance, and performs either a coroutine switch (if the time advance
ends within its segment) or a return from procedure (to advance to the next
segment). There is also a pause () primitive that can be viewed as defining a
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A System for Computer Music Performance - 65

7/l 6 rational specijication

per-process virtual time

system time (ST)

84 1 milliseconds real time

Fig. 7. The time coordinate systems used in FOR-
MULA and the mappings between them.

for (i=O: i<2; i++) {
(4 td-segment(0.5, 1.5, 1.0);

I

undeformed time

i.7

deformed time
63 TO

1.5 - process - 1.375

Fig. 8. A time deformation (TD) is a program (a) that
defines a tempo function (b). An instance of the TD is a
process (c) that deforms a time interval by integrating the
tempo function over the interval.

singular point (with a zero width but a nonzero integral) in the tempo function.
Figure 8 shows a TD viewed as a program, as a tempo function, and as a process.

TDs can be combined in two ways to produce complex time mappings. The
parallel composition of a set of TDs acts on an input time interval X by supplying
X to the TDs in the set, computing their “compression factors” (the ratio of the
deformed value of X to X), forming the product of these factors, and returning
this product times X. Each action-generating process can have a set of TDs
bound to it (FORMULA provides language-level mechanisms for defining TDs
and binding them to processes [5]). The time advances of a process P are
subjected to the parallel composition of the TDs that are bound to P. Time

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

66 ’ D. P. Anderson and FL Kuivila

deformations can also be combined by “serial composition” in which a time
interval is deformed by passing it through a series of TDs (or sets of TDs
composed in parallel); this is explained below.

4.2 Process Groups

Process grouping mechanisms have been included in some general-purpose op-
erating systems [19] and are particularly useful in computer music. FORMULA
has a facility that allows processes to be collected into groups that can be
manipulated (suspended, resumed, and aborted) as a unit. Each group can have
its own virtual time system and time deformations. A programmer might, for
example, group together the set of processes representing a particular instrument
or orchestral section.

A FORMULA group is a nonempty set whose members may be either action-
generating processes or other groups. We use the term scheduling object to mean
either a process or a group. Scheduling objects form a set of trees (called process
trees) under the membership relation. A top-level scheduling object is one that is
the root of a process tree. The root set is the collection of all top-level objects.

A set of TDs can be bound to any scheduling object. This binding gives each
scheduling object its own virtual time system, which is mapped to that of its
parent group by the parallel composition of the object’s TDs. The mapping from
an object’s virtual time system to ST is the serial composition of the TD sets
between the object and the root set. The virtual time system of the root set
is ST.

Processes created using create-process () are always members of the
same group as the parent process. Their initial time position is inherited from
their parent. A group is created by calling

create-group(procedure, arguments);

The new group contains a single new process that executes the given procedure
with given arguments. The original calling process sleeps until the last process
in the group exits. At that point the group is destroyed, and the calling process
resumes execution at the terminal time position of the group.

All elements of a process tree share the same max-delay and min-delay
scheduling parameters. If a process in a group waits for external input, its entire
process tree is suspended. Therefore process scheduling within a process tree is
nonpreemptive. One can view a process tree as a single “activity” consisting of
multiple processes but governed by a single set of scheduling parameters.

4.3 Time-Control Structures

Conventional programming languages have syntactic structures (loops, condi-
tionals, and so on) to control execution flow. These structures serve to combine
primitives (simple statements) into compound statements. FORMULA provides
a set of the following time-control structures whose semantics are based on virtual
time usage rather than on iteration or conditionals:

maxtime (n) statement
mintime (n) statement
minloop(n) statement

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A System for Computer Music Performance l 67

The maxtime (n) structure specifies that the statement is to consume at most
n units of virtual time. When the statement is entered, the upper limit
(time-position + n) is recorded. Time-advance() checks whether the
advance would exceed this limit, in which case it truncates the advance to reach
the limit exactly, restores the call stack to its level at the start of the statement,
and transfers control to just beyond the end of the statement. Thus if the time-
advance () was called from within nested procedure calls, their activation
records are removed from the stack. Exiting the statement because of an exceeded
limit has no effect on future actions scheduled within the structure. They are
executed as scheduled, even if they lie beyond the time limit.

The mintime (n) structure specifies that the statement is to be extended by
an “invisible” time advance, if necessary, so that it consumes at least n units of
virtual time. When the statement is entered, the lower limit (time-position
+ n) is recorded. If, when the end of the statement is reached, the time position
is less than this limit, a time-advance() is done to reach the limit. The
minl oop (n) structure specifies that the statement is to be iterated, if necessary,
so that it consumes at least n time units. If the time position is less than the
lower limit when the end of the statement is reached, control is transferred back
to the start of the statement.

Time-control structures can be nested to any depth. This nesting is syntactic;
the time intervals specified by the structures need not be nested. The semantics
of nesting are that an outer control structure takes precedence over an inner
structure. For example,

maxtime(40) (
statement 1
mintime(30) {

statement 2
1
statement 3

is meaningful. If statement 1 consumes more than 10 time units, statement 3 will
not execute.

Time-control structures are particularly useful in algorithmic composition in
which stochastic musical elements may consume unpredictable amounts of time.
The structures allow processes to invoke such elements for fixed or bounded
amounts of time, thus allowing them to be combined more conveniently.

4.4 Mutual Exclusion

FORMULA processes execute in a single address space and share both system-
level and user-defined data structures. Process scheduling within a process tree
is nonpreemptive, so operations on data structures shared only by members of a
single tree require no synchronization, Scheduling between process trees is
preemptive, so any objects shared between trees must be synchronized. Two
mutual exclusion mechanisms are used, depending on the type of object:

-If the object has short operations, interrupt-masking can be used. (If the object
is shared only among processes, it is sufficient to disable software interrupts;

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

68 l D. P. Anderson and Fi. Kuivila

see Sec. 4.2.) Otherwise, the relevant hardware interrupts must be masked
also.

-If the object has long operations (such as calls to a single-threaded window
system), then deadline semaphores are used. A deadline semaphore is a form
of sleep lock. When a process A acquires the lock (using the P () operation),
its deadline and identifier are recorded in the lock. If another process B
preempts A and requests the lock, control is transferred to A by temporarily
promoting its deadline to that of B. When A releases the lock (using the v ()
operation), its original deadline is restored and it is descheduled. A similar
mechanism is used for monitor locks in the Swift system [lo].

4.5 Background Processes

Our discussion of process scheduling has thus far been restricted to action-
generating (or foreground) processes. These processes perform input response
computations. They use time-advance () to move between time positions
and consume little CPU time between successive time positions. Tasks such as
compiling and editing, however, use significant CPU time and have no precise
output timing requirements. To support such tasks, the FORMULA scheduler
has a facility called background processes (BPS). There are many possible design
goals and implementation methods for supporting background processes in a
CMPS. We do not enumerate these possibilities but simply describe the goals
and design of the FORMULA scheduler.

A process may be labeled as (1) a foreground process, (2) a background process,
or (3) a latent background process. A latent BP is one whose characteristics are
not known in advance or can change during execution. For example, a command
interpreter process should be a latent BP if it may execute action-generating
commands. A latent BP is automatically switched between background and
foreground, as appropriate, by the scheduler. It becomes a BP whenever its CPU
burst exceeds a per-process limit, and it is moved to the foreground when it calls
schedule-action() or time-advance() andwhenitisawakened.A
BP does not have a meaningful time-position parameter. If it makes a call
that requires a time position (such as scheduling an action or creating a fore-
ground process), the current ST is used for this purpose.

ST is divided into intervals of a fixed length window (perhaps 1 second or so).
Each BP has a slice parameter and may be intrusive or nonintrusiue. If a BP
is intrusive, its s 1 ice defines a CPU quota: The scheduler attempts to ensure
that the process receives at least that much CPU time within each interval of
length window (this could be used, for example, for processes that poll I/O
devices or that update graphic displays). The scheduler may preempt foreground
processes to meet the CPU quota of intrusive BPS. If a BP is not intrusive, it
runs only when there are no runnable foreground processes. The slice param-
eter of a process P determines the proportion of CPU time that P gets in the
absence of foreground processes, namely

slicep
z sliceB

where .sliceQ is summed over all background processes.
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A System for Computer Music Performance l 69

FORMULA’s combination of foreground and background process-scheduling
mechanisms meets a wide range of single-user CMPS requirements. It supports
processes that (1) have precise real-time requirements (foreground processes),
(2) require a fixed share of the CPU (intrusive processes), and (3) have no real-
time requirements but should not be starved if possible (nonintrusive processes).
The window and slice parameters allow the programmer to directly control
the proportion of CPU time given to individual BPS and to adjust the trade-off
between real-time response and BP throughput.

5. IMPLEMENTATION

FORMULA currently runs on a personal computer. The hardware includes an
8 MHz Motorola 68000 CPU, a MIDI interface [28], and a periodic interrupt-
generating clock whose period (5 milliseconds) supplies enough temporal resolu-
tion for most musical purposes. There is no virtual-memory or floating-point
hardware. FORMULA is built on top of Forthmacs [8], a Forth language system.
An underlying nonreal-time single-process operating system provides file and
I/O device access.

5.1 Preemptive Scheduling and Groups

Recall from Section 3.2 that top-level objects can preempt one another, but that
scheduling within a process tree is nonpreemptive. This policy results from the
implementation of time deformations as processes. A TD defines the mapping
between time systems by a sequence of transformations of undeformed time
intervals into deformed intervals. The undeformed intervals must be nonnegative
because it is not feasible to recover previous states of the TD process. We call
this restriction the monotonic property of TDs.

This property constrains the scheduling of processes within a group in two
ways: (1) processes must be executed in order of their time position within the
group, and (2) processes cannot be added to a group with a time position earlier
than that of the first (earliest) element of the group.

Scheduling within a tree must therefore be (1) in order of increasing time
position and (2) nonpreemptive. This in turn implies that all processes within a
tree must share max.-delay and min-delay parameters. Top-level groups
have scheduling parameters that apply to all their descendants. The parameters
have the same semantics as for processes: If a time advance of a top-level group
would exceed the current ST plus max-delay, then the group becomes dormant
until this is no longer true.

In the root set, on the other hand, execution order is determined by deadline
rather than time position. When top-level objects have different max-delay
and min-delay parameters, their order of execution may not correspond to
increasing time position. Consequently, the root set cannot have TDs.

5.2 Scheduling Data Structures

The FORMULA scheduler uses two main data structures (see Figure 9):

-The wakeup buffer stores (a) action descriptors and (b) dormant scheduling
objects (context blocks and group nodes). It is implemented as a hash table
with bucket chaining, and entries are hashed by the low-order bits of their

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

70 - D. P. Anderson and R. Kuivila

head ‘v

execution queue wakeup buffer

(linked list. ordered by deadline) (hash table, keyed by wakeup time)

Fig. 9. The FORMULA scheduler uses two main data structures: the exe-
cution queue and the wakeup buffer.

wakeup times.’ Each entry has a wakeup-time field storing the time (in ST
units) when the action is to be performed or the process is to be made
executable. With the default value of global-tempo, each clock tick corre-
sponds to about one hash table entry.

-The execution queue is a list of executable scheduling objects and is sorted by
increasing deadline (in ST units). The executing object is always that with the
earliest deadline (the execution queue head).

Scheduling objects are either processes or groups. Each process is represented
by its context block (CB), and each group is represented by a group node
containing a linked list of its elements, sorted by increasing time position.

All scheduling objects have a field earliest-descendant that points to
the CB of the process in the tree with the earliest time position (if the scheduling
object is a process, this field points to the CB of the process itself). A top-level
scheduling object has a Boolean flag, preempted, indicating whether the object
was preempted. If so, the preempted_CB field points to the CB of the process
that was executing when preemption occurred (this could be a process other than
the earliest descendant; for example, it might be a time deformation process). An
example of a process tree, showing various fields of the context blocks and group
nodes, is given in Figure 10.

If a scheduling object is preempted, the complete processor state (all registers)
is saved on the stack of the preempted process, and the stack pointer is saved at
a known location in its CB. The execution queue head’s preempted field is set,
and its preempted_CB field is set to the CB of the preempted process. A
smaller amount of state (3 registers) is saved for processes that voluntarily
suspend execution. When the scheduler does a context switch to an object X, it
checks the preempted flag of X. If the flag is true, it follows the preempted-
CB pointer and restores the full process state. Otherwise, it follows the
earliest-descendant pointer and restoresthe partial state.

* This data structure and various alternatives are discussed by Varghese [38]. In our approach, wakeup
buffer entries with different wakeup times may hash to the same bucket. Consequently, the software
interrupt has to check the wakeup time of each record in the bucket before processing it. Dannenberg
[13] describes a system that eliminates the need for this check by using a hash table only for near-
term actions and using a heap (maintained by a background process) to store distant actions.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A System for Computer Music Performance l 71

r first-descendant
next-sibling -

t - first-child
TD-list

- fits-descendant
next-sibling
TD-list

‘EL- first-descendant
r+c;L;~~ling earliestprocess

r- -

top-level group

1 J

Fig. 10. An example of a process tree data structure. The top-level group
contains a process and two groups, each of which in turn contains a
process. The process tree was preempted while executing in a time defor-
mation (TD) attached to the earliest process. Pointers not drawn are
assumed to he null.

5.3 Implementation of Scheduling Primitives

The implementation of schedule-action () is simple. It allocates an action
record and copies its arguments to the record. The wakeup time of the action
record is set to the maximum of the caller’s time position and the current ST,
and the action record is inserted in the wakeup buffer.

Every scheduling object 0 has two time-position fields: T1(0) is the internal
time position of the object in its own virtual time system, and TE(O) is its external
time position in the system of its parent group. The internal time position of a
group is the minimum of the external time positions of its elements. The external
time position of a top-level object is ST. T1(0) is initially 0, and TE(O) is
inherited from the object’s creator.

When a process P calls time-advance (delay), delay is added to TICP)
and process-delay(delay, P) is called. The algorithm for process-
delay(delay, X) isasfollows:

(1) Delay is deformed by the parallel composition of the TDs bound to X and added to
T&O.

(2) If X is not top level, X is reinserted in the time-ordered list of its parent group G.
T,(G) is advanced by an amount d corresponding to the change from the original
TE(X) to TE(Y), where Y is the new head of the group. Earliest-descendant
is propagated from Y to G. Then process-delay () is called recursively with
arguments cl and C.

(3) If X is top level, software interrupts are masked to protect the execution queue. X is
unlinked from the execution queue, and the following fields are updated:

time-position += delay;
deadline = time-position - min-delay;
wakeup-time = time-position - max-delay;

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

72 - D. P. Anderson and R. Kuivila

of wakeup-t ime is greater than the current ST, X is moved to the wakeup buffer;
otherwise X is reinserted in the execution queue. In either case, a context switch is
done to the new execution queue head. Software interrupts are then unmasked (this
happens after the next context switch back to X).

5.4 Action Performance and Preemption

Action performance and process preemption are done jointly by the clock inter-
rupt handler and the software interrupt handler.3 The division of labor between
levels is as follows:

-Action computation is at the process level. Scheduling is preemptive, with
priority determined by deadlines.

-Action performance is at the software interrupt level. Scheduling at this level
is nonpreemptive; action routines are executed in sequence.

-Clock and I/O interrupts are at the hardware interrupt level. Scheduling is
preemptive; interrupt priorities do not change during program execution.

Scheduling between levels is priority based (in increasing order above) and
preemptive.

On each clock interrupt, the handler checks whether the earliest process
deadline exceeds the current ST by more than max-1 a t e ne s s and returns if it
does. Otherwise, the handler adds g 1 oba 1-t empo to ST. It then checks whether
any wakeup buffer hash buckets between indices corresponding to the old and
new ST are nonempty and requests a software interrupt if they are.

The software interrupt handler processes lists of records from the wakeup
buffer. It moves dormant processes to the execution queue and executes action
performance routines. It is possible that action routines consume so much CPU
time that a second clock interrupt occurs during the software interrupt handler.
The software interrupt routine continues to process lists from successive hash
buckets of the wakeup buffer until it reaches the current ST. If, on completion
of the software interrupt handler, there is a new execution queue head, then the
old execution queue head is preempted and a context switch is done. The
preempted and preempted-CB fields of the old process are set (the new
process, in this case, never has the preempted flag set).

There are two advantages in using the software interrupt handler, instead of
hardware interrupt handlers, to perform actions and preemption. First, action
performance is done at an interrupt priority below that of all hardware interrupts,
so no interrupts are lost because of slow action routines. (In particular, no clock
interrupts are lost if action routine execution times exceed a clock period.)
Second, since all preemption is done from the software interrupt routine, the
problem of preemption within nested hardware interrupts (which in general must
be avoided) does not arise.

When a process is awakened by an interrupt routine, it is moved to the
wakeup buffer rather than directly to the execution queue. Its wakeup time is
assigned so that it will be awakened on the next clock tick. Our reasons for

3 A software interrupt is requested in software and has lower priority than any hardware interrupt.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A System for Computer Music Performance l 73

using this approach are

-Process wakeups to handle input are quantized. Even if several input events
happen during a clock period, the handler process is not awakened until the
next clock interrupt. Quantizing lets the process handle several input events
in one CPU burst, reducing context switch overhead. For example, if several
MIDI commands arrive in one 5-millisecond clock period, they all get handled
in one CPU burst. The slight loss of resolution is insignificant since the clock
rate limits output accuracy in any case. Loy suggests the use of input device
polling for the same reasons [22]; our solution avoids polling overhead.

-Preemption is done only in the software interrupt handler, which simplifies
the structure of the scheduler. It also means that the execution queue data
structure is accessed only from the process level and from the software interrupt
handler so that it is not necessary to mask hardware interrupts while it is
accessed.

5.5 Out-of-Order Action Scheduling

When TDs are used, schedule-future-action() knows the inner time
position, T, of the action, but not its position in ST. The ST position cannot be
determined until the process has advanced to T since its TDs may deform the
intervening interval.

To solve this problem, each process has a future action queue that stores
pending actions, sorted by (internal) time position. Schedule-future-
act ion () inserts the action record in this queue. The process must assume
the time position of each pending action to schedule it. A modified version of
time -advance () scans the future action queue and subdivides the requested
advance as needed. It calls the original time-advance() and schedule-
act ion () to schedule future actions at their time positions.

5.6 Implementation of Time-Control Structures

Time-control structures are implemented as follows. Each action-generating
process has two stacks of records (the max-stack and min-stack) describing
the time-control structures within which it is executing. Each record contains a
time limit, the dynamic nesting level, and possibly a branch address and stack
level. Because of recursion, several stack records may refer to a single (syntactic)
time-control structure. The compiler generates code at the start of each time-
control structure to create and push the appropriate record.

To implement maxtime, time-advance () checks the top element on the
max-s tat k. If the time limit would be exceeded, a truncated time advance is
done, records from the min-stack with deeper nesting levels than that of the
ma x-stack entry are popped, the process’s call stack is restored to the correct
level, and control is transferred past the end of the maxtime statement.

The compiler generates code at the end of each time-control structure as
follows: for maxtime, the code pops an entry from the max-stack; for
mintime, the code pops the min-stack and does a time advance if necessary;
for minloop, the code examines the min-stack top and either branches to
the start of the statement or pops the min-stack.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

74 l D. P. Anderson and R. Kuivila

5.7 Background Process Scheduling: Implementation

BP scheduling is built on top of the deadline scheduler. The runnable BPS are
collected into a group (the BP group). The idle process is always an element of
this group; it is nonintrusive and has a s 1 ice of zero. The BP group is moved
between an infinite deadline (greater than the deadlines of all action-generating
processes) and a finite deadline (one that allows it to preempt action-generating
processes). When the group’s deadline is infinite, a variable reschedule-
delay stores the delay (in system time) until it is to be promoted to a finite
deadline.

BPS are time sliced while the BP group is running. This time slicing is among
all BPS while the group has an infinite deadline and is only among intrusive BPS
while the group has a finite deadline. When all intrusive BPS have received their
slices while the group has a finite deadline, the BP group is demoted to its infinite
deadline.

The following steps are done on every clock interrupt (context switches are
always deferred to the software interrupt routine):

-If the interrupted process is a BP and has a finite deadline, one unit of real
time (expressed in ST) is added to its deadline (that is, the deadline of a BP
advances as it receives CPU time). If the new deadline exceeds that of a
nonbackground process, the BP is preempted.

-If the interrupted process is an intrusive BP and has an infinite deadline,
reschedule-delay is incremented. Hence if an intrusive process gets a
tick of CPU time at an infinite deadline, the promotion of the BP group to a
finite deadline can be delayed by a tick.

-If the interrupted process is a BP that has just finished its slice, a preemptive
switch is done to the next BP in cyclic order (or, if the process has a finite
deadline, to the next intrusive BP). If all intrusive processes have now received
their slices in this window, then the BP group is demoted to an infinite
deadline.

-If the interrupted process is a latent BP that has just exceeded its slice, it is
moved to the BP group (and possibly preempted).

-If the BP group is at an infinite deadline, reschedule-delay is decre-
mented. If the result is group zero, the BP group is rescheduled with a
deadline of

ST + window - C slicep

where slicep is summed over intrusive BPS.

5.8 Performance
Even with a relatively slow processor (an 8 MHz Motorola 68000), the perfor-
mance of FORMULA has been sufficient for existing applications. This is due in
part to the efficiency of FORMULA’s basic process operations. It takes a total
of 105 microseconds to create a process (allocate and initialize its context block)
and delete it (deallocate its context block). A nonpreemptive context switch takes
60 microseconds.
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A System for Computer Music Performance l 75

A typical FORMULA program involves several note-generating processes
producing a total of 10 to 20 output actions per second and another 10 or so
auxiliary processes such as time deformations. Using max-delay values of
0.5 seconds or so, such a program executes without ever falling behind schedule;
all actions are performed at their scheduled 200 Hz clock tick. The MIDI input
handler can create a new process for each key-down event with no noticeable
“arpeggiation” effect when many keys are depressed simultaneously. The system
can be made to fall behind schedule only by introducing artificially heavy loads
(hundreds of notes per second). In some cases the bottleneck is the limited
bandwidth of the MIDI interface.

6. RELATED WORK

We now survey existing CMPSs and discuss the use of general-purpose computer
systems for computer music performance.

6.1 Discrete Event Simulation

The action-scheduling facility of a CMPS is related to discrete event simulation
[20]. Both types of systems offer language-level facilities for algorithmically
defining schedules of discrete events. Implementation techniques for discrete
event simulation, such as data structures for efficiently storing large numbers of
time-ordered records [27], are potentially useful in CMPS design. A major
difference between the two types of systems, of course, is that discrete event
simulation does not take place in real time.

6.2 Conventional Real-Time Systems

Conventional real-time computer systems [26, 291 overlap with FORMULA
primarily in their use of deadline process scheduling [21]. Such systems support
only a simple response to input events. The schedule of output actions is
determined by the timing of input events, rather than by a computation. The
task of the system is to ensure that the delay of a simple response is small and
bounded. These systems also typically offer a real-time sleep service that allows
a process to sleep for a given real-time delay or until a given time arrives.

Support for fast, simple response and a real-time sleep service are not sufficient
for providing accurately timed response sequences. Action buffering is often
necessary for musically acceptable timing. Any system in which the computation
of an action begins at its scheduled performance time is susceptible to timing
errors that may be musically unacceptable.

6.3 Existing Computer Music Performance Systems

6.3.1 Procedure-Oriented Systems. We use the term procedure-oriented to

describe a CMPS in which each procedure call takes place at a single time
position. Response sequences (which, in general, may span time) are supported
by a service of the form

delayed_call(procedure, arguments, time);

requesting that the given procedure be called at, or soon after, the specified time.
This approach meshes nicely with object-oriented programming languages; the
delayed procedure calls can be cast as delayed messages to objects.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

76 * D. P. Anderson and R. Kuivila

The scheduling of calls in procedure-oriented systems may be preemptive or
nonpreemptive. The nonpreemptive version (called intervention scheduling by
Abbott [I]) is used in the Moxie [ll] and Player [23] systems. These systems
use nonpreemptive scheduling and have no action buffering, so response delay

and timing accuracy depend on the execution times of the action-generating
computations. System performance may be unacceptable if computations are
lengthy.

Object-oriented CMPSs have been built on Smalltalk [17, 311. These are
nonpreemptive, but some versions incorporate a form of action buffering. The X
scheduler [32] is a preemptive scheduler for an object-oriented extension of LISP.
This scheduler allows the programmer to set upper and lower bounds on the time
of the processing of each message. These bounds provide a generalized form of
action buffering: An action computation can consist of a chain of messages with
wide timing bounds (allowing compute-ahead), whereas action performance rou-
tines are messages with tighter bounds.

6.3.2 Process-Oriented Systems. A process-oriented system allows a process to
change its time position within a procedure and within nested procedure calls. A
response sequence that spans a time interval can therefore be generated within
a single procedure call. PLA [35, 361 and FORMULA [5] are process-based
CMPSs.

Compared to process-oriented systems, the procedure-oriented approach is
slightly simpler to implement because multiple stacks are not needed. Its main
disadvantage is that because processes cannot advance in time, programs must
convey state in global variables and arguments to future procedure calls; this can
be cumbersome. Process-oriented systems provide a more direct connection
between program syntax and musical output.

6.4 General-Purpose Systems and Computer Music Performance

The development of CMPS programs involves tasks such as editing and compiling
and ideally should be supported by a complete programming environment includ-
ing debuggers, source code management, and so forth. The CMPS designer must
decide (1) how to integrate program development tasks with real-time computa-
tion, and (2) how to use the software bases of existing programming environ-
ments. Three possible approaches are

(1) To adapt a general-purpose operating system (such as UNIX@) for use as a
CMPS. This has the following drawbacks: (1) the process scheduling and
synchronization mechanisms of general-purpose systems are not well suited
to computer music performance and are difficult to modify; (2) the high
cost of context switching in systems such as UNIX (because of virtual
memory and other overheads) precludes full use of their multiprogramming
capabilities.

(2) To use separate computer systems for development and for performance. For
example, a computer music environment developed at the Center for Music

@ UNIX is a trademark of AT&T Bell Laboratories.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A System for Computer Music Performance - 77

Experiment [24] uses a special-purpose system for real-time control and a
UNIX system for cross development of programs.

(3) To extend an existing single-process operating system (typical of current
personal computers) to include multiprogramming. The CMPS can then be
used for both development and performance. FORMULA takes this approach.

7. CONCLUSION

We have described the real-time requirements of computer music performance
systems and a system (FORMULA) that satisfies these requirements. FOR-
MULA provides abstractions that address the needs of computer music perfor-
mance:

-For generating concurrent action sequences, the basic programming model
provides multiple processes with separate logical time positions.

-Processes have virtual time systems in which they specify action times. The
mapping from virtual time to real time has several levels: (1) rational-to-
integer conversion with a per-process scaling factor, (2) time deformations,
and (3) global tempo scaling.

-Processes can be collected into groups with separate virtual time systems and
time deformations, which makes it possible to vary the tempo of a group of
processes and to manipulate a group of processes as a unit.

-Time-control structures let the programmer bound the amount of virtual time
consumed by a section of code. This makes it easier for the programmer to
combine and synchronize musical elements that have unknown or stochastic
timing.

-The background process facility allows nontime-critical tasks to be scheduled
within the same deadline paradigm as other processes.

The implementation of FORMULA uses several novel techniques for support-
ing the semantics of the programming model. These techniques provide good
timing accuracy even on relatively slow hardware.

-The use of action buffering serves two purposes. First, it allows accurate action-
performance timing even when action computation is time consuming. Second,
in situations in which input events are often simultaneous with the actions of
existing computations, it makes CPU time available for input handling when
it is most needed: near the times when actions occur. This reduces the average
latency in input response.

-Using the max-delay,min-delay, and max-lateness parameters,the
programmer or performer can (1) obtain the optimal balance between timing
accuracy and response delay, (2) prioritize both startup-state and steady-state
processes, and (3) define a policy for handling lateness.

-The initial (logical) time position of processes created or awakened from input
interrupts is the time of the interrupt. In combination with action buffering,
this policy ensures that response sequences are eventually this policy synchro-
nized as closely as possible with one another.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

78 - D. P. Anderson and R. Kuivila

FORMULA shows that it is possible to satisfy the demands of both computer
music performance and general system usage (such as program development) in
a single computer system. Doing so requires neither more CPU power than that
available in current personal computers, nor other special hardware. It is neces-
sary, however, to incorporate special mechanisms (such as action buffering and
deadline scheduling) at the lowest levels of the system.

Many areas remain unexplored in the design of FORMULA. The current
design deals effectively only with discrete abstractions (such as key up and down
actions) and with continuous abstractions sampled at the times of discrete actions
(such as time deformations). It would also be useful to offer continuous abstrac-
tions (for musical activities such as pitch and amplitude variation within notes)
automatically sampled at an appropriate rate. Such an approach is taken in the
Arctic language [121. This capability will greatly increase the computational load
and may require new scheduling techniques.

The current design assumes that action routines use negligible CPU time. If
applications were to perform more time-consuming actions (such as graphics
output), then long action routines could interfere with the timing accuracy of
shorter routines. It might therefore be useful to prioritize actions; these priorities
could be used to order the execution of action routines, perhaps with the
possibility of preemption.

APPENDIX: AN ANALYSIS OF ACTION BUFFERING

Assume that the performer can interact with a process (e.g., by modifying
variables) at arbitrary points in its execution. Let us consider the effects of action
buffering on the response delay of the interaction: the interval from the time of
the input to the time when its effects on actions are heard. Let Tf be the real
time of an input, P, the process’s time position at that moment, and Tp, the real
time corresponding to P. A process cannot, in general, be backed up to an
arbitrary previous state efficiently. Hence the input can affect only actions at or
beyond Tp. Response delay is therefore at least Tp - TI, that is, the amount by
which the process is “ahead of schedule.“4 A trade-off therefore exists: Computing
farther ahead of schedule increases immunity to timing errors but red.uces
interactive responsiveness. Is there a scheduling policy for action computations
that is optimal with respect to response delay? We will show that such a policy
exists, given complete knowledge of the work load. In the absence of this
knowledge, the policy can be approximated; this is essentially what the FOR-
MULA scheduler provides.

Suppose that an action-generating program and a CPU are given. The load
function L (t) is defined as the CPU time required to compute all actions scheduled
for time t. For example, a program that generates sampled volume envelopes will
have loads at intervals of the sample period, at perhaps 10 milliseconds. The size
of these loads will be roughly constant from sample to sample. A program that

’ This bound applies only to interactions with action computations, not to interactions with action
performance routines. If action performance mutines use user-accessible variables (such as a pitch
offset for note-start actions), then changes to these variables are manifested immediately.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A System for Computer Music Performance l 79

Fig. 11. The load function L(t) (bold vertical lines) and
cumulative load functions C!(t) (shaded regions) for (a) a
sampled volume envelope, (b) a sampled audio waveform,
and (c) note start and end computations. In example (b),
if L(t) continues to repeat indefinitely, C(t) diverges.
This repetition implies that the program cannot be com-
puted and performed in real time.

generates samples of a synthesized waveform will have loads at much smaller
intervals, at perhaps 20 microseconds. Finally, an application that generates
note-start and note-end actions will have an irregular load function.

If an action A scheduled for time t is to be performed on time, its computation
clearly must be started by t - L(t). If there is another load soon after t, then the
computation of A must be started even earlier. This “cascading” effect is captured
by the cumulative load function C(t), defined by

C(T) = L(T)

C(t) = max(O, C(t + 1) + L(t) - 1) for t < T

where time is quantized so that L(t) is nonzero only for integer values of t, and
T is the time of the program’s last action (the greatest time for which L(t) > 0).
Figure 11 shows examples of the load and cumulative load functions for the cases
mentioned above. We show that C(t) is the amount of computational “head
start” needed at time t to perform subsequent actions on time and that it
determines lower bounds on response delay.

Let L(t) be given. Assume that time is quantized so that L is integer valued
and is nonzero at integer points tl, . . . , t,. Let qt denote the time unit beginning
at time t. A schedule is a collection (C,, . . . , C,) of sets of time units (Ci is the
set of time units during which the action at ti is being computed). A legal schedule
S is one that satisfies

I Ci I = L(h)

Ci n Cj = 0 for i # j

qtECi*t<ti*
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

80 - D. P. Anderson and R. Kuivila

Let C denote U Ci , and let ci denote the least t such that qt E Ci. The following
Lemma is easily shown by induction on the number n of actions:

LEMMA. If S is a legal schedule, then for all to,] (t 5 to: qt E C)] > C(t,). In
other words, at least C(t,,) time units of computation must be done by time to.

Given a schedule S, let Di (the response delay of action i) be defined as ti - _Ci.
Di indicates how far in advance the computation for ti is begun. A burst is an
interval [i,j] satisfying C(t) > 0 for t E [i,j], C(i - 1) = 0, and C(j + 1) = 0 (the
load in Figure 11(c), for example, has 3 bursts). Each action time ti is an element
of a burst. We now show that, regardless of what schedule is used, C(t) gives per-
burst lower bounds on response delay.

THEOREM. If S is a legal schedule, then for each burst B and each time t E B,
there is an action at time ti 2 t in B such that D; 2 C(t).

PROOF. Induction on the number n of actions in L. The hypothesis is
vacuously true for n = 0. Assume the hypothesis is true for n, and suppose that
L has n + 1 actions. Let B and t be given. If there are any actions in L strictly
before t, consider the schedule in which all such actions (and their computations)
are removed. By induction, there is an action A E B satisfying D, L C(t). Now
suppose there are no actions strictly before t and that there is no action A E B
after t with Da I C(t). Then qtPcct) e C because otherwise the action A being
computed in qt-cct) would satisfy DA I C(t). But then at most t - C(t) - 1 time
units of computation are done before t, violating the Lemma. 0

COROLLARY. The maximal value of C(t) over a burst B is a lower bound on
the maximum response delay of actions in B.

Tight deadline scheduling is the policy in which the computation of each action
t is started at t - C(t) and run to completion. Let STn be the schedule defined
by this policy. We claim without proof that STn is a legal schedule. In this
schedule, the response delay of an action at time t is precisely C(t). Therefore
the schedule realizes the lower bound on response delay given in the Corollary
and is optimal in that sense.

Tight deadline scheduling can be attained in the FORMULA scheduler by
maintaining max-de 1 ay as C(t) for the next action to be computed. This policy
is not possible unless the load function is known in advance. Suppose, however,
that an upper bound U on C(t) can be estimated. With max-delay set to U,
the schedule generated by FORMULA will be legal (i.e., actions will be performed
on time). Furthermore, response delay will be bounded by U.

As a final observation, suppose that action buffering is not used and that the
computation of an action is started instead at its intended performance time, as
in intervention scheduling (see Sec. 6.3.1). Actions must then necessarily be
performed late. The amount of lateness depends on (1) the CPU time needed for
the action computation, and (2) how much computation of earlier actions remains
to be done. The lateness is given exactly by a “forward” cumulative load function
in which loads cascade forward instead of backward. The magnitude and variance
of these errors may be musically unacceptable in many situations.
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A System for Computer Music Performance - 81

ACKNOWLEDGMENTS

We would like to thank George Homsy, who was involved with several aspects of
the FORMULA design and implementation, and Erling Wold, Dale Macdonald,
and Bruce Holmer, who used early versions of FORMULA and gave us valuable
feedback.

REFERENCES

1. ABBOTT, C. Intervention schedules for real-time programming. IEEE Trans. So@. Eng. SE-
ZO,3 (May 1984).

2. ANDERSON, D. P. Synthesizer management based on note priorities. In Proceedings of the 1987
International Computer Music Conference (Urbana-Champaign, Ill., Aug. 23-26, 1987), Computer
Music Association, pp. 230-237.

3. ANDERSON, D. P., AND KUIVILA, R. J. A model of real-time computation for computer music.
In Proceedings of the 1986 International Computer Music Conference (The Hague, Oct. 20-24,
1986), Computer Music Assoication, pp. 35-42.

4. ANDERSON, D. P., AND KUIVILA, R. J. Accurately timed generation of discrete musical events.
Comput. Music J. 20, 3 (1986), 48-56.

5. ANDERSON, D. P., AND KUIVILA, R. J. FORMULA version 3.4 reference manual. Jan. 1989.
6. ANDERSON, D. P., AND KUIVILA, R. J. Continuous abstractions for discrete event languages.

Comput. Music J. 23, 3 (1989), 11-23.
7. BOYNTON, L., LAVOIE, P., ORLAREY, Y., RUEDA, C., AND WESSEL, D. MIDI-LISP: A lisp-based

music programming language. In Proceedings of the 1986 International Computer Music Confer-
ence (The Hague, 1986), pp. 183-186.

8. BRADLEY, M. Forthmacs user’s guide. Bradley Forthware, P.O. Box 4444, Mountain View, Calif.
9. CHABOT, X. User software for realtime input by a musical instrument. In Proceedings of the

1985 International Computer Music Conference (Burnaby, B.C., Aug. 19-22, 1985) Computer
Music Association, pp. 19-23.

10. CLARK, D. D. The structuring of systems using upcalls. In Proceedings of the 20th ACM
Symposium on Operating System Principles (Orcas Island, Wash., Dec. l-4, 1985). ACM, New
York, 1985, pp. 171-180.

11. COLLINCE, D. MOXIE: A language for computer music performance. In Proceedings of the 1984
International Computer Music Conference (Paris, Oct. 19-23, 1984), pp. 217-220.

12. DANNENBERG, R. B. Arctic: A functional language for real-time control. In Proceedings of the
1984 ACM Symposium on Lisp and Functional Programming (Austin, TX., Aug. 6-8, 1984). ACM,
New York, 1984, pp. 96-103.

13. DANNENBERG, R. B. A real time scheduler dispatcher. In Proceedings of the 1988 Znternutionul
Computer Music Conference (Cologne, Sept. 19-24, 1988), pp. 239-242.

14. DANNENBERG, R. B., AND BLOCH, J. Real-time computer accompaniment of keyboard perfor-
mance. In Proceedings of the 1985 International Computer Music Conference (Burnaby, B.C.,
1985), pp. 279-289.

15. DANNENBERG, R. B., AND MONT-REYNAUD, B. Following an improvisation in real time. In
Proceedings of the 1987 International Computer Music Conference (Urbana-Champaign, Ill.,
1987), pp. 241-248.

16. JONES, K. Real-time stochastic composition and performance with AMPLE. In Proceedings of
the 1986 International Computer Music Conference (The Hague, 1986), pp. 309-311.

17. KRASNER, G. Machine tongues VIII: The design of a smalltalk music system. Comput. Music J.
4, 4 (1980), 4-14.

18. KUIVILA, R. J., AND ANDERSON, D. P. Timing accuracy and response time in interactive
systems. In Proceedings of the 1986 International Computer Music Conference (The Hague, 1986),
pp. 327-330.

19. LEBLANC, T. J., AND FRIEDBERG, S. A. HPC: A model of structure and change in distributed
systems. IEEE Trans. Comput. C-34, 12 (Dec. 1985).

20. LEEMING, A. M. C. A comparison of some discrete event simulation languages. Simuletter 12,
l-4 (1981), 9-16.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

82 l D. P. Anderson and R. Kuivila

21. LIU, C. L., AND LAYLAND, J. W. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM 20, 1 (Jan. 1973), 47-61.

22. LOU, G. Designing an operating environment for a realtime performance processing system.
In Proceedings of the 2985 International Computer Music Conference (Burnahy, B.C., 1985),
pp. 9-13.

23. LOU, G. Player-Extensions to the C programming language for parallel processing and music
synthesis control. CARL software release, Center for Experimental Music, Univ. of California at
San Diego, 1985.

24. LOY, G. Designing a computer music workstation from musical imperatives. In Proceedings of
the 1986 International Computer Music Conference (The Hague, 1986), pp. 375-380.

25. Lou, G., AND ABBOTT, C. Programming languages for computer music synthesis, performance
and composition. ACM Comput. Suru. 17,2 (June 1985), 244-250.

26. LYCKLAMA, H., AND BAYER, D. L. The MERT operating system. Bell Syst. Tech. J. 57,6 (July-
Aug. 1978), 2049-2086.

27. MCCORMACK, W. M. Analysis of future event set algorithms for discrete event simulation.
Commun. ACM 24,12 (Dec. 1981).

28. MIDI SPECIFICATION 1.0. International MIDI Association, North Hollywood, Calif., 1983.
29. MOK, A. K., AND DETOUZOS, M. L. Multiprocessor scheduling in a hard real-time environment.

In Proceedings of the 7th IEEE Texas Conference on Computing Systems (Houston, Tex., Oct.
1978), IEEE, 1978, pp. 1-12.

30. MOZART, W. A. Letters of Wolfgang Amadeus Mozart. Dover, New York, 1972, p. 41.
31. POPE, S. The development of an intelligent composer’s assistant: Interactive graphics tools and

knowledge representation for music. In Proceedings of the 1986 International Computer Music
Conference (The Hague, 1986), pp. 131-144.

32. PUCKETTE, M. Interprocess communication and timing in real-time computer music perfor-
mance. In Proceedings of the 1986 International Computer Music Conference (The Hague, 1986),
pp. 43-46.

33. RODET, X., AND COINTE, P. FORMES: Composition and scheduling of processes. Comput.
Music J. 8, 3 (1984), 32-50.

34. ROSENBOOM, D., AND POLANSKY, L. HMSL: A real-time environment for formal, perceptual
and compositional experimentation. In Proceedings of the 1985 International Computer Music
Conference (Burnahy, B.C., 1985), pp. 243-250.

35. SCHOTTSTAEDT, B. PLA reference manual. Center for Computer Research in Music and
Acoustics, Stanford University, Stanford, Calif., June 1983.

36. SCHOTTSTAEDT, B. PLA: A composer’s idea of a language. Comput. Music J. 7, 1 (1983), 11-20.
37. SNELL, J. M. Sensors for playing computer music with expression. In Proceedings of the 1983

International Computer Music Conference (Rochester, N.Y., 1983), pp.
38. VARGHESE, G., AND LAUCK, T. Hashed and hierarchical timing wheels: Data structures for the

efficient implementation of a timer facility. In Proceedings of the 11th ACM Symposium on
Operating System Principles (Austin, Tex., Nov. 8-11, 1987). ACM, New York, 1987, pp. 25-38.

39. VERCOE, B. The synthetic performer in the context of live performance. In Proceedings of the
1984 International Computer Music Conference (Paris, 1984), pp. 199-200.

40. WAISVISZ, M. The hands, a set of remote MIDI-controllers. In Proceedings of the 2985 Znter-
national Computer Music Conference (Burnahy, B.C., 1985), pp. 313-318.

Rgceived June 1988; revised July 1989; accepted July 1989

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

