
1

Week 3 – Accurate Timing
and Logical Time Systems

Roger B. Dannenberg
Professor of Computer Science and Art
Carnegie Mellon University

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 2

Reading Assignment

n Anderson, D. P. and Kuivila, R. 1990.
A system for computer music performance.
ACM Trans. Comput. Syst. 8, 1 (Feb. 1990),
56-82.

n David is a computer scientist
n Ron is a composer

2

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 3

(In)accurate Timing

n Consider this function to play a sequence of
notes:

n Possible outcome:

def note_seq()
 play_a_note_via_midi()
 schedule(get_time() + 0.1, nil,
 'note_seq')

100 ms 100 ms

?

100 ms

Unless functions run
infinitely fast, timing
error will accumulate

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 4

n Scheduler records “ideal” time

n Future scheduling
in terms of
“ideal” time,
not real time.

Accurate Timing With Timestamps

def note_seq()
 play_a_note_via_midi()
 schedule(rtsched_time + 0.1,
 'note_seq')

rtsched_time = scheduled_wakeup_time;
apply(event.fn, event.parameters)

Note: schedule is pseudo code that takes an absolute
time rather than relative time as in sched_cause

3

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 5

Example

100 ms 100 ms

timing error will not
accumulate

def note_seq()
 play_a_note_via_midi()
 schedule(rtsched_time + 0.1, 'note_seq')

time

100 ms 100 ms

time time time

LOGICAL OR VIRTUAL TIME

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 6

4

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 7

Tempo, Time, Beats

Time (s)

B
ea

ts

Time (s)

Te
m

po

Beats

Ti
m

e
(s

)

Beats

Te
m

po

tempo = beatsʹ(t) ∫

beats-1(t)

time-1(b)

(1/time)ʹ(b) ∫ 1/tempo(b)

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 8

Tempo Curve

Time (s)

B
ea

ts

Slope = Tempo (in Beats/Second)

beat = ∫tempo(t) dt

5

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 9

From Beats to Time

Beats

Ti
m

e
(s

)

Slope = 1/Tempo

time = ∫1/tempo(b) db

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 10

Logical Time (or Virtual Time)

n  Used for
n  tempo control
n  clock synchronization
n  speed control/time-scaling

n  Mapping from logical/virtual time to real time:

r0 real time

vi
rt

ua
l t

im
e

v0

s = beats/sec = slope

v(r) = v0 + (r – r0)·s

r(v) = r0 + (v – v0)/s

6

Using Logical (Virtual) Time

n  If tempo is fixed and known in advance:
n  Scheduling is no problem: just map beats to

seconds or seconds to beats as needed
n  Interesting case:

n  You want to schedule according to beats
n  E.g. “play these notes on the next beat”

n  But after you schedule events, the time map
might change

n  In particular, what happens if the tempo
speeds up?

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 11

A Naïve Approach

n Schedule events as usual:
n  Map beats to seconds
n  Schedule according to the predicted time

n  If the tempo changes:
n  Reschedule everything
n  Is this a good idea?

n What alternatives do we have?

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 12

7

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 13

Implementing Logical (Virtual) Time
System

n  Build on real-time scheduler/dispatcher
n  Logical time system represented by object with:

n  priority queue
n  r(v) – virtual time to real time
n  v(r) – real time to virtual time

n  Key idea:
n  If we sort events according to logical time (beats),
n  we only have to map the next event to real time.
n  When tempo changes, only one event needs to be

remapped and rescheduled.

LTS Implementation

def reschedule(lt)
 nxtlt = lt
 // new wakeup event
 e = Lts_event(r(lt))
 RT_sched.schedule(e)

def wakeup(now)
 lt = v(now)
 if lt < nxtlt:
 return
 while lt >= nxtlt
 e = queue.get_next()
 nxtlt = queue.peek().
 timestamp
 VNOW = e.timestamp
 e.run()
 reschedule(nxtlt)

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 14

class Lts_event (Event)
 def run()
 lts_sched.wakeup(
 timestamp)

class Lts_sched
 var nxtlt
 var queue = Heap()
 def schedule(event)
 queue.add(event)
 // get next logi time
 lt = queue.peek().
 timestamp
 if nxtlt > lt
 reschedule(lt)

(These are also members of Lts_sched) Invariants:
 nxtlt == logi time of next event
 a wakeup is scheduled at nxtlt

8

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 15

LTS Change Tempo

// change tempo to bps beats per second
def lts_set_tempo(bps)
 r0 = r(VNOW)
 v0 = VNOW
 s = bps
 v = queue.peek().timestamp
 reschedule(v)

r0 real time

vi
rt

ua
l t

im
e

v0

RNOW

s = beats/sec = slope

Reschedule because
mapping changed

VNOW
v(r) = v0 + (r – r0)·s

r(v) = r0 + (v – v0)/s

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 16

Should we cancel wakeups?

n  Currently, we schedule a wakeup for
n  Any event that becomes the next event
n  The next event any time there is a tempo change

n  Alternatives:
n  Cancel wakeups when virtual time changes

n  Avoids lots of event allocations
n  But scheduling an event is lightweight and fast – could

be constant time if it matters
n  Cancellation requires a lot more bookkeeping – and

cannot be faster than constant time
n  Depends on the scheduling algorithm

9

Cancelling wakeups (2)

n That was an argument against
n  Imagine this:

n  Tempo is controlled by a Kinect controller, with
tempo updates at 30Hz

n  Some events are scheduled far apart, e.g. 10s
to next event

n  300 events will fire around the same time if
tempo is fairly steady, just to dispatch one
“real” event

n Does this matter?

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 17

Composing Logical Time Systems

n  Your logical time becomes my “real” time,
e.g. my reference

n  Clock synchronization
n  “Real time” according to local clock is

shifted and stretched to match a
remote clock

n  Rubato, Expressive Timing
n  Anticipate the beat or “lay back”
n  Linger on certain note, rush others:

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 18

Real Time

Logical Time 1

Logical Time 2

event event

“real” time vi
rt

ua
l t

im
e

10

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 19

Composing Logical Time Systems

n  r(v) = r1(r2(v))
n  v(r) = v2(v1(r))

n  lts.r(v) = lts.parent.r(lts.r0 +
 (v – lts.v0)/lts.s)

n  lts.v(r) = lts.v0 +
 (lts.parent.v(r) – lts.r0)*lts.s

Real Time

Logical Time 1

Logical Time 2

event event

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 20

Concepts

n Explicit timing is key
n  Specify exactly when things should run
n  Program order of execution is (largely)

independent of real execution times
n  Makes debugging easier: more deterministic
n  In some systems, can run out of real time, e.g. for

audio and graphics rendering
n  … or faster than real time, e.g. to generate and

save MIDI file

11

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 21

Concepts (2)

n  “System” (e.g. scheduler) and “Client” (e.g.
objects) cooperate to specify timing
n  Client tells system:

n  how long things take,
n  time to next thing
n  i.e. the client implements the model

n  System tells client:
n  What is the time within the model
n  Delays client execution by not dispatching events

when event time > real time
n  Runs as fast as possible while event time < real time

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 22

Concepts (3)

n Virtual or Logical Time
n  Model for:

n  Variable speed, variable tempo
n  Clock synchronization
n  Anticipating events to compensate for latency
n  Rubato and expressive timing

n  Possible to compose logical time systems
hierarchically

12

FORMULA

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 23

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 24

Why FORMULA?

n Formula was one of the first computer music
languages to deal carefully with timing issues

n Formula is described in detail in a journal
article

n For more recent and related work, see papers
on ChucK (Ge Wang’s PhD work at
Princeton)

n Also my NIME paper in 2011 with Dawen
Liang and Gus Xia

13

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 25

The Basics

n  create_process(procedure, arguments)
n  time_advance(delay)
n  real time – based on clock interrupts
n  system time – scaled by global_tempo, may stop to allow

system to catch up
n  action computation vs. action routine

n  Compute what to do in advance of real time (on the assumption
that computation can be expensive, but can run in advance)

n  Perform the action at a precise time (on the assumption that
outputting pre-computed data is not expensive)

n  schedule_action(proc, args)
n  schedule_future_action(delay, proc, args)

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 26

Timing in FORMULA

14

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 27

Time Deformation

n Per-process virtual time
n Time deformation defined by coroutine

n  Procedural programming makes a sequence
of calls to td_segment(from, to, duration)

n  System runs coroutine as far as necessary

n Product td and serial td

for (i = 0; i < 2; i++) {
 td_segment(0.5, 1.5, 1.0);
}

1.0

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 28

Control Structures

n maxtime(n) statement
n mintime(n) statement
n minloop(n) statement

n Question: how does the control construct take
control of the inner statement?

15

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 29

Input Handling

n Set process time position to time of the event
n  Let the process run until it is ahead of ST +

max_delay
n Example:

Internally generated event sequence:

Input event (key down)

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 30

“Continuous” Control – not in paper

n  Just as time deformation is specified
procedurally,

n FORMULA allows procedural specification of
things like volume control, pitch bend, etc.

n Done with co-routines
n E.g. accent 2 and 4:
 while (true) {
 control_segment(VOL, 80, 80, 1);
 control_segment(VOL, 120, 120, 1);
}

100.0

1 2 3 4 5

16

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 31

Wrapping Up

n  Calculate “ideal” time to perform action as well as
the action itself

n  Use scheduling so that “ideal” time is approximately
real time

n  Cumulative timing errors should only be limited by
numerical accuracy

n  Virtual/Logical time allows for tempo, clock
synchronization, and speed control. Same principle:
compute “ideal” time and scheduling accordingly.

n  FORMULA:
n  action buffering for more precise timing
n  procedural specification of time deformation

Week 3 – Day 2
Event Buffering,
Forward Synchronous

Roger B. Dannenberg
Associate Research Professor of
Computer Science and Art
Carnegie Mellon University

17

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 33

Review: (In)accurate Timing

n Consider this function to play a sequence of
notes:

n Possible outcome:

def note_seq()
 play_a_note_via_midi()
 schedule(get_time() + 0.1, 'note_seq')

100 ms 100 ms

?

100 ms

Unless functions run
infinitely fast, timing
error will accumulate

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 34

n Scheduler records “ideal” time

n Future scheduling
in terms of
“ideal” time,
not real time.

Review: Accurate Timing With
Timestamps

def note_seq()
 play_a_note_via_midi()
 schedule(rtsched_time + 0.1,

 'note_seq')

rtsched_time= scheduled_wakeup_time;
apply(event.fn, event.parameters)

18

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 35

Review: Example

100 ms 100 ms

timing error will not
accumulate

def note_seq()
 play_a_note_via_midi()
 schedule(rtsched_time + 0.1, 'note_seq')

time

100 ms 100 ms

time time time

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 36

The Event Buffer Strategy

Some Process

compute time is long
compared to requirement

for timing accuracy

Clock runs fast
“time advance”

Output Process
compute time

is short
(output only)

Output events
timestamped
with “now”
arrive early

Clock is
correct

19

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 37

Almost Equivalent: Delayed Output

Some Process

compute time is long
compared to requirement

for timing accuracy

Clocks are “on time”
 and synchronized

Output Process
compute time

is short
(output only)

Output event times
are incremented
by DELAY

Tolerates jitter up to
DELAY

Used in PortMidi,
Implicit in most Audio APIs

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 38

Delayed Output and Audio Processing

Some Process

compute time is long
compared to requirement

for timing accuracy

Clock based on sample count

Output is delayed in
audio output buffer

Tolerates jitter up to
buffer size

20

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 39

Delayed Output and Audio Processing
(2)

Some Process

compute time is long
compared to requirement

for timing accuracy

Clock based on sample count

Output is delayed in
audio output buffer

Tolerates jitter up to
buffer size

Audio computation blocks when
buffer is full: prevents computation

from computing too far ahead.

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 40

Event Buffers Everywhere

n  Audio:
n  Disk I/O in audio playback typically runs well ahead of sample

output to device
n  Application is called to fill output buffers as soon as they are empty

(way before audio is played)
n  Device driver sets up DMA transfer to device before samples are

needed
n  Digital-to-Analog Converter loads next sample to internal register

ahead of sample clock
n  Ultimately, sample clock gives <1ns jitter

n  MIDI
n  Sequencers load sequence data to RAM
n  Typically send time-stamped sequence data to a low-latency output

process
n  VoIP

n  Network packets (high jitter) are buffered before playback

21

Delayed Output
Example

n Scheduler:
now = event.time;  
event.run()

n Application:
midi.send(status, data1, data2);

n MIDI Output:
def send(…) {  
 ShortMessage message = …  
 midi_write(message, now);  
}

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 41

Clocks are “on time”
 and synchronized

Output event times
are incremented
by DELAY

Tolerates jitter up to
DELAY

Used in PortMidi,
Implicit in most Audio APIs

Some Process

compute time is long
compared to requirement

for timing accuracy

Output Process
compute time

is short
(output only)

An Aside: PortMidi timing

n  midi_open_output(midi, devno, buffer_size, latency)
n  midi_write(midi, time, msg)

n  latency is the delay in milliseconds applied to
timestamps to determine when the output should
actually occur.

n  If latency is zero, timestamps are ignored and all
output is delivered immediately.

n  If latency is greater than zero, output is delayed
until the message timestamp plus the latency.

n  So behavior of previous slide is built-in.

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 42

22

Schedulers and Event Buffers

n Recall FORMULA
n Uses scheduler to compute outputs with

accurate logical time
n Compute slightly ahead of real time
n Schedule output actions at precise output

times
n  When to schedule output? Use the logical

time.

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 43

Discussion

n  Provides an absolute timestamp to specify MIDI (or other)
output time
n  independent of run time and scheduling delays

n  Potentially passes accurate timing all the way down to the
MIDI device driver

n  MIDI will not be output instantly due to timestamp.
n  Is this delay bad?
n  Audio gets buffered too; this might actually help to

synchronize audio and MIDI
n  Aside: Java is vague about how to work with timestamps

n  In particular, what is the reference time?
n  E.g. how do I synchronize to the audio sample clock?
n  These questions are addressed in PortMidi

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 44

23

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 45

Extension for using MIDI input

n  Problem: you may not see MIDI data immediately
n  “jitter in, jitter out”
n  Solution:

n  Get timestamps from MIDI device driver
n  Treat (accurate) MIDI timestamps as “NOW”
n  If response to MIDI is immediate,

e.g. MIDI controls audio synthesis…
n  Then one option is to delay the response a few milliseconds.
n  PortMidi output can automatically add a time offset and schedule

MIDI output in the driver to reduce output jitter
n  Tradeoff between Jitter and Latency

n  Issue: what if time goes backward?
n  (A timestamped event may set “NOW” to be earlier.)

n  No general solutions here.

Concurrency and Precise Timing

n  Events are ordered in time
n  Need the results (state changes) of one event

before running the next event (usually)
n  Could run simultaneous events in parallel

n  Must be very careful with shared state updates

n  Are simultaneous events common?
n  No general solutions here.

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 46

24

Concurrency and Precise Timing (2)

n Sometimes you can partition the application
into independent synchronized processes:

n Each can run a scheduler
n All schedulers share a time source

n  Or else synchronize their clocks – details later
n What if there are dependencies?

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 47

MIDI file
player

Audio file
player Synthesizer

Problem 1: Asynchrony

n  What could go wrong?
n  Process 1 has several events at time t that change some state,
n  Process 2 runs events at t that depend on shared state
n  èresult is a race condition between Process 1 and 2

n  non-atomic updates to shared state could cause problems
n  (could insist on locks around all shared state)

n  Why isn’t this a problem with a single thread?
n  Partial Solution:

n  Process 1 sends timestamped events to Process 2 through a
FIFO to update non-shared state

n  Process 2’s scheduler moves events from FIFO into the
future event list

n  Now, events from Process 1 are handled synchronously with
respect to every other event in Process 2. Updates happen
before or after Process 2 events, but not during events.

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 48

25

Problem 2: Ordering in Time

n  What could go wrong?
n  Process 1 event at time T – ε changes flag to

false to disable output
n  Process 2 event at time T checks a flag for true

and computes output
n  If Process 1 runs late by more than ε, Process 2

computes output anyway
n  How would this work with a single thread? What if

the computation runs late by more than ε?

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 49

Ordering in Time (2)

n  Suppose Process 2 is like an event buffer.

n  Suppose Process 1 runs Δ ahead of real time, where the

total delay from Process 1 to Process 2 < Δ
n  Output from Process 1 to Process 2 is timestamped
n  Any output from Process 1 at logical time T will update

Process 2 at logical time T: precise timing + concurrency!

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 50

Process 1
Schedules using
precise logical

time system

Process 2
another precise

logical time
system

timestamped
messages

26

Forward Synchronous

n  I coined the term “forward synchronous” for this:
n  “Forward” because it is one-way, e.g. from input to

output.
n  “Synchronous” because if you schedule everything

as we’ve described (logical time systems, accurate
timing), then everything is deterministic and well-
ordered.

n  Brandt and Dannenberg (1999), “Time in
Distributed Real-Time Systems,” in Proc. ICMC.

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 51

Forward Synchronous (2)

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 52

Process 1
Schedules using precise

logical time system

Clock runs fast
“time advance”

Process 2
another precise

logical time system

Messages
timestamped
with “NOW”
arrive early

Clock is
correct

Messages are
scheduled according
to timestamps and
precisely dispatched

27

Forward Synchronous (3)

n  Advantages
n  Works well with separation of control and synthesis

n  E.g. music generation, sequencers, user interface in Process 1
n  … software synthesis in Process 2

n  Output timing can be precise even when connection has
high latency, e.g. network

n  Failure mode is reasonable – late messages are handled
ASAP, fallback is to asynchronous control (such as MIDI)

n  Disadvantages
n  One-way: at best, mutual dependencies require delays or

out-of-time-order processing
n  “Time advance” (running on scheduler ahead of real time)

can be confusing: you have two logical time systems that are
offset from one another

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 53

Distributed Precisely Timed
Systems

n  A reasonable compromise in a
general distributed system (laptop
 orchestras?) is timed messages
but explicit time advance

n  All processes use the same clock
(no built-in time advance)

n  To get “Forward Synchronous” behavior: add time
advance to timestamp when you send a message to
another process

n  To get asynchronous, ASAP behavior, use current time (or
just 0 which implies the message is late) so message will
be processed immediately on arrival

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 54

Process 1

Process 2 Process 3

28

Summary

n  Discrete Event Simulation showed us how to
compute times precisely
n  Why do we care? Avoid drift. Deterministic behavior is

easier to debug.
n  Real Time Schedulers extend the idea simply by

pausing until logical time = real time
n  Gives illusion of infinitely fast CPU with precise

scheduling
n  Event Buffering and more generally Forward

Synchronous systems extend precise timing across
otherwise asynchronous processes:
n  Application and device driver
n  Processes separated by networks, etc.

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 55

