
1

Computer Music Systems
and Information Processing

Roger B. Dannenberg, instructor
Spring 2019

Course Overview

n Systems
n  Sensors → Control → Synthesis
n  MIDI representation, I/O, timing, files, …
n  Scheduling, synchronization, networks

n  Information Processing
n  Music representation and manipulation
n  Automatic score following and accompaniment
n  Pattern matching and music database search
n  Automatic music generation

2 Spring 2019 © 2019 by Roger B. Dannenberg

2

Expectations

n  Syllabus is on-line
n  www.cs.cmu.edu/~music/cmsip
n  There are lists of concepts for every week. My goal is to

teach these – if you don’t feel you’ve mastered basic
knowledge pertaining to these concepts, one of us is not
doing their job.

n  Readings – everything on-line. No textbook.
n  Deliverables

n  Six (6) programming assignments.
n  Five (5) short-answer homework on readings.
n  Exams – midterm and final

n  Lectures – attendance is required.
n  Concerts – TBD, probably STUDIO for Creative Inquiry

(CFA)

Spring 2019 © 2019 by Roger B. Dannenberg 3

Spring 2019 © 2019 by Roger B. Dannenberg 4

TAs

n Shuqi Dai
n Caroline Wu

n  see http://www.cs.cmu.edu/~music/cmsip or
http://piazza.com/ for contact info, office
hours, etc.

3

Spring 2019 © 2019 by Roger B. Dannenberg 5

Grading

n Programming assignments: 40%
n Participation: 10%
n Other homework: 15%
n Midterm: 15%
n Final Exam: 20%

Spring 2019 © 2019 by Roger B. Dannenberg 6

Some Things We Will Do

n  Write programs to:
n  Plays sounds via MIDI
n  Implement a music sequence player
n  Implement live audio processing in C
n  Generate music automatically
n  Play music! End of semester concert.

n  Learn about
n  Music theory
n  Music representation
n  Music information retrieval

4

Spring 2019 © 2019 by Roger B. Dannenberg 7

Demo

Some hacks with Serpent,
MIDI, Soundcool, and O2

www.music.cs.cmu.edu

Spring 2019 © 2019 by Roger B. Dannenberg 8

Internet Drum Circle (maybe)
 An extra project for 15-623, optional for others.

Web Server

Node
Node Node

Node

Node

Node

Real-Time
Server

5

Concert: Interactive Group
Music Performance

n All-class Laptop Orchestra
n Develop class projects into something you

can perform
n  Interactive control, but
n Synchronized and conducted over network
n Another option might be developing a piece

with the Exploded Ensemble (a course
offered by the School of Music)

Spring 2019 © 2019 by Roger B. Dannenberg 9

Concert Example: Spring 2017
CMSIP Laptop Ensemble

Spring 2019 © 2019 by Roger B. Dannenberg 10

(Video)

6

The Big Picture
(covering systems concepts of this course)

The Big Picture
(covering systems concepts in this course)

 clock

scheduler

tempo control

actions

What: discrete event simulator-like
priority queue and executive that
dispatches events according to
timestamps.
What: discrete event times are
computed according to specification,
making behavior more deterministic,
repeatable, and predictable.

What: mapping from seconds to/from
beats.
Why: allow scheduling in terms of
beats with independent tempo control,
tempo changes within the duration of
a note.

What: procedures or methods (not
threads) do the computation.
Why: lightweight efficient handling of
many concurrent tasks, avoids need
for locking, simpler to reason about
because all actions are atomic.

schedule dispatch

schedule dispatch

What: real-time clock.
Why: scheduler waits as needed so that logical
time tracks real time as closely as possible.

clock

scheduler

What: Lock-free message
queue or network
connection.
Why: Actions & data are
computed early, but with
timestamps, to reduce
jitter. Lock-free queues in
shared memory avoid
locking to avoid priority
inversion problems.

actions

schedule dispatch

Higher priority,
Lower latency

Lower priority,
Higher latency

E.g. GUI,
Sequencer,
Media Player,
Game

What: Clock
synchronization.
Why: Scheduling
is based on
timestamps, so
they need to mean
the same thing
everywhere.

MIDI, audio, timestamped control messages, etc.

E.g. software
synthesizer,

device driver,
remote client

Spring 2019 © 2019 by Roger B. Dannenberg 12

Survey: Please complete this survey:
https://goo.gl/forms/N9fADlBS0BHxoaEE3
n  Name & Andrew ID
n  Year: Fresh, Soph, Junior, Senior, Grad (year)
n  Musical Background:

n  Play an instrument? (barely, yes, good, pro)
n  Read music? (barely, yes, good, pro)
n  Use MIDI (never, some, lots)

n  Programming Background:
n  Name of most advanced software implementation course (including

this semester)
n  Write languages you have used: Java, C, C++, Python, ML, Matlab

n  Main interest (pick one):
n  Automatic Music Generation (Algorithmic Composition)
n  Music Information Retrieval (search, classification, ...)
n  Music Understanding (beat detection, chord recognition, ...)
n  Other: _____________________

n  I have a laptop with an x64 processor and sound: yes / no

7

Spring 2019 © 2019 by Roger B. Dannenberg 13

Let’s Get Started

n Quick Intro to MIDI
n Software for homework/projects
n PortMidi – your friendly MIDI API
n Serpent

Spring 2019 © 2019 by Roger B. Dannenberg 14

MIDI

n  Carries controls from keyboards to synthesizers.

n  Commands correspond to physical controller changes:
n  Key Down
n  Key Up

n  Program Change
n  Pitch Bend
n  Volume Pedal

Keyboard
Synth1

Synth2

OUT
IN

THRU

IN

8

Spring 2019 © 2019 by Roger B. Dannenberg 15

Note-On in Detail

n  3 bytes:

Note-On Command

9

Channel

0-F 00-7F

Pitch Velocity

01-7F

Spring 2019 © 2019 by Roger B. Dannenberg 16

PortMidi

n Cross-platform API
n C Programming Language
n For MIDI Input/Output

n  Includes PortTime
n  Cross-platform API for real-time clock
n  Facility to call a function periodically

n PortTime inspired by PortAudio
n PortMusic: PortAudio, PortMidi, PortSMF, …

9

Spring 2019 © 2019 by Roger B. Dannenberg 17

Getting Started

n You can use PortMidi with C++
n  Download PortMidi
n  Try some applications in pm_test

n But in this class, use Serpent (described later)
n  PortMidi is built-in
n  Try: load “midi_out_test”

n Full PortMidi documentation is:
n  pm_common/portmidi.h
n  on the web at Sourceforge

Spring 2019 © 2019 by Roger B. Dannenberg 18

Serpent Interface to PortMidi

midi_create() => port
midi_in_default() => devno
midi_out_default() => devno
midi_count_devices() => n
midi_get_device_info(devno)  

 => ["interface_name",
 "device_name", input?, output?]

midi_open_input(port, devno, buffer_size)
midi_open_output(port, devno, buffer_size, latency)
midi_read(port)=> [time, msg]
midi_write(port, time, msg)

midi_close(port)
midi_abort(port)
midi_poll(port) => n
time_start(resolution)
time_get()=>float_seconds

n  What’s Serpent? Let’s worry about it later.

10

Spring 2019 © 2019 by Roger B. Dannenberg 19

Library Initialization

n  PmError Pm_Initialize(void);
Initializes PortMidi library. Usually do this once.

n  PmError Pm_Terminate(void);
Close library and release resources.

n  const char *Pm_GetErrorText(PmError errnum);
Translate an error code to a printable string.

n  void Pm_GetHostErrorText(char * msg,
 unsigned int len);
If a function returns an error code of pmHostError, the error is

host-specific. Get an ascii representation (to print for the
user) by calling this function.

Spring 2019 © 2019 by Roger B. Dannenberg 20

Finding a Midi Device

n  int Pm_CountDevices(void);
How many devices (MIDI ports) are there?
Devices are numbered from 0 to N-1.

n  const PmDeviceInfo* Pm_GetDeviceInfo(PmDeviceID
id);
Get info for a particular device:

 typedef struct {
 int structVersion;
 const char *interf; /* underlying MIDI API, e.g. MMSystem */
 const char *name; /* device name, e.g. USB MidiSport 1x1 */
 int input; /* true iff input is available */
 int output; /* true iff output is available */
 int opened; /* used by generic PortMidi code to do error checking */
 } PmDeviceInfo;
n  PmDeviceID Pm_GetDefaultInputDeviceID(void);
n  PmDeviceID Pm_GetDefaultOutputDeviceID(void);

11

Spring 2019 © 2019 by Roger B. Dannenberg 21

Opening MIDI for Output

PmError Pm_OpenInput(PortMidiStream** stream,
 PmDeviceID inputDevice,
 void *inputDriverInfo,
 long bufferSize,
 PmTimeProcPtr time_proc,
 void *time_info);

PmError Pm_OpenOutput(PortMidiStream** stream,
 PmDeviceID outputDevice,
 void *outputDriverInfo,
 long bufferSize,
 PmTimeProcPtr time_proc,
 void *time_info,
 long latency);

Spring 2019 © 2019 by Roger B. Dannenberg 22

Sending a MIDI Message

n  #define Pm_Message(status, data1, data2) \
 ((((data2) << 16) & 0xFF0000) | \
 (((data1) << 8) & 0xFF00) | \
 ((status) & 0xFF))

Messages are encoded in longs (32-bit integers), e.g.
Pm_Message(0x90, 60, 100)

n  PmError Pm_WriteShort(PortMidiStream *stream,

 PmTimestamp when, long msg);
Use a timestamp of zero to send immediately (or after latency –

see Pm_OpenOutput)

12

Spring 2019 © 2019 by Roger B. Dannenberg 23

Receiving a MIDI Message

n  typedef struct {
 PmMessage message;
 PmTimestamp timestamp;
 } PmEvent;
 Data is timestamped.

n  PmError Pm_Read(PortMidiStream *stream,
 PmEvent *buffer, long length);

 Returns number of events read or error code (errors
are negative, counts are non-negative).

n  PmError Pm_Poll(PortMidiStream *stream);
Returns number of events ready to be read or error code.

SERPENT AND MIDI

Week 1, Day 2

Spring 2019 © 2019 by Roger B. Dannenberg 24

13

Spring 2019 © 2019 by Roger B. Dannenberg 25

Serpent

n Scripting language based on Python
n Cross-platform
n Open-source C++
n Real-time garbage collection
n Built-in timing, MIDI, threads, GUI, and

networking you can use for projects in this
course

Spring 2019 © 2019 by Roger B. Dannenberg 26

Serpent Documentation

n Mostly on one page – see serpent/doc.
n Separate (small) pages for:

n  PortMIDI extensions
n  Proc extension (implements periodic callbacks

and message queues)
n  Network extension (implements simple client/

server communication through TCP/IP)
n  ZeroMQ (another networking layer)
n  O2, an extension of OSC

14

Spring 2019 © 2019 by Roger B. Dannenberg 27

Serpent Syntax and Semantics

n From Python:
n  Indentation (not brackets) for program

structure
n  Newlines for statement separators

(semicolons are optional)

def absolute_value(x):
 if x >= 0
 return x
 else
 return -x

Alternative Styles

def absolute_value(x)
 if x >= 0
 return x
 else
 return –x

def absolute_value(x):
 if x >= 0:
 return x;
 else:
 return –x;

def absolute_value(x):
 if x >= 0:
 x
 else:
 -x

def absolute_value(x):
 if x >= 0: return x
 else: return –x

def absolute_value(x):
 x if x >= 0 else –x

Spring 2019 © 2019 by Roger B. Dannenberg 28

15

Spring 2019 © 2019 by Roger B. Dannenberg 29

Data types

n String (immutable): “hello world”
n Atom (unique strings): ‘hello world’
n  Int (50-bit signed integers): 57, 0x00fe
n Double (64-bit floating point): 57.0
n Arrays (1-dim, dynamic):

 [‘an’, ‘array’, 1, 2, 5.2]
n Dictionaries: { ‘foo’: 1, ‘bar’: 34,

 ‘baz’: “cmu”, 17: -0.123}
n Objects (user defined)
n Boolean: t, nil, true, false, non-nil -> t, 0 -> t

Spring 2019 © 2019 by Roger B. Dannenberg 30

Serpent Function Definition

def my_function(p1, p2, p3):
 # this is a comment
 // this is a comment too
 var local_variable
 var local2 = 6.5
 not_a_local = "a string“
 …
 local2 // last expression is returned

16

Spring 2019 © 2019 by Roger B. Dannenberg 31

Basic Control Constructs

if expr1
 statement(s)
elif expr2
 statement(s)
else
 statement(s)

for i = 0 to 10:
 statements

for elem in array_expr:
 statements

while expr
 statements

load "filename"

require "filename"

print expr, expr; expr,

display "label", expr, expr, …

funcall(), apply(), send(),

sendapply()

Example:

def foo(a, b)
 display "foo", a, b
apply('foo', [1, 2])

è foo: a = 1, b = 2

Spring 2019 © 2019 by Roger B. Dannenberg 32

Defining and Using a Class

class Account:
 var balance
 def init(initial_deposit)
 balance = initial_deposit
 def deposit(x)
 balance = balance + x
 def withdraw(x)
 if balance >= x
 balance = balance – x
 return balance
 else
 return false

// make an instance
account = Account(0)

// call a method
account.deposit(5)

// access an instance variable
print account.balance

// use/test return value
if not account.withdraw(10):
 print "don’t have $10"

17

Spring 2019 © 2019 by Roger B. Dannenberg 33

Example from midi_out_test.srp
MIDI_ID = midi_out_default()
def midi_out_test():
 var mo = midi_create()
 // parameters are midi object, device ID, number of buffers, and

latency in ms
 var result = midi_open_output(mo, MIDI_ID, 100, 0)
 if (result != 0):
 print "midi_open returns "; result
 return
 time_started = time_get() // prepare time_elapsed()
 print "time test start"
 wait_until(2.0)
 print "time test end"
 midi_note_on(mo, 0, 60, 100)
 wait_until(4.0)
 midi_note_on(mo, 0, 62, 100)
 wait_until(6.0)
 midi_note_on(mo, 0, 60, 0)
 midi_note_on(mo, 0, 62, 0)
 result = midi_close(mo)
 if (result != 0)
 print "midi_close returns "; result

Spring 2019 © 2019 by Roger B. Dannenberg 34

MIDI devices, pseudo-devices,
and software synthesizers
n  Windows has an output called MIDI Mapper that just sends

MIDI to the Microsoft GS Wavetable Synth device (maybe you
can change this in the registry, but there is no control panel for
MIDI settings.)

n  Windows comes with a built-in MIDI synthesizer called
Microsoft GS Wavetable SW Synth

18

Spring 2019 © 2019 by Roger B. Dannenberg 35

Don’t Forget Audio Setup

n  Check for any audio—play a sound file
n  Check for SW Synth volume and mute – it may only

appear when you are running a program that opens a
software synthesizer

Spring 2019 © 2019 by Roger B. Dannenberg 36

Setup on the Mac

n  Use IAC Driver to talk to MIDI devices
n  find Audio Midi Setup (an OS X application)
n  Window : Show MIDI Window (menu item)
n  Click IAC Driver, then click “show info”
n  Add a port if you have none

n  SimpleSynth from pete.yandell.com works
n  SimpleSynth and Serpent must both connect to “IAC

Driver Bus 1”
n  You must leave SimpleSynth running!
n  Rather than IAC Driver, you can send direct to

SimpleSynth and tell SimpleSynth to listen to
“SimpleSynth Virtual Input”

19

Spring 2019 © 2019 by Roger B. Dannenberg 37

Installing Serpent

n Find zip file on class website
n Copy and expand

n  Installer for 64-bit Windows
n  Zip file with applications and libraries for 64-bit

Mac OS X
n  Zip file with sources for Linux

Spring 2019 © 2019 by Roger B. Dannenberg 38

SERPENTPATH:
 Mac and Linux

n TCSH:  
setenv SERPENTPATH /home/rbd/serpent/programs:  
/home/rbd/serpent/lib:/home/rbd/serpent/wxslib

n BASH:  
SERPENTPATH="/Users/rbd/serpent/programs:/home/
rbd/serpent/lib:/Users/rbd/serpent/wxslib"  
 
export SERPENTPATH

20

Homework 1

n See Syllabus
n Due Jan 22

Spring 2019 © 2019 by Roger B. Dannenberg 39

Spring 2019 © 2019 by Roger B. Dannenberg 40

Project 1

n  Given a pre-defined tempo (beats per minute) and a
repeat count N, either from command line or through
a (simple please) graphical interface, the program will
play N repetitions of a 4-beat drum pattern.

Beats(s) 1 2 3 4 1 2 …
High-hat X X X X X X X X X X X X …
Snare Drum X X X …
Bass Drum X X X …

21

Approach to Project 1

n  Keep it simple:
n  Represent pattern as a 2D array

n  If you wish to allow multiple patterns, you can put
each in a loadable file (you can even prompt for a
file to load and load it)

n  Sequentially: send note-off for previous beat and
send note-on for current beat

n  Wait for next beat using time_sleep(dur)
n  There are many obvious shortcomings here –

you will hopefully understand them, and we’ll
address them in future projects.

Spring 2019 © 2019 by Roger B. Dannenberg 41

The MIDI Standard

Roger B. Dannenberg
Professor of Computer Science, Art & Music
Carnegie Mellon University

22

Spring 2019 © 2019 by Roger B. Dannenberg 43

MIDI: Musical Instrument Digital
Interface

n Musical Performance Information:
n  Piano Keyboard key presses and releases
n  “instrument” selection (by number)
n  sustain pedal, switches
n  continuous controls: volume pedal, pitch bend,

aftertouch
n  very compact

(human gesture < 100Hz bandwidth)

Spring 2019 © 2019 by Roger B. Dannenberg 44

Point-to-Point Connections

OUT IN THRU

IN

23

Spring 2019 © 2019 by Roger B. Dannenberg 45

Channels

OUT IN THRU

IN

Spring 2019 © 2019 by Roger B. Dannenberg 46

No Time Stamps

THRU IN THRU

IN

IN

24

Spring 2019 © 2019 by Roger B. Dannenberg 47

Hardware Details

n Asynchronous serial
n  8-bit bytes+start+stop bits
n  31.25K baud = 1MHz/32
n  5-pin DIN Connector
n Current loop

From www.answers.com/ topic/din-connector

From
www.colomar.com/ Shavano/
midi_cable.html

Spring 2019 © 2019 by Roger B. Dannenberg 48

MIDI Message Formats - 1

 8 ch key# vel Key Up

 9 ch key# vel Key Down

Polyphonic
Aftertouch A ch press key#

 B ch ctrl# value Control Change

25

Spring 2019 © 2019 by Roger B. Dannenberg 49

MIDI Message Formats - 2

Program Change

System Exclusive

 C ch index#

Channel
Aftertouch D ch press

 E ch lo 7 hi 7 Pitch Bend

F 0

F 7

… DATA …

Spring 2019 © 2019 by Roger B. Dannenberg 50

MIDI Message Formats - 3

Timing Clock F 8
Start F A

Continue F B
Stop F C

Active Sense F E
 System Reset F F

26

Spring 2019 © 2019 by Roger B. Dannenberg 51

MIDI Message Formats - 4

SMPTE Quarter
Frame F 1 n d

frames seconds minutes hours

 7 6 5 4 3 2 1 0 n=

More SMPTE operations are encoded into
SysEx messages.

Spring 2019 © 2019 by Roger B. Dannenberg 52

Serpent Debugger

load "debug”
def bug(a)
 print a + b
def main()
 bug(3)
main()

runtime exception handler called
exception is: global variable is

unbound - b
frame variables: {'a': 3}
frame pc: 3
frame method: bug
frame class: nil

global variable is unbound - b,
debugger invoked.

Method: bug , PC: 2 , Line: 17 ,
File: <stdin>

1>

27

Spring 2019 © 2019 by Roger B. Dannenberg 53

Serpent Debugging

load "debug”
def bug()
 print a + b
def main()
 bug()
main()

1> ?
debugger reads ?
Class nil , Method bug
Class nil , Method main
Class nil , Method  

 <immediate command 0>
Class nil , Method <callin_method>
Class nil , Method <global>
1> a
debugger reads a
dbg_variable name = a
a is a local
a = 3
1> >
debugger reads >
Resume execution...
>
>

Spring 2019 © 2019 by Roger B. Dannenberg 54

Serpent: Spaces vs. Tabs

n White space is significant
n Editors play games with tabs (4 cols? 8?)
n Try to turn off auto-insertion of tabs
n Never use tabs in Serpent code
n  (Technically you can, but even I’ve forgotten

the details.)

28

Summary and Self Assessment

n  Here’s what you should know now …
n  Course basics:

n  Web site: exams, concerts, acad. integ. policy
n  Grades (only) will go on Blackboard
n  Q&A (only) on Piazza

n  What is MIDI?
n  Message types (don’t memorize constants)

n  Serpent
n  How to install
n  How to read documentation and debug
n  Able to write simple functions, start Project 1

Spring 2019 © 2019 by Roger B. Dannenberg 55

Spring 2019 © 2019 by Roger B. Dannenberg 56

Final Reminders

n Get started immediately:
n  Install and test software
n  Get MIDI playback working (software,

hardware, speakers, headphones, …)
n  See Project 1 description on website.

n Homework is due Jan 22
n Project 1 is due Jan 29

