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Week 3 – Accurate Timing 
and Logical Time Systems 

Roger B. Dannenberg 
Professor of Computer Science and Art 
Carnegie Mellon University 
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Reading Assignment 

n Anderson, D. P. and Kuivila, R. 1990.  
A system for computer music performance. 
ACM Trans. Comput. Syst. 8, 1 (Feb. 1990), 
56-82. 

n David is a computer scientist 
n Ron is a composer 
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(In)accurate Timing 

n Consider this function to play a sequence of 
notes: 

n Possible outcome: 
 

def note_seq() 
    play_a_note_via_midi() 
    schedule(get_time() + 0.1, nil, 
             'note_seq') 

100 ms 100 ms 

? 

100 ms 

Unless functions run 
infinitely fast, timing 
error will accumulate 
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n Scheduler records “ideal” time 

n Future scheduling  
in terms of  
“ideal” time, 
not real time. 

Accurate Timing With Timestamps 

def note_seq() 
    play_a_note_via_midi() 
    schedule(rtsched_time + 0.1, 
             'note_seq') 

rtsched_time = scheduled_wakeup_time; 
apply(event.fn, event.parameters) 

Note: schedule is pseudo code that takes an absolute  
time rather than relative time as in sched_cause 
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Example 

100 ms 100 ms 

timing error will not 
accumulate 

def note_seq() 
    play_a_note_via_midi() 
    schedule(rtsched_time + 0.1, 'note_seq') 

time 

100 ms 100 ms 

time time time 

LOGICAL OR VIRTUAL TIME 
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Tempo, Time, Beats 
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tempo = beatsʹ(t) ∫ 

beats-1(t) 

time-1(b) 

(1/time)ʹ(b) ∫ 1/tempo(b) 
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Tempo Curve 

Time (s) 
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Slope = Tempo (in Beats/Second) 

beat = ∫tempo(t) dt 
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From Beats to Time 

Beats 

Ti
m

e 
(s

) 

Slope = 1/Tempo 

time = ∫1/tempo(b) db 
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Logical Time (or Virtual Time) 

n  Used for 
n  tempo control 
n  clock synchronization 
n  speed control/time-scaling 

n  Mapping from logical/virtual time to real time: 

r0 real time 

vi
rt

ua
l t

im
e 

v0 

s = beats/sec = slope 

v(r) = v0 + (r – r0)·s 
 
r(v) = r0 + (v – v0)/s 
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Using Logical (Virtual) Time 

n  If tempo is fixed and known in advance: 
n  Scheduling is no problem: just map beats to 

seconds or seconds to beats as needed 
n  Interesting case: 

n  You want to schedule according to beats 
n  E.g. “play these notes on the next beat” 

n  But after you schedule events, the time map 
might change 

n  In particular, what happens if the tempo 
speeds up? 
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A Naïve Approach 

n Schedule events as usual: 
n  Map beats to seconds 
n  Schedule according to the predicted time 

n  If the tempo changes: 
n  Reschedule everything 
n  Is this a good idea? 

n What alternatives do we have? 
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Implementing Logical (Virtual) Time 
System 

n  Build on real-time scheduler/dispatcher 
n  Logical time system represented by object with: 

n  priority queue 
n  r(v) – virtual time to real time 
n  v(r) – real time to virtual time 

n  Key idea:  
n  If we sort events according to logical time (beats),  
n  we only have to map the next event to real time. 
n  When tempo changes, only one event needs to be 

remapped and rescheduled. 

LTS Implementation 

def reschedule(lt) 
  nxtlt = lt 
  // new wakeup event 
  e = Lts_event(r(lt)) 
  RT_sched.schedule(e) 
 
def wakeup(now) 
  lt = v(now) 
  if lt < nxtlt: 
    return 
  while lt >= nxtlt 
    e = queue.get_next() 
    nxtlt = queue.peek(). 
                 timestamp 
    VNOW = e.timestamp 
    e.run() 
  reschedule(nxtlt) 
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class Lts_event (Event) 
  def run() 
    lts_sched.wakeup( 
              timestamp) 
 

class Lts_sched 
  var nxtlt 
  var queue = Heap() 
  def schedule(event) 
    queue.add(event) 
    // get next logi time 
    lt = queue.peek(). 
              timestamp 
    if nxtlt > lt 
      reschedule(lt) 
       

(These are also members of Lts_sched) Invariants:  
    nxtlt == logi time of next event 
    a wakeup is scheduled at nxtlt 
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LTS Change Tempo 

// change tempo to bps beats per second 
def lts_set_tempo(bps) 
    r0 = r(VNOW) 
    v0 = VNOW 
    s = bps 
    v = queue.peek().timestamp 
    reschedule(v) 
 
         

r0 real time 

vi
rt

ua
l t

im
e 

v0 

RNOW 

s = beats/sec = slope 

Reschedule because  
mapping changed 

VNOW 
v(r) = v0 + (r – r0)·s 
 
r(v) = r0 + (v – v0)/s 
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Should we cancel wakeups? 

n  Currently, we schedule a wakeup for 
n  Any event that becomes the next event 
n  The next event any time there is a tempo change 

n  Alternatives: 
n  Cancel wakeups when virtual time changes 

n  Avoids lots of event allocations 
n  But scheduling an event is lightweight and fast – could 

be constant time if it matters 
n  Cancellation requires a lot more bookkeeping – and 

cannot be faster than constant time 
n  Depends on the scheduling algorithm 
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Cancelling wakeups (2)  

n That was an argument against 
n  Imagine this: 

n  Tempo is controlled by a Kinect controller, with 
tempo updates at 30Hz 

n  Some events are scheduled far apart, e.g. 10s 
to next event 

n  300 events will fire around the same time if 
tempo is fairly steady, just to dispatch one 
“real” event 

n Does this matter?  

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 17 

Composing Logical Time Systems 

n  Your logical time becomes my “real” time, 
e.g. my reference 

n  Clock synchronization 
n  “Real time” according to local clock is 

shifted and stretched to match a 
remote clock 

n  Rubato, Expressive Timing 
n  Anticipate the beat or “lay back” 
n  Linger on certain note, rush others: 
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Real Time 

Logical Time 1 

Logical Time 2 

event event 

“real” time vi
rt

ua
l t

im
e 
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Composing Logical Time Systems 

n  r(v) = r1(r2(v))  
n  v(r) = v2(v1(r)) 

n  lts.r(v) = lts.parent.r(lts.r0 +  
                                  (v – lts.v0)/lts.s) 

n  lts.v(r) = lts.v0 +  
               (lts.parent.v(r) – lts.r0)*lts.s 

Real Time 

Logical Time 1 

Logical Time 2 

event event 
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Concepts 

n Explicit timing is key 
n  Specify exactly when things should run 
n  Program order of execution is (largely) 

independent of real execution times 
n  Makes debugging easier: more deterministic 
n  In some systems, can run out of real time, e.g. for 

audio and graphics rendering 
n  … or faster than real time, e.g. to generate and 

save MIDI file 
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Concepts (2) 

n  “System” (e.g. scheduler) and “Client” (e.g. 
objects) cooperate to specify timing 
n  Client tells system: 

n  how long things take,  
n  time to next thing 
n  i.e. the client implements the model 

n  System tells client: 
n  What is the time within the model 
n  Delays client execution by not dispatching events 

when event time > real time 
n  Runs as fast as possible while event time < real time 
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Concepts (3) 

n Virtual or Logical Time 
n  Model for: 

n  Variable speed, variable tempo 
n  Clock synchronization 
n  Anticipating events to compensate for latency 
n  Rubato and expressive timing 

n  Possible to compose logical time systems 
hierarchically 
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FORMULA 
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Why FORMULA? 

n Formula was one of the first computer music 
languages to deal carefully with timing issues 

n Formula is described in detail in a journal 
article 

n For more recent and related work, see papers 
on ChucK (Ge Wang’s PhD work at 
Princeton) 

n Also my NIME paper in 2011 with Dawen 
Liang and Gus Xia 
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The Basics 

n  create_process(procedure, arguments) 
n  time_advance(delay) 
n  real time – based on clock interrupts 
n  system time – scaled by global_tempo, may stop to allow 

system to catch up 
n  action computation vs. action routine 

n  Compute what to do in advance of real time (on the assumption 
that computation can be expensive, but can run in advance) 

n  Perform the action at a precise time (on the assumption that 
outputting pre-computed data is not expensive) 

n  schedule_action(proc, args) 
n  schedule_future_action(delay, proc, args) 
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Timing in FORMULA 
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Time Deformation 

n Per-process virtual time 
n Time deformation defined by coroutine 

n  Procedural programming makes a sequence 
of calls to td_segment(from, to, duration) 

n  System runs coroutine as far as necessary 

n Product td and serial td 

for (i = 0; i < 2; i++) { 
    td_segment(0.5, 1.5, 1.0); 
} 

1.0 
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Control Structures 

n maxtime(n) statement 
n mintime(n) statement 
n minloop(n) statement 

n Question: how does the control construct take 
control of the inner statement? 
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Input Handling 

n Set process time position to time of the event 
n  Let the process run until it is ahead of ST + 

max_delay 
n Example: 

 

Internally generated event sequence: 

Input event (key down) 
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“Continuous” Control – not in paper 

n  Just as time deformation is specified 
procedurally,  

n FORMULA allows procedural specification of 
things like volume control, pitch bend, etc. 

n Done with co-routines 
n E.g. accent 2 and 4: 
 while (true) { 
    control_segment(VOL, 80, 80, 1); 
    control_segment(VOL, 120, 120, 1); 
} 

100.0 

1      2        3      4       5 
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Wrapping Up 

n  Calculate “ideal” time to perform action as well as 
the action itself 

n  Use scheduling so that “ideal” time is approximately 
real time 

n  Cumulative timing errors should only be limited by 
numerical accuracy 

n  Virtual/Logical time allows for tempo, clock 
synchronization, and speed control. Same principle: 
compute “ideal” time and scheduling accordingly. 

n  FORMULA:  
n  action buffering for more precise timing 
n  procedural specification of time deformation 

Week 3 – Day 2 
Event Buffering, 
Forward Synchronous 

Roger B. Dannenberg 
Associate Research Professor of 
Computer Science and Art 
Carnegie Mellon University 
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Review: (In)accurate Timing 

n Consider this function to play a sequence of 
notes: 

n Possible outcome: 
 

def note_seq() 
    play_a_note_via_midi() 
    schedule(get_time() + 0.1, 'note_seq') 

100 ms 100 ms 

? 

100 ms 

Unless functions run 
infinitely fast, timing 
error will accumulate 
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n Scheduler records “ideal” time 

n Future scheduling  
in terms of  
“ideal” time, 
not real time. 

Review: Accurate Timing With 
Timestamps 

def note_seq() 
    play_a_note_via_midi() 
    schedule(rtsched_time + 0.1, 

     'note_seq') 

rtsched_time= scheduled_wakeup_time; 
apply(event.fn, event.parameters) 
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Review: Example 

100 ms 100 ms 

timing error will not 
accumulate 

def note_seq() 
    play_a_note_via_midi() 
    schedule(rtsched_time + 0.1, 'note_seq') 

time 

100 ms 100 ms 

time time time 

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 36 

The Event Buffer Strategy 

Some Process 
 

compute time is long  
compared to requirement  

for timing accuracy 

Clock runs fast 
“time advance” 

Output Process 
compute time  

is short  
(output only) 

Output events 
timestamped 
with “now” 
arrive early 

Clock is 
correct 



19 

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 37 

Almost Equivalent: Delayed Output 

Some Process 
 

compute time is long  
compared to requirement  

for timing accuracy 

Clocks are “on time”  
   and synchronized 

Output Process 
compute time  

is short  
(output only) 

Output event times 
are incremented 
by DELAY 

Tolerates jitter up to  
DELAY 

Used in PortMidi,  
Implicit in most Audio APIs 

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 38 

Delayed Output and Audio Processing 

Some Process 
 

compute time is long  
compared to requirement  

for timing accuracy 

Clock based on sample count 
                           

Output is delayed in  
audio output buffer 

Tolerates jitter up to  
buffer size 
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Delayed Output and Audio Processing 
(2) 

Some Process 
 

compute time is long  
compared to requirement  

for timing accuracy 

Clock based on sample count 
                           

Output is delayed in  
audio output buffer 

Tolerates jitter up to  
buffer size 

Audio computation blocks when  
buffer is full: prevents computation 

from computing too far ahead. 
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Event Buffers Everywhere 

n  Audio: 
n  Disk I/O in audio playback typically runs well ahead of sample 

output to device 
n  Application is called to fill output buffers as soon as they are empty 

(way before audio is played) 
n  Device driver sets up DMA transfer to device before samples are 

needed 
n  Digital-to-Analog Converter loads next sample to internal register 

ahead of sample clock 
n  Ultimately, sample clock gives <1ns jitter 

n  MIDI 
n  Sequencers load sequence data to RAM 
n  Typically send time-stamped sequence data to a low-latency output 

process 
n  VoIP 

n  Network packets (high jitter) are buffered before playback 
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Delayed Output  
Example 

n Scheduler: 
now = event.time;  
event.run()

n Application: 
midi.send(status, data1, data2); 

n MIDI Output: 
def send(…) {  
  ShortMessage message = …  
  midi_write(message, now);  
}
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Clocks are “on time”  
   and synchronized 

Output event times 
are incremented 
by DELAY 

Tolerates jitter up to  
DELAY 

Used in PortMidi,  
Implicit in most Audio APIs 

Some Process 
 

compute time is long  
compared to requirement  

for timing accuracy 

Output Process 
compute time  

is short  
(output only) 

An Aside: PortMidi timing 

n  midi_open_output(midi, devno, buffer_size, latency)
n  midi_write(midi, time, msg)

n  latency is the delay in milliseconds applied to 
timestamps to determine when the output should 
actually occur.  

n  If latency is zero, timestamps are ignored and all 
output is delivered immediately.  

n  If latency is greater than zero, output is delayed 
until the message timestamp plus the latency.  

n  So behavior of previous slide is built-in. 
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Schedulers and Event Buffers 

n Recall FORMULA 
n Uses scheduler to compute outputs with 

accurate logical time 
n Compute slightly ahead of real time 
n Schedule output actions at precise output 

times 
n  When to schedule output? Use the logical 

time. 
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Discussion 

n  Provides an absolute timestamp to specify MIDI (or other) 
output time 
n  independent of run time and scheduling delays 

n  Potentially passes accurate timing all the way down to the 
MIDI device driver 

n  MIDI will not be output instantly due to timestamp. 
n  Is this delay bad? 
n  Audio gets buffered too; this might actually help to 

synchronize audio and MIDI 
n  Aside: Java is vague about how to work with timestamps 

n  In particular, what is the reference time? 
n  E.g. how do I synchronize to the audio sample clock? 
n  These questions are addressed in PortMidi 
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Extension for using MIDI input 

n  Problem: you may not see MIDI data immediately 
n  “jitter in, jitter out” 
n  Solution: 

n  Get timestamps from MIDI device driver 
n  Treat (accurate) MIDI timestamps as “NOW” 
n  If response to MIDI is immediate,  

e.g. MIDI controls audio synthesis… 
n  Then one option is to delay the response a few milliseconds. 
n  PortMidi output can automatically add a time offset and schedule 

MIDI output in the driver to reduce output jitter 
n  Tradeoff between Jitter and Latency 

n  Issue: what if time goes backward? 
n  (A timestamped event may set “NOW” to be earlier.) 

n  No general solutions here. 

Concurrency and Precise Timing 

n  Events are ordered in time 
n  Need the results (state changes) of one event 

before running the next event (usually) 
n  Could run simultaneous events in parallel 

n  Must be very careful with shared state updates 

n  Are simultaneous events common? 
n  No general solutions here. 
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Concurrency and Precise Timing (2) 

n Sometimes you can partition the application 
into independent synchronized processes: 

n Each can run a scheduler 
n All schedulers share a time source 

n  Or else synchronize their clocks – details later 
n What if there are dependencies? 
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MIDI file 
player 

Audio file 
player Synthesizer 

Problem 1: Asynchrony 

n  What could go wrong? 
n  Process 1 has several events at time t that change some state, 
n  Process 2 runs events at t that depend on shared state 
n  èresult is a race condition between Process 1 and 2 

n  non-atomic updates to shared state could cause problems 
n  (could insist on locks around all shared state) 

n  Why isn’t this a problem with a single thread? 
n  Partial Solution:  

n  Process 1 sends timestamped events to Process 2 through a 
FIFO to update non-shared state 

n  Process 2’s scheduler moves events from FIFO into the 
future event list 

n  Now, events from Process 1 are handled synchronously with 
respect to every other event in Process 2. Updates happen 
before or after Process 2 events, but not during events. 
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Problem 2: Ordering in Time 

n  What could go wrong? 
n  Process 1 event at time T – ε changes flag to 

false to disable output 
n  Process 2 event at time T checks a flag for true 

and computes output 
n  If Process 1 runs late by more than ε, Process 2 

computes output anyway 
n  How would this work with a single thread? What if 

the computation runs late by more than ε? 
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Ordering in Time (2) 

n  Suppose Process 2 is like an event buffer. 

 
 
n  Suppose Process 1 runs Δ ahead of real time, where the 

total delay from Process 1 to Process 2 < Δ 
n  Output from Process 1 to Process 2 is timestamped 
n  Any output from Process 1 at logical time T will update 

Process 2 at logical time T: precise timing + concurrency! 
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Process 1 
Schedules using  
precise logical  

time system 

Process 2 
another precise  

logical time  
system 

timestamped 
messages 
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Forward Synchronous 

n  I coined the term “forward synchronous” for this: 
n  “Forward” because it is one-way, e.g. from input to 

output. 
n  “Synchronous” because if you schedule everything 

as we’ve described (logical time systems, accurate 
timing), then everything is deterministic and well-
ordered. 

n  Brandt and Dannenberg (1999), “Time in 
Distributed Real-Time Systems,” in Proc. ICMC.  
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Forward Synchronous (2) 
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Process 1 
Schedules using precise 

logical time system 

Clock runs fast 
“time advance” 

Process 2 
another precise  

logical time system 

Messages 
timestamped 
with “NOW” 
arrive early 

Clock is 
correct 

Messages are 
scheduled according 
to timestamps and 
precisely dispatched 
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Forward Synchronous (3) 

n  Advantages 
n  Works well with separation of control and synthesis 

n  E.g. music generation, sequencers, user interface in Process 1 
n  … software synthesis in Process 2 

n  Output timing can be precise even when connection has 
high latency, e.g. network 

n  Failure mode is reasonable – late messages are handled 
ASAP, fallback is to asynchronous control (such as MIDI) 

n  Disadvantages 
n  One-way: at best, mutual dependencies require delays or 

out-of-time-order processing 
n  “Time advance” (running on scheduler ahead of real time) 

can be confusing: you have two logical time systems that are 
offset from one another 
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Distributed Precisely Timed 
Systems 

n  A reasonable compromise in a  
general distributed system (laptop 
 orchestras?) is timed messages  
but explicit time advance 

n  All processes use the same clock 
(no built-in time advance) 

n  To get “Forward Synchronous” behavior: add time 
advance to timestamp when you send a message to 
another process 

n  To get asynchronous, ASAP behavior, use current time (or 
just 0 which implies the message is late) so message will 
be processed immediately on arrival 
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Process 1 

Process 2 Process 3 
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Summary 

n  Discrete Event Simulation showed us how to 
compute times precisely 
n  Why do we care? Avoid drift. Deterministic behavior is 

easier to debug. 
n  Real Time Schedulers extend the idea simply by 

pausing until logical time = real time 
n  Gives illusion of infinitely fast CPU with precise 

scheduling 
n  Event Buffering and more generally Forward 

Synchronous systems extend precise timing across 
otherwise asynchronous processes: 
n  Application and device driver 
n  Processes separated by networks, etc. 
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