
1 

Week 9 – Audio 
Concepts, APIs, and 
Architecture 

Roger B. Dannenberg 
Professor of Computer Science and Art 
Carnegie Mellon University 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 2 

Introduction 

n So far, we’ve dealt with discrete, symbolic 
music representations 

n  “Introduction to Computer Music” covers 
sampling theory, sound synthesis, audio 
effects 

n This lecture addresses some system and 
real-time issues of audio processing 

n We will not delve into any DSP algorithms for 
generating/transforming audio samples 



2 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 3 

Overview 

n  Audio Concepts 
n  Samples 
n  Frames 
n  Blocks 
n  Synchronous processing 

n  Audio APIs 
n  PortAudio 
n  Callback models 
n  Blocking API models 
n  Scheduling 

n  Architecture 
n  Unit generators 
n  Fan-In, Fan-Out 
n  Plug-in Architectures 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 4 

Audio Concepts 

n  Audio is basically a stream of signal amplitudes 

n  Typically represented  
n  Externally as 16-bit signed integer: +/- 32K 
n  Internally as 32-bit float from [-1, +1] 

n  Floating point gives >16bit precision 
n  And “headroom”: samples >1 are no problem as long as later, something 

(e.g. a volume control) scales them back to [-1, +1] 
n  Fixed sample rate, e.g. 44100 samples/second (Hz) 
n  Many variations: 

n  Sample rates from 8000 to 96000 (and more) 
n  Can represent frequencies from 0 to ½ sample rate 

n  Sample size from 8bit to 24bit integer, 32-bit float 
n  About 6dB/bit signal-to-noise ratio 

n  Also 1-bit delta-sigma modulation and compressed formats 



3 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 5 

Multi-Channel Audio 

n  Each channel is an 
 independent audio signal 

n  Each sample period now  
has one sample per channel 

n  Sample period is called an 
 audio frame 

n  Formats: 
n  Usually stored as interleaved data 
n  Usually processed as independent, non-interleaved arrays 
n  Exception: Since channels are often correlated, there are 

special multi-channel compression and encoding techniques, 
e.g. for surround sound on DVDs. 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 6 

Block Processing Reduces 
Overhead 

n Example task: convert stereo to mono with 
scale factor 

n Naïve organization: 
read frame into left and right 
output = scale * (left + right) 
write output 

n Block processing organization 
read 64 interleaved frames into data 
for (i = 0; i < 64; i++) { 
    output[i] = scale * (data[i*2] + data[i*2 + 1]); 
} 
write 64 output samples 

System call per 
frame 

Load scale and 
locals to registers 



4 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 7 

Audio is Always Processed 
Synchronously 

Read frames 
Interleaved to  

non-interleaved 

Audio effect Audio effect 

Gain, etc. Gain, etc. 

Non-interleaved 
to interleaved Write frames 

Sometimes 
described as a 
data-flow process: 
each box accepts 
block(s) and 
outputs block(s) at 
block time t. 
 
No samples may 
be dropped or 
duplicated (or else 
distortion will 
result) 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 8 

Audio Latency Is Caused (Mostly) 
By Sample Buffers 
n  Samples arrive every 22υs or so 
n  Application cannot wake up and run once for each 

sample frame (at least not with any efficiency) 
n  Repeat: 

n  Capture incoming samples in input buffer while taking 
output samples from output buffer 

n  Run application: consume some input, produce some 
output 

n  Application can’t compute too far ahead (output 
buffer will fill up and block the process). 

n  But Application can fall too far behind (input buffer 
overflow, output buffer underflow) – bad! 



5 

Carnegie Mellon University 

Latency/Buffers Are Not 
Completely Bad 

n Of course, there’s no reason to increase 
buffer sizes just to add delay (latency) to 
audio! 

n What about reducing buffer sizes? 
n  Very small buffers (or none) means we cannot 

benefit from block processing: more CPU load 
n  Small buffers (~1ms) lead to underflow if OS 

does not run our application immediately after 
samples become available. 

n Blocks and buffers are a “necessary evil” 

ⓒ 2019 by Roger B. Dannenberg 9 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 10 

There Are Many Audio APIs 

n  Every OS has one or more APIs: 
n  Windows: WinMM, DirectX, ASIO, Kernel Streaming 
n  Mac OS X: Core Audio 
n  Linux: ALSA, Jack 

n  APIs exist at different levels 
n  Device driver – interface between OS and hardware 
n  System/Kernel – manage audio streams, conversion, 

format 
n  User space – provide higher-level services or 

abstractions through a user-level library or server 
process 



6 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 11 

Buffering Schemes 

n  Hardware buffering schemes include: 
n  Circular Buffer 
n  Double Buffer 
n  Buffer Queues 

n  these may be reflected in the user level API 
n  Poll for buffer position, or get interrupt or callback 

when buffers complete 
n  What’s a callback? 

n  Typically audio code generates blocks and you care 
about adapting block-based processing to buffer-
based input/output. (It may or may not be 1:1) 

Carnegie Mellon University 

Latency in Detail 

n  Audio input/output is strictly synchronous and 
precise (to < 1ns) 

n  Therefore, we need input/output buffers 
n  Assume audio block size = b samples 
n  Computation time r sample times 
n  Assume pauses up to c sample periods 
n  Worst case:  

n  Wait for b samples – inserts a delay of b 
n  Process b samples in r sample periods – delay of r 
n  Pause for c sample periods – delay of c 
n  Total delay is b + r + c sample periods 

ⓒ 2019 by Roger B. Dannenberg 12 



7 

Carnegie Mellon University 

Latency In Detail: Circular Buffers 

n  Assumes sample-by-sample processing 
n  Audio latency is b + r + c sample periods 
n  In reality, there are going to be a few samples of buffering or 

latency in the transfer from input hardware to application 
memory and from application memory to output hardware. 

n  But this number is probably small compared to c 
n  Normal buffer state is: input empty, output full 

n  Worst case: output buffer almost empty 

n  Oversampling A/D and D/A converters can add 0.2 to 1.5ms 
(each) 

ⓒ 2019 by Roger B. Dannenberg 13 

Carnegie Mellon University 

Latency In Detail: Double Buffer 

n  Assumes block-by-block processing 
n  Assume buffer size is nb, a multiple of block size 

n  Audio latency is 2nb sample periods 

n  How long to process one buffer (worst case)?  
n  How long do we have? 

ⓒ 2019 by Roger B. Dannenberg 14 

Input to buffer 
Process buffer 

Output from buffer 
2nb 



8 

Carnegie Mellon University 

Latency In Detail: Double Buffer 

n  Assumes block-by-block processing 
n  Assume buffer size is nb, a multiple of block size 
n  Audio latency is 2nb sample periods 

n  How long to process one buffer (worst case)?  
n  How long do we have? 

n  n ≥ c / (b – r) 

ⓒ 2019 by Roger B. Dannenberg 15 

Input to buffer 
Process buffer 

Output from buffer 
2nb 

nr + c 
nb 

Carnegie Mellon University 

Latency In Detail: Double Buffer (2) 

n  n ≥ c / (b – r) 
n  Example 1: 

n  b = 64 

n  r = 48 

n  c = 128 

n  ∴ n = 8 

n  Audio latency = 2nb = 
1024 sample periods 

n  Example 2: 
n  b = 64 

n  r = 48 

n  c = 16 

n  ∴ n = 1 

n  Audio latency = 2nb = 
128 sample periods 

 
ⓒ 2019 by Roger B. Dannenberg 16 

How does this compare to circular buffer? 



9 

Carnegie Mellon University 

Latency In Detail: Buffer Queues  

n  Assume queue of buffers with b sample each  
(buffer size = block size) 

n  Queues of length n on both input and output  
n  In the limit, this is same as circular buffers 
n  In other words, circular buffer of n blocks 
n  If we are keeping up with audio, state is: 
n  Audio latency = (n – 1)b 
n  Need: (n – 2)b > r + c 
n  ∴ n ≥ (r + c) / b + 2 

n  Example 1: latency = 256 vs 1024, Ex 2: 128 (same) 

ⓒ 2019 by Roger B. Dannenberg 17 

Input 

Output 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 18 

Synchronous/blocking vs 
Asynchronous/callback APIs 

n  Blocking APIs 
n  Typically provide primitives like read() and write() 
n  Can be used with select() to interleave with other operations 
n  Users manage their own threads for concurrency (consider 

Python, Ruby, SmallTalk, …) 
n  Great if your OS threading services can provide real-time 

guarantees (e.g. some embedded computers, Linux) 
n  Callback APIs 

n  User provides a function pointer to be called when samples 
are available/needed 

n  Concurrency is implicit, user must be careful with locks or 
blocking calls 

n  You can assume the API is doing its best to be real-time 



10 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 19 

PortAudio: An Abstraction of Audio APIs 

n  PortAudio wraps multiple Host APIs providing a 
unified and portable interface for writing real-time 
audio applications 

n  Main entities: 
n  Host API – a particular user-space audio API (ie JACK, 

DirectSound, ASIO, ALSA, WMME, CoreAudio, etc.) 
n  PaHostApiInfo, Pa_GetHostApiCount(), Pa_GetHostApiInfo() 

n  Device – a particular device, usually maps directly to a host 
API device. Can be full or half duplex depending on the host 

n  PaDeviceInfo, Pa_GetDeviceCount(), PaGetDeviceInfo() 

n  Stream – an interface for sending and/or receiving samples 
to an opened Device 

n  PaStream, Pa_OpenStream(), Pa_StartStream() 

n  See http://www.portaudio.com 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 20 

PortAudio Example: 
Generating a Sine Wave 

struct TestData { 
    float sine[TABLE_SIZE]; 
    int phase; 
}; 
 
static int TestCallback( const void *inputBuffer,  
  void *outputBuffer, unsigned long framesPerBuffer,  
  const PaStreamCallbackTimeInfo* timeInfo, 
  PaStreamCallbackFlags statusFlags, void *userData ) { 
    TestData *data = (TestData*) userData; 
    float *out = (float*) outputBuffer; 
     
    for (int i=0; i<framesPerBuffer; i++) { 
        float sample = data->sine[ data->phase++ ]; 
        *out++ = sample;  /* left */ 
        *out++ = sample;  /* right */ 
        if (data->phase >= TABLE_SIZE)  
           data->phase -= TABLE_SIZE; 
    } 
    return paContinue; 
} 



11 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 21 

PortAudio Example:  
Running a Stream (1) 

int main(void) 
{ 
    TestData data; 
    for (int i=0; i < TABLE_SIZE; ++i) 
        data.sine[i] = sin(M_PI * 2 *  
                           ((double)i/(double)TABLE_SIZE)); 
    data.phase = 0; 
        
    Pa_Initialize(); 
     
    PaStreamParameters outputParameters; 
    outputParameters.device = Pa_GetDefaultOutputDevice(); 
    outputParameters.channelCount = 2;       
    outputParameters.sampleFormat = paFloat32; 
    outputParameters.suggestedLatency =  
            Pa_GetDeviceInfo(outputParameters.device)-> 
                                   defaultLowOutputLatency; 
    outputParameters.hostApiSpecificStreamInfo = NULL; 
 
    ...     

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 22 

PortAudio Example:  
Running a Stream (2) 

    ... 
 
    PaStream *stream; 
    Pa_OpenStream(&stream, NULL /* no input */,   
              &outputParameters, 
              SAMPLE_RATE, FRAMES_PER_BUFFER, paClipOff /*flags*/,       
              TestCallback, &data); 
    
    Pa_StartStream(stream); 
     
    printf("Play for %d seconds.\n", NUM_SECONDS); 
    sleep(NUM_SECONDS); 
 
    Pa_StopStream(stream); 
    Pa_CloseStream(stream); 
    Pa_Terminate(); 
} 
 



12 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 23 

Modular Audio Processing 

n Unit generators 
n Graph evaluation 
n Evaluation mechanisms 
n Block-based processing 
n Vector allocation strategies 
n Variations 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 24 

Unit Generators 

n  A sample generating or processing function, and its 
accompanying state. e.g. Oscillators, filters, etc. 
n  A functional view: 

n  f(state, inputs) à (state, outputs) 
n  An OOP view: 

n  Class Ugen{ virtual Update( float*[] ins, float *[] outs ); } 

n  In a dynamic system, the flow  
between units is explicitly  
represented by a  
“synchronous dataflow graph” 



13 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 25 

Graph Evaluation 

n  Generators which produce signals must be evaluated before the 
generators which consume those signals*, therefore: execute in 
a depth-first order starting from sinks. 

n  Note: depth-first implies sinks are 
 the last to evaluate in any graph 
 traversal. 

 
 
*Why? 
*Or else, outputs from generator will not be considered until the next “pass”, 
introducing a one-block delay, or even worse, if outputs go to reusable 
memory buffers, output could be overwritten. 

(1) (2) 

(3) 

(4) 

(5) 

(6) 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 26 

Evaluation Mechanisms 

n Direct graph traversal (using topological sort 
algorithm) 
n  Simple, dynamic 
n  Can't modify the graph while evaluating 

(1) (2) 

(3) 

(4) 

(5) 

(6) 



14 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 27 

Topological Sort 

 
class Ugen 
    var block_num 
    var inputs 
 
    def update(new_block_num) 
        if new_block_num > block_num 
            for input in inputs 
                input.update(new_block_num) 
            really_update() // virtual method 
            block_num = block_num + 1 
 
Question: Why not just ask each block to update/compute its 

ancestors before running its own update/compute method 
instead of messing with block numbers and “if” tests? 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 28 

Evaluation Mechanisms (2) 

n Execution sequence (list of function pointers, 
polymorphic object pointers, bytecodes) 
n  Possibly more efficient, harder to modify 
n  Decouples evaluation from traversal. Graph 

can be modified during traversal; later 
sequence/program must be computed again. 

n  Essentially the same topological sort algorithm 
is used, but traversal order is stored as a 
sequence or program. 



15 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 29 

Block-Based Processing 

n  Process arrays of input samples and produces arrays 
of output samples 

n  Pros: more efficient (common subexpressions, 
register loads, indexing, cache line prefetching, loop 
unrolling, SIMD etc) 

n  Cons: latency, feedback loops incur blocksize delay 
n  Vector size: 

n  fixed (c.f. Csound k-rate, Aura) 
n  Variable with upper bound 

Carnegie Mellon University 

Variable Block Size 

n  Rarely used, but this is a good topic to test your understanding of unit 
generator implementation 

n  Imagine fixed block size of N and every UG has an inner sample 
computation loop that runs N times; samples are written to output arrays 
that hold N samples. 

n  Now imagine that N is a variable. If the next “event” – some parameter 
update – is scheduled 5 samples after the start time of the next block, we 
set N to 5 and all the UGs compute 5 samples. (Remember that all 
computation is synchronous, so all UGs have the same number of input 
and output samples.) 

n  After running all the UGs, we get 5 samples of output, do the event/
update, and then compute the next value of N. 

n  We limit N to an upper bound to avoid reallocating buffers of memory that 
hold samples. These stay at some fixed size N_MAX. 

n  Main drawback: closely spaced events/updates impact efficiency, so 
performance is less predictable. 

ⓒ 2019 by Roger B. Dannenberg 30 



16 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 31 

Buffer Allocation Strategies 

n  1) One buffer/vector per generated signal, i.e. for 
every Unit Generator output. 

n  2) Reuse buffers once all sinks have consumed them 
(c.f. Graph coloring register allocation) 

n  Dannenberg’s measurements indicate this is wasted 
effort 
n  Buffers are relatively small 
n  Cache is relatively big 
n  DSP is relatively expensive compared to (relatively 

few) cache faults 
n  So speedup from buffer reuse (2) is insignificant 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 32 

Feedback 

n Don't visit a node more than once during 
graph traversal 

n Save output from previous evaluation pass so 
it can be consumed during next evaluation 



17 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 33 

Variations on Block-Based 
Processing 
n  Hierarchical block sizes e.g. process subgraphs with 

smaller blocks to reduce feedback delay 
n  Synchronous multi-rate: separate evaluation phases 

using the same or different graphs (e.g. Csound 
krate/arate passes).  

n  Or support signals with one sample per block time: 
“Block-rate” UGs have no inner loop and support a 
sample rate of  
    BLOCK_SR = AUDIO_SR / BLOCKSIZE. 

n  Combine synchronous dataflow graph for audio with 
asynchronous message processing for control (e.g. 
Max/MSP) 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 34 

Audio Plug-Ins 

n A plug-in is a software object that can extend 
the functionality of an audio application, e.g. 
an editor, player, or software synthesizer. 

n Effectively a plug-in is a unit generator: 
n  audio inputs 
n  audio outputs 
n  parametric controls 

n Plug-ins are  
n  dynamically loadable and 
n  self-describing 



18 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 35 

VST Plug-Ins 

n Proprietary spec: Steinberg 
n Commonly used and widely supported 
n Multiplatform: 

n  Windows (a multithreaded DLL) 
n  Mac OS-X (a bundle) 
n  Linux (sort-of) 

n  Uses WINE (Windows emulation) 
n  Kjetil Matheussen's original vstserver,  
n  The fst project from Paul Davis and Torben Hohn,  
n  Chris Cannam's dssi-vst wrapper plugin  

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 36 

Example VST GUI 

jack_fst running the Oberon VSTi synth  



19 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 37 

VST Conventions 

n Host calls plug-in, sets up input buffers and 
controls buffer size and when processing is 
performed 

n  process(): must be implemented, output is 
added to the output buffer 

n  processReplacing(): optional, output 
overwrites data in output buffer 

n Parameters range: 0.0 to 1.0 (32-bit float) 
n Audio samples: -1.0 to +1.0 (32-bit float) 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 38 

Example Code 

AGain::AGain(audioMasterCallback audioMaster)  
  : AudioEffectX(audioMaster, 1, 1) // 1 program, 1 parameter only 
{ fGain = 1.; // default to 0 dB  
  setNumInputs(2); // stereo in  
  setNumOutputs(2); // stereo out  
  setUniqueID('Gain'); // identify  
  canMono(); // makes sense to feed both inputs the same signal  
  canProcessReplacing (); // supports both accumulating and replacing 
  strcpy(programName, "Default"); // default program name  
}  
 
AGain::~AGain() { } // nothing to do here 
 
void AGain::setProgramName(char *name) 
{ strcpy(programName, name); 
} 
 
void AGain::getProgramName(char *name) 
{ strcpy (name, programName); 
} 
 



20 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 39 

Example Code (2) 

void AGain::setParameter(long index, float value) 
{ fGain = value; 
} 
 
float AGain::getParameter(long index) 
{ return fGain; 
} 
 
void AGain::getParameterName(long index, char *label) 
{ strcpy(label, "Gain"); // default max string length is 24 (!) 
} 
 
void AGain::getParameterDisplay(long index, char *text) 
{ dB2string(fGain, text); 
} 
 
void AGain::getParameterLabel(long index, char *label) 
{ strcpy(label, "dB"); 
} 
 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 40 

Example Code (3) 

bool AGain::getEffectName(char* name) 
{ strcpy(name, "Gain"); 
  return true; 
} 
 
bool AGain::getProductString(char* text) 
{ strcpy(text, "Gain"); 
  return true; 
} 
 
bool AGain::getVendorString(char* text) 
{ strcpy(text, "Steinberg Media Technologies"); 
  return true; 
} 
 



21 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 41 

Example Code (4) 

void AGain::process(float **inputs, float **outputs,  
                    long sampleFrames) 
{ 
    float *in1  =  inputs[0]; 
    float *in2  =  inputs[1]; 
    float *out1 = outputs[0]; 
    float *out2 = outputs[1]; 
 
    while (--sampleFrames >= 0) 
    { 
        (*out1++) += (*in1++) * fGain;    // accumulating 
        (*out2++) += (*in2++) * fGain; 
    } 
} 
 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 42 

Example Code (5) 

 
void AGain::processReplacing(float **inputs, float **outputs, 

long sampleFrames) 
{ 
    float *in1  =  inputs[0]; 
    float *in2  =  inputs[1]; 
    float *out1 = outputs[0]; 
    float *out2 = outputs[1]; 
 
    while (--sampleFrames >= 0) 
    { 
        (*out1++) = (*in1++) * fGain;    // replacing 
        (*out2++) = (*in2++) * fGain; 
    } 
} 
 



22 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 43 

VST on the Host Side 

typedef AEffect *(*mainCall)(audioMasterCallback cb);  
audioMasterCallback audioMaster;  
void instanciatePlug(mainCall plugsMain)  
{ AEffect *ce = plugsMain (&audioMaster);  
  if (ce && ce->magic == AEffectMagic) { .... }  
}  
 ------ the main() routine in the plugin (DLL): ------- 
AEffect *main(audioMasterCallback audioMaster) 
{ // check for the correct version of VST 
  if (!audioMaster(0,audioMasterVersion,0,0,0,0)) return 0;   
  ADelay* effect = new ADelay(audioMaster); // Create the AudioEffect 
  if (!effect) return 0; 
  if (oome) { // Check if no problem in constructor of AGain 
  delete effect; 
  return 0; 

  } 
  return effect->getAeffect(); // return C interface of our plug-in 
} 
 

Assume host loaded 
plugin and has its main 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 44 

More VST  

n  Program = full set of parameters 
n  Bank = set of programs (user can call up preset) 
n  Interactive Interfaces 

n  Host can construct editor based on text: 
n  Parameter name, display, label – “Gain: -6 dB” 

n  Plug-In can open a window and make a GUI 
n  Plug-In can use VSTGUI library to make a cross-

platform GUI 
n  VSTi – plug-in instruments (synthesizers) 

n  Plug-In has API for receiving MIDI events 



23 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 45 

LADSPA – Linux Audio Developers’ 
Simple Plugin Architecture 
n  the plugin library is loaded (using a system-specific method like 

dlopen or for glib, gtk+ users, g_module_open).  
n  the plugin descriptor is obtained using the plugin library's 

ladspa_descriptor function, which may allocate memory.  
n  the host uses the plugin's instantiate function to allocate a new 

(or several new) sample-processing instances.  
n  the host must connect buffers to every one of the plugin's ports. 

It must also call activate before running samples through the 
plugin.  

n  the host processes sample data with the plugin by filling the 
input buffers it connected, then calling either run or run_adding. 
The host may reconnect ports with connect_port as it sees fit.  

n  the host deactivates the plugin handle. It may opt to activate and 
reuse the handle, or it may destroy the handle.  

n  the handle is destroyed using the cleanup function.  
n  the plugin is closed. Its _fini function is responsible for 

deallocating memory.  

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 46 

Summary 

n Audio samples, frames, blocks 
n Synchronous processing: 

n  Never skip or duplicate samples 
n  Buffers are essential 
n  Latency comes (mostly) from buffer length 

n PortAudio 
n  Host API 
n  Device  
n  Stream 



24 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 47 

Summary (2) 

n  Modular Audio Processing 
n  Unit Generator 
n  Networks of Unit Generators 
n  Synchronous Dataflow 

n  Plug-ins 
n  VST example 
n  Unit Generator that is… 
n  Dynamically loadable 
n  Self-describing 
n  May have its own graphical interface 


