
1

Computer Music Systems
and Information Processing

Week 2: Discrete Event Simulation

Roger B. Dannenberg, instructor
Spring, 2019

Discrete Event Simulation

n Why DES?
n Overview
n Approaches
n Details of Event Scheduling Systems

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 2

2

Why Discrete Event Simulation

n Most CS is concerned with computing
answers at some time in the future (hopefully
soon)

n Discrete event simulation models time as well
as processes

n DES techniques turn out to be very relevant
to real-time, interactive music systems.

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 3

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 4

Overview of Discrete Event Simulation

n Model behavior …
n … consisting of discrete state changes
n State: all information describing system at a

given point in time
n Event: a trigger that initiates an action that

changes the state
n Process: a sequence of events, usually

associated with some simulated entity

3

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 5

Simulation Structure

n Executive: manages events and runs actions,
keeps track of time

n Utilities: random number generation,
statistics, etc.

n Model (program): code that models the
specific behavior of the simulated system.
n  Note the design strategy: separate system-

specific code from generic, reusable code.

Time in Simulation

n Usually, simulation time is not real time.
n Results of simulation available faster than

real time (e.g. weather, climate simulation)
n Simulation time
n Run time
n Event time

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 6

4

Time in Simulation

n Usually, simulation time is not real time.
n Results of simulation available faster than

real time (e.g. weather, climate simulation)
n Simulation time: the time in the model

n  Also logical time or virtual time
n Run time: the real (cpu) time of the simulation
n Event time: the simulation time at which an

event should happen

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 7

Scheduling Events

n  (1) Synchronous simulation
n  What it does:

n  Advance virtual time by small fixed interval
n  Run all events in that interval

n  Timing not precise
n  Wastes computation when no events enabled
n  Similar to frame-by-frame animation engine

n  (2) Event-scanning simulation:
n  Advance time to next event time
n  Run the event

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 8

5

(1) Synchronous Simulation

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 9

Discrete times ➞

Objects being simulated

Call every
object at
every time
step

Question:

n What are some examples where synchronous
simulation makes sense?
n  Computer animation – everything changes

frame-by-frame; maybe drawing dominates
cost (so testing for behavior is insignificant)

n  Physical simulation, difference equations,
everything changes each time step

n  Continuous music control, e.g. objects
generate envelopes, vibrato, etc. and change
“continuously” (i.e. at each time step)

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 10

6

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 11

(2) Event-Scanning Executive

n Event: data structure containing…
n  Event time: when to dispatch the event
n  Function: reference to a method or procedure
n  Parameters: for the function

n Future event list: data structure
n  Priority Queue: insert/remove events

Question:

n What are some examples where event-
scanning makes sense?
n  Music with discrete events, e.g. notes,

sequencers, MIDI
n  Operating systems: processes call sleep()

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 12

7

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 13

Simulation Organization

n Activity Scanning
n Event Scanning/Scheduling
n Process Interaction

Activity Scanning

n Organized around the activity
n Activities start when conditions are met
n Executive scans for an activity that is enabled

n Makes sense when enabling conditions are
complex, e.g. particle systems, crowds,
physics with collision detection

n Amounts to synchronous simulation with
polling to decide when to perform events

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 14

8

Event Scheduling

n Organized around the event
n Activities change the state, figure out time of

next event and schedule events accordingly
n Appropriate when

n  Interactions are limited
n  Precise timing is important
n  Timed state changes

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 15

Process Interaction

n Organized around the Process
n Modeled entities represented by processes
n Processes can wait to simulate passing of

time
n Processes can use synchronization, e.g.

semaphores or condition variables to
represent interdependencies.

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 16

9

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 17

Example

n Manufacturing

n Four ways to approach this (at least):
n  Activity scanning model
n  Event scheduling model
n  Process interaction model

n  Process could be a manufactured article
n  Process could be a manufacturing station

n  (discuss each of these four approaches)

Step 1 Step 2 Step 3

Event Model in More Detail

n  Why focus on event model? Because we’re going to
be using the event model for music generation.

n State:
The number of objects at each position

n Event: Begin or end a step

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 18

Step 1 Step 2 Step 3

50 0 0 0

10

Events

def start_step(i):  
 if s[i] > 0:  
 s[i] = s[i] – 1  
 schedule(now + dur(i), ‘event_done’, i)

def event_done(i):  
 s[i+1] = s[i+1] + 1 // increment output tray
 start_step(i) // begin work on next input

n  Bugs:

n  Need range check on i, there’s no step 3, 4, 5, …
n  If step is inactive and item is added to input tray, need to start

the step. How do we implement this?
Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 19

Step 1 Step 2 Step 3

50 0 0 0

Take something out
of the input queue

Add to output and process next input

Events and Time

n Virtual time does not advance while events
are “running” – being computed.

n Virtual time only advances when the next
event is in the future.

n  If there are multiple events at the same virtual
time, time does not advance until all are
computed: Arbitrary amounts of computation
in zero logical time.

n Event “duration” is zero, but we can model
process begin, middle, end as multiple events

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 20

11

Processes/Threads

n A “natural” way to model behaviors
n But processes can be “heavy”

n  Stacks
n  Context switch must swap all registers

n Processes must coordinate updates to the
state. Consider this in parallel:
n  s[i] = s[i] + 1
n  s[i] = s[i] - 1

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 21

Processes and Time

n How can we model time with Processes?
n Virtual time should only advance when

processes block or sleep.
n Blocking and sleeping are typical OS

primitives, but not designed for simulation
n Coordinating multiple CPUs to order

computation with respect to virtual time is
tricky and beyond our (current) discussion

n  Processes are not recommended for DES

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 22

12

Coroutines

n  Similar to processes, but
n  “synchronous” in that threads must explicitly

yield:
n  sleep() – run other threads for some amount of

virtual time
n  semaphores and condition variables – block until

ready to run, run other threads in the meantime
n  yield() – just pick another thread and run

n  Consider:
n  s[i] = s[i] + 1
n  s[i] = s[i] - 1

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 23

Each of these is an atomic
operation: it runs to completion with
no possibility of another thread
seeing intermediate results.

Coroutines and Logical Time

n How can we model time with coroutines?
n Sleep(): inserts an event in a priority queue

n  Advance virtual time to next event in queue
(virtual time does not necessarily change)

n  Event wakes up the sleeping coroutine
n Yield(): checks and switch to ready-to-run

coroutines.
n Assessment:

n  Similar to Event Model
n  Ability to suspend (sleep) within a procedure

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 24

13

Coroutines, Threads, Serpent

n  Until last year, this discussion of coroutines was
mainly for completeness, since few languages
support them.

n  Serpent has a new feature: non-preemptive
threads!

n  Note: Python can implement coroutines by
building on generators; semantics are different

n  Coroutines in Serpent are called “threads” (sorry,
but “non-preemptive threads” was too verbose)

n  Serpent scheduler works with threads

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 25

Simulating a Sequence with
Serpent Threads

def myseq():  
 if fork(): return  
 // computation in STEP1  
 sched_wait(DUR1)  
 // computation in STEP2  
 sched_wait(DUR2)  
 // computation in STEP3  
 sched_wait(DUR3)  
 …

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 26

14

Simulating a Sequence with Events

def myseq():  
 if state == START:  
 state = STEP1  
 // computation in STEP1  
 schedule(now + DUR1, ‘myseq’)  
 elif state == STEP1:  
 state = STEP2  
 // computation in STEP2  
 schedule(now + DUR2, ‘myseq’)  
 elif state == STEP2:  
 state = STEP3  
 // computation in STEP3
 ...
What if we want multiple instances of myseq?

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 27

Events and Instances

def myseq(state):  
 if state == START:  
 state = STEP1  
 schedule(now + DUR1, ‘myseq’, state)  
 elif state == STEP1:  
 state = STEP2  
 schedule(now + DUR2, ‘myseq’, state)  
 elif state == STEP2:  
 state = STEP3
 ...
Now we can launch many instances of myseq(START)
But, what if we need local state for each instance?

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 28

15

Events and Instances (2)

def myseq(state, per_inst):  
 if state == START:  
 state = STEP1  
 schedule(now + DUR1, ‘myseq’,
 state, per_inst)  
 elif state == STEP1:  
 state = STEP2  
 schedule(now + DUR2, ‘myseq’,
 state, per_inst)  
 elif state == STEP2:  
 state = STEP3
 ...
Now we can launch many instances of myseq(START, x)
where each instance has its own local state (x).

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 29

Simulating a Sequence with Events –
 A Variation

def myseq_step1():  
 schedule(now + DUR1, ‘myseq_step2’)  

def myseq_step2():  
 schedule(now + DUR2, ‘myseq_step3’)  

def myseq_step3():  
 schedule(now + DUR3, ‘myseq_step4’)

...

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 30

16

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 31

Object Oriented Simulation

n  In previous slide, what if we wanted more
state?
n  Events solution requires us to pass state or at

least a reference to state through parameters.
n  Let’s look at Object Oriented simulation as

another way to deal with instances and state.

Object Oriented Approach

n Scheduling an event effectively calls a
procedure in the future
n  Procedures are not the best model for entities

in the real world (that have state)
n  A previous example shows how we can pass

state through parameters
n What if we extend events to activate objects?

n  Object can hold state – no need to encode into
parameters

n  Objects can model entities in the real world

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 32

17

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 33

Object Oriented Approach

class My_thing (Event):  
 var state // an instance variable 
 def init():  
 state = START  
 def run():  
 switch (state):  
 START:  
 state = STEP1  
 schedule(now + DUR1) // inherited method
 STEP1:  
 state = STEP2  
 schedule(now + DUR2)  
 STEP2:  
 state = STEP3
 ...

Object Oriented Approach (2)

n  Notes on the previous slide:
n  Everything can be statically type checked

n  schedule() takes an object of type Event rather than a
procedure reference

n  no dynamically typed parameters to pass to an event
n  State is encapsulated in objects
n  Slightly clumsy that every schedule results in a call

to run()
n  Some languages allow you to pass pointers to methods,

similar to passing function pointers in the Event Model
n  OO languages allow you to pass objects that could then

invoke the desired method, but this could be clumsy too

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 34

18

Summary

n  Discrete Event Simulation computes (virtual) time
as well as state changes

n  Event Scheduling can compute timing with high
precision (no rounding to discrete intervals or
system clock)

n  Various approaches:
n  Processes – heavy and hard to manage time
n  Coroutines – stacks, context switch, relatively

easy to incorporate virtual time
n  Objects – lighter weight, popular for models
n  Events – very lightweight, simple

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 35

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 36

19

Computer Music Systems
and Information Processing

Week 2, Day 2: Discrete Event
Simulation, Scheduling

Roger B. Dannenberg, instructor
Spring, 2019

Review

n Discrete – at points in time
n Event – state changing action
n Simulation – a model
n Big ideas:

n  All behavior modeled as instantaneous events
n  Compute precise times of events
n  Future events in a priority queue (sort by time)
n  Perform events in time order
n  Always keep track of virtual (simulated) time

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 38

20

Representing Events in Serpent

n Want to separate “simulation executive” from
details of model.

n Need “event” representation: how do we
represent a function call to take place in the
future?

n  “event” should support these operations:
n  Dispatch– allows the executive to execute

events without knowing the details
n  Compare – allows executive to see which

event comes first

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 39

The event Representation

n  Just an array:
n  [time, // the event time
n  target, // object
n  message_name, // method to invoke
n  parms] // parameters to pass

n  Or
n  [time, // the event time
n  nil, // nil➛call a function
n  function_name,// function to call
n  parms] // parameters to pass

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 40

21

Dispatching an event

def general_apply(target, message, parms)
 if target
 sendapply(target, message, parms)
 else
 apply(message, parms)

// note: parms is an array, e.g.
//
// general_apply(synth, 'play', [60, 100])
// is same as: synth.play(60, 100)
//
// general_apply(nil, 'foo', [10, "hi"])
// is same as: foo(10, "hi")

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 41

Implementing a scheduler (a
“simulation executive”)
n  Need two operations:

n  Schedule (“cause”) an event: the event is
remembered and dispatched at the specified event
time

n  Poll:
n  advance virtual time to the earliest event time,
n  if real time >= virtual time
n  dispatch the earliest event

n  Design choice:
n  Simulation executive can be a process that polls
n  It can be our responsibility to call poll() frequently

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 42

22

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 43

Implementation 1: linked list

n  To schedule, insert event at the head of a list
 while len(list) > 0: // run until done  
 for each r in list  
 if r[0] < now  
 list.remove(r)  
 dispatch(r)  
 now += interval
n  Example of Event Scanning
n  Problems:

n  Could run events out of order
n  Searches entire list very often
n  Bug: changing list while iterating over list is not allowed

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 44

Implementation 2: priority queue

n  Like before, but linked list is sorted:

 while len(list) > 0: // run until done  
 var r = list[0]
 list.remove(r)
 now = r[0] // get the event time  
 dispatch(r)

n  Problems:
n  Scheduling (insertion) is linear in size of list
n  In Serpent, list.remove(r) is linear as well

Increasing timestamps

23

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 45

Implementation 3: heapsort

n  Trick: embed complete binary tree in array.

n  parent(n) = floor(n/2)
n  left_subtree(n) = 2 * n
n  right_subtree(n) = 2 * n + 1

n  Heap invariant:
No parent is greater than its children
It follows that the root is the minimal element

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 46

Heapsort (2)

n After removing least element (array[1]), move
last array element to first. Then, “bubble”
down the tree by swapping new element with
least of two children (iteratively) until no child
is smaller.

n To add an element, insert at end of array.
Then “bubble” up the tree by swapping new
element with parent until parent is smaller.

n  Log(n) insert and delete.

24

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 47

Heapsort (3): Remove

5

20 6

29 35

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 48

Heapsort (3): Remove

20 6

29 35

25

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 49

Heapsort (3): Remove

29

20 6

35

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 50

Heapsort (3): Remove

6

20 29

35

26

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 51

Heapsort (3): Insert

6

20 29

4 35

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 52

Heapsort (3): Insert

6

4 29

20 35

27

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 53

Heapsort (3): Insert

4

6 29

20 35

From DES to Real-Time Systems

n  DES computes and simulates precise timing
n  We want precise timing in music systems too
n  Example:

n  Thread1():
 loop:
 play bass_drum
 sleep(1.0)
Thread2():
 loop:
 play snare
 sleep(1.0)

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 54

main():
 new Thread1()
 sleep(0.5)
 new Thread2()

28

How Much Precision Do We Need?

n Suppose we compute things to nearest frame
of a video game:
n  Frame rate = 60fps
n  Frame period = 1/60 = 17ms
n  Quantization error is perceptible

n What if system always responds within 1ms?
n  100 beats per minute * 0.5ms error = 50ms

error per minute (!)
n Recommendation: compute time with doubles

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 55

What can we hear?

n  0.1s jitter
n  20ms jitter
n  5ms jitter
n  1ms jitter

n  10ms is typical Just-Noticeable Difference
(JND) for (almost) equally spaced taps

n  10ms jitter in a drum roll is clearly audible
though, so 1ms is a much better goal

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 56

29

DES-like Real-Time Scheduling

n  In music, usually very small timing errors
(~1ms) are OK, but cumulative errors are
bad:
n  Otherwise, two musical lines might drift apart
n  Otherwise, MIDI synchronized to audio or

video might drift
n By the way, what are synchronization

requirements for audio/video?
n  EBU R37: recommends audio at most 40ms

early, at most 60ms late

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 57

DES-like Real-Time Scheduling (2)

n  Key ideas:
n  DES techniques to compute when things should

happen – a specification
n  Use clock reference to make things happen as

close to specification as possible
n  Algorithm:
 periodically do this:
 if time of first event in queue < get_time()
 remove event from queue
 now = event.time
 event.run()

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 58

30

Where do we get “real time”?

n  system clock – every computer has a built-in
crystal clock

n  audio sample count – to sync to audio
n  video frame count or SMPTE – sync to video

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 59

How to implement “periodically”

n Simplest scheme (for command line – e.g.
serpent64 – or embedded programs)
n  while true

 do periodic computation
 sleep(0.002) // sleep 2ms to reduce CPU load

n GUI toolkits/libraries usually have a timer
callback function, e.g. in Swing:
n  new Timer(2, periodicComputation).start();
n  Where periodicComputation implements Action interface

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 60

31

Scheduler in Serpent

require "sched”
def sched_poll():
 nil
sched_init()
// put something on the scheduler
def demo(n):
 print "I'm alive!", n
 sched_cause(1, nil, 'demo', n + 1)
sched_select(rtsched)
sched_cause(1, nil, 'demo', 0)
sched_run()

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 61

Scheduler in wxSerpent

require "sched"
sched_init()
def demo(n):
 print "I'm alive!", n
 sched_cause(1, nil, 'demo', n + 1)
sched_select(rtsched)
sched_cause(1, nil, 'demo', 0)
// do not call sched_run()

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 62

32

Review

n  Now you know how to build an accurate
scheduler for music that:
n  Can handle hundreds or thousands of concurrent

streams of events (notes, chords, beats, etc.)
n  Is efficient with computer time
n  Does not drift with respect to reference clock
n  Does not introduce critical sections, locks, multiple

threads, or the overhead of traditional concurrent
programs

n  Let’s look at some more scheduling algorithms…

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 63

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 64

Implementation 4: no polling

n  Implementations 2 and 3 use priority queues
n  Time of the next event is easily determined
n  Why wake up periodically?
n  Instead, sleep until the next event time.

n  Observations:
n  +Saves time when there nothing to do
n  -Overhead of polling every ms or so is small
n  -Often, you need to poll for other things (audio

processing, sensor input, …)

33

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 65

Implementation 5: timing wheel or
calendar queue

0
1
2
3
…

n-1

To Schedule: insert in table[int(ticks) mod n]

To Dispatch: every tick, search in table[tick mod n]

Assuming event times are random, and table size n is
comparable to number of events, this can have O(1)
scheduling and dispatching time.

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 66

Implementation 6

n What happens if events are not randomly
distributed but separated by n?
n  E.g. table size = 1024 and each slot

represents 1ms. Many events are scheduled
at times 50+1024n ms. Slot 50 gets all events!

n Suppose we use table only for events in the
near future?

n Note: reading makes this assumption already
in Implementation 5.

n What do we do with events too far in future?

34

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 67

Implementation 6 (2)

n The answer:
n  Keep far-future events in a heap-based priority

queue and deal with them later.
n  But a heap-based priority queue has O(log n)

insert time, so…
n  Schedule far-future events by inserting into a

list; process the events later.

Pending
List

Priority
Queue Table

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 68

Implementation 6 (3)

Pending List 1

Pending List 2

Table 2

Table 1

Priority Queue

this period

next period

“far future”

Incoming
Events

(1)

(2)

35

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 69

Implementation 6 – Analysis

n Schedule time is O(1): based on time, just
insert into Table 1, Table 2, or Pending List

n Dispatch time is O(1) per event and O(1) per
clock tick: dispatch everything in
corresponding slot in Table 1.

n Additional background processing time is
O(log n) per far-future event.

n Background processing must be completed
each period.

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 70

Implementation 6 – Discussion

n  How do you schedule background processing? What if it
doesn’t finish in time?

n  Yann Orlarey has a related scheme using an incremental
radix sort instead of the heap – implemented and used in
MidiShare system.

n  I currently use Serpent’s (linear) resort() method to make
priority cues. In C, I use Implementation 5 (timing wheel):
n  Simple to implement.
n  Works with floating point timestamps.
n  Worst-case performance not bad in practice.
n  Determining when to do background processing and

coordinating that with foreground processing really needs
OS support so it’s hard to do right

36

Summary

n  Events and Priority Queue
n  Adaptable to almost any programming language

n  Function pointers
n  Subclass events

n  Accurate timing
n  Deterministic execution even in the face of some

timing jitter
n  Scheduling can be both fast and simple
n  Implementation 5 is common, but tricky to

implement due to rounding issues

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 71

