Week 9 — Audio
Concepts, APls, and
Architecture

Roger B. Dannenberg

Professor of Computer Science and Art
Carnegie Mellon University

Introduction

So far, we’ve dealt with discrete, symbolic
music representations

“Introduction to Computer Music” covers
sampling theory, sound synthesis, audio
effects

This lecture addresses some system and
real-time issues of audio processing

We will not delve into any DSP algorithms for
generating/transforming audio samples

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Overview

Audio Concepts
Samples
Frames
Blocks
Synchronous processing
Audio APIs
PortAudio
Callback models
Blocking APl models
Scheduling
Architecture
Unit generators
Fan-In, Fan-Out
Plug-in Architectures

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Audio Concepts

Audio is basically a stream of signal amplitudes

Typically represented
Externally as 16-bit signed integer: +/- 32K
Internally as 32-bit float from [-1, +1]
Floating point gives >16bit precision

And “headroom”: samples >1 are no problem as long as later, something
(e.g. a volume control) scales them back to [-1, +1]

Fixed sample rate, e.g. 44100 samples/second (Hz)
Many variations:
Sample rates from 8000 to 96000 (and more)
Can represent frequencies from 0 to /2 sample rate
Sample size from 8bit to 24bit integer, 32-bit float
About 6dB/bit signal-to-noise ratio
Also 1-bit delta-sigma modulation and compressed formats

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Multi-Channel Audio

Each channel is an sample sample sample
independent audio signal frame 0 _frame 1 frame N

Each sample period now [EXIEY EXI Y B

has one sample per channel

Sample period is called an |:] = one sample point
audio frame

Formats:
Usually stored as intferleaved data
Usually processed as independent, non-interleaved arrays

Exception: Since channels are often correlated, there are
special multi-channel compression and encoding techniques,
e.g. for surround sound on DVDs.

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Block Processing Reduces
Overhead

Example task: convert stereo to mono with
scale factor // System call per

- . . frame
Naive organization:
read frame into left and right Load scale'and
output = scale * (left + right) locals to registers

write output

Block processing organization
read 64 interleaved frames into data
for (i = 0; i < 64; i++) {
output[i] = scale * (data[i*2] + data[i*2 + 1]);

}

write 64 output samples

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Audio is Always Processed
Synchronously

Read frames
\ Interleaved to
non-interleaved

Sometimes /\
described as a

data-flow process: | Audio effect| | Audio effect
each box accepts
block(s) and | |

outputs block(s) at
block time t.

Gain, etc. Gain, etc.

No samples may Non-interleaved

be dropped or to interleaved ™[.~
~ duplicated (or else Write frames

distortion will
result)

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Audio Latency Is Caused (Mostly)
By Sample Buffers

Samples arrive every 22us or so

Application cannot wake up and run once for each
sample frame (at least not with any efficiency)

Repeat:

Capture incoming samples in input buffer while taking
output samples from output buffer
Run application: consume some input, produce some
output
Application can’t compute too far ahead (output
buffer will fill up and block the process).
But Application can fall too far behind (input buffer
overflow, output buffer underflow) — bad!

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Latency/Buffers Are Not
Completely Bad

Of course, there’s no reason to increase
buffer sizes just to add delay (latency) to
audio!

What about reducing buffer sizes?

Very small buffers (or none) means we cannot
benefit from block processing: more CPU load

Small buffers (~1ms) lead to underflow if OS
does not run our application immediately after
samples become available.

Blocks and buffers are a “necessary evil’

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

10

There Are Many Audio APls

Every OS has one or more APlIs:
Windows: WinMM, DirectX, ASIO, Kernel Streaming
Mac OS X: Core Audio
Linux: ALSA, Jack
APIs exist at different levels
Device driver — interface between OS and hardware

System/Kernel — manage audio streams, conversion,
format

User space — provide higher-level services or
abstractions through a user-level library or server
process

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Buffering Schemes

Hardware buffering schemes include:
Circular Buffer < P

Double Buffer < 1 P

Buffer Queues < —] o B
these may be reflected in the user level API
Poll for buffer position, or get interrupt or callback
when buffers complete

What'’s a callback?
Typically audio code generates blocks and you care
about adapting block-based processing to buffer-
based input/output. (It may or may not be 1:1)

1 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Latency in Detall

Audio input/output is strictly synchronous and
precise (to < 1ns)

Therefore, we need input/output buffers
Assume audio block size = b samples
Computation time r sample times
Assume pauses up to ¢ sample periods
Worst case:
Wait for b samples — inserts a delay of b
Process b samples in r sample periods — delay of r
Pause for ¢ sample periods — delay of ¢
Total delay is b + r + ¢ sample periods

12

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Latency In Detail: Circular Buffers

Assumes sample-by-sample processing
Audio latency is b + r + ¢ sample periods

In reality, there are going to be a few samples of buffering or
latency in the transfer from input hardware to application
memory and from application memory to output hardware.

But this number is probably small compared to ¢
Normal buffer state is: input empty, output full
B - |- |

Worst case: output buffer almost empty

N | —>[]-]

v Oversampling A/D and D/A converters can add 0.2 to 1.5ms
7/, (each)

13 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Latency In Detail: Double Buffer

Assumes block-by-block processing
Assume buffer size is nb, a multiple of block size

Audio latency is 2nb sample periods

LN TTETITTTTTT] input to buffer
RN ITTTITTTITT]Process buffer
’\'H \ | [] |||| | ||||0utputfrombuffer
<« >
2nb

How long to process one buffer (worst case)?

/,/IA How long do we have?

14

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Latency In Detail: Double Buffer

Assumes block-by-block processing
Assume buffer size is nb, a multiple of block size
Audio latency is 2nb sample periods

[INJTITTTTITTTTTT] mput to buffer
DAL TTTTITTTITT] Process buffer
- DI LITTTITT TTTT] output from buffer

How long to process one buffer (worst case)? nr + ¢
How long do we have? nb
nzcl(b-r)

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Latency In Detail: Double Buffer (2)

nzc/(b-r)
Example 1: Example 2:
b =64 b =64
r=48 r=48
c=128 c=16
.n=8 Son=1
Audio latency = 2nb = Audio latency =_2nb =
1024 sample periods 128 sample periods

How does this compare to circular buffer?

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Latency In Detail: Buffer Queues

Assume queue of buffers with b sample each
(buffer size = block size)

Queues of length n on both input and output
In the limit, this is same as circular buffers
In other words, circular buffer of n blocks

If we are keeping up with audio, state is:

Audio latency = (n—1)b — |

Need: (n—-2)b>r+c t
) Input I —
S.nz(r+c)/b+2

N
Output
Example 1: latency = 256 vs 1024, Ex 2: 128 (same)

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Synchronous/blocking vs
Asynchronous/callback APls

Blocking APIs
Typically provide primitives like read() and write()
Can be used with select() to interleave with other operations

Users manage their own threads for concurrency (consider
Python, Ruby, SmallTalk, ...)

Great if your OS threading services can provide real-time
guarantees (e.g. some embedded computers, Linux)

Callback APls

User provides a function pointer to be called when samples
are available/needed

Concurrency is implicit, user must be careful with locks or
blocking calls

You can assume the APl is doing its best to be real-time

18

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

PortAudio: An Abstraction of Audio APlIs

PortAudio wraps multiple Host APls providing a
unified and portable interface for writing real-time
audio applications

Main entities:

Host API — a particular user-space audio API (ie JACK,

DirectSound, ASIO, ALSA, WMME, CoreAudio, etc.)
PaHostApiInfo, Pa_GetHostApiCount(), Pa_GetHostApiInfo()

Device — a particular device, usually maps directly to a host

API device. Can be full or half duplex depending on the host
PaDeviceInfo, Pa_GetDeviceCount(), PaGetDeviceInfo()

Stream — an interface for sending and/or receiving samples

to an opened Device
PaSstream, Pa_OpenStream(), Pa_StartStream()

See http://www.portaudio.com

19 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

PortAudio Example:
Generating a Sine Wave

struct TestData {
float sine[TABLE_SIZE];
int phase;

static int TestcCallback(const void *inputBuffer,
void *outputBuffer, unsigned long framesperBuffer,
const PaStreamcCallbackTimeInfo* timelInfo,
PastreamCallbackFlags statusFlags, void *userData) {
TestData *data = (TestData*) userbData;
float *out = (float*) outputBuffer;

for (int i=0; i<framesPerBuffer; i++) {
float sample = data->sine[data->phase++];
out++ = sample; / left */
N *out++ = sample; /* right */
if (data->phase >= TABLE_SIZE)

/’,l, data->phase -= TABLE_SIZE;
}

return paConti nue;

20 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

10

PortAudio Example:
Running a Stream (1)

int main(void)

TestData data;
for (int i=0; i < TABLE_SIZE; ++i)
data.sine[i] = sin(M_PI * 2 *
((double)i/(double) TABLE_SIZE));
data.phase = 0;

Pa_Initialize(Q);

PaStreamParameters outputParameters;
outputParameters.device = Pa_GetDefaultoutputDevice();
outputParameters.channelCount = 2;
outputParameters.sampleFormat = paFloat32;
outputParameters.suggestedLatency =
Pa_GetDeviceInfo(outputParameters.device)->
defaultLowOutputLatency;
outputParameters.hostApiSpecificStreamInfo = NULL;

21 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

PortAudio Example:
Running a Stream (2)

PaStream *stream;

Pa_OpenStream(&stream, NULL /* no input */,
&outputParameters,
SAMPLE_RATE, FRAMES_PER_BUFFER, pacClipoff /*flags*/,
TestCallback, &data);

Pa_StartStream(stream);

printf("Play for %d seconds.\n", NUM_SECONDS);
sTeep (NUM_SECONDS) ;

Pa_StopStream(stream);
Pa_CloseStream(stream) ;
Pa_Terminate();
| }
22 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

11

Modular Audio Processing

Unit generators

Graph evaluation
Evaluation mechanisms
Block-based processing
Vector allocation strategies

Variations
23 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Unit Generators

A sample generating or processing function, and its
accompanying state. e.g. Oscillators, filters, etc.
A functional view:
f(state, inputs) > (state, outputs)
An OOP view:
Class Ugen{ virtual Update(float*] ins, float *[] outs); }
In a dynamic system, the flow
between units is explicitly
represented by a
“synchronous dataflow graph”

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

12

Graph Evaluation

Generators which produce signals must be evaluated before the
generators which consume those signals®, therefore: execute in
a depth-first order starting from sinks. (1) (2)

Note: depth-first implies sinks are (4)
the /ast to evaluate in any graph
traversal. (3) (5)

(6)
*Why?
*Or else, outputs from generator will not be considered until the next “pass”,

introducing a one-block delay, or even worse, if outputs go to reusable
memory buffers, output could be overwritten.

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

26

Evaluation Mechanisms

Direct graph traversal (using topological sort
algorithm)

Simple, dynamic

Can't modify the graph while evaluating

1 2
(1) () 4

(3) (5)

(6)

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

13

Topological Sort

class Ugen
var block num
var inputs

def update (new_block num)
if new_block_num > block_ num
for input in inputs
input.update (new_block num)
really update() // virtual method
block_num = block_num + 1

Question: Why not just ask each block to update/compute its
ancestors before running its own update/compute method
instead of messing with block numbers and “if’ tests?

27 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Evaluation Mechanisms (2)

Execution sequence (list of function pointers,

polymorphic object pointers, bytecodes)
Possibly more efficient, harder to modify
Decouples evaluation from traversal. Graph

can be modified during traversal; later
sequence/program must be computed again.

Essentially the same topological sort algorithm
is used, but traversal order is stored as a
sequence or program.

28

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

14

Block-Based Processing

Process arrays of input samples and produces arrays
of output samples

Pros: more efficient (common subexpressions,
register loads, indexing, cache line prefetching, loop
unrolling, SIMD etc)

Cons: latency, feedback loops incur blocksize delay

Vector size:
fixed (c.f. Csound k-rate, Aura)
Variable with upper bound

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Variable Block Size

Rarely used, but this is a good topic to test your understanding of unit
generator implementation

Imagine fixed block size of N and every UG has an inner sample
computation loop that runs N times; samples are written to output arrays
that hold N samples.

Now imagine that N is a variable. If the next “event” — some parameter
update — is scheduled 5 samples after the start time of the next block, we
set N to 5 and all the UGs compute 5 samples. (Remember that all
computation is synchronous, so all UGs have the same number of input
and output samples.)

After running all the UGs, we get 5 samples of output, do the event/
update, and then compute the next value of N.

We limit N to an upper bound to avoid reallocating buffers of memory that
hold samples. These stay at some fixed size N_MAX.

Main drawback: closely spaced events/updates impact efficiency, so
performance is less predictable.

30

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Buffer Allocation Strategies

1) One buffer/vector per generated signal, i.e. for
every Unit Generator output.
2) Reuse buffers once all sinks have consumed them
(c.f. Graph coloring register allocation)
Dannenberg’s measurements indicate this is wasted
effort

Buffers are relatively small

Cache is relatively big

DSP is relatively expensive compared to (relatively

few) cache faults
//A So speedup from buffer reuse (2) is insignificant

31 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Feedback

Don't visit a node more than once during
graph traversal

Save output from previous evaluation pass so
it can be consumed during next evaluation

7

32 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

16

Variations on Block-Based
Processing

Hierarchical block sizes e.g. process subgraphs with
smaller blocks to reduce feedback delay
Synchronous multi-rate: separate evaluation phases

using the same or different graphs (e.g. Csound
krate/arate passes).

Or support signals with one sample per block time:
“Block-rate” UGs have no inner loop and support a
sample rate of

BLOCK_SR = AUDIO_SR/BLOCKSIZE.

Combine synchronous dataflow graph for audio with
asynchronous message processing for control (e.g.
Max/MSP)

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

33

Audio Plug-Ins

A plug-in is a software object that can extend
the functionality of an audio application, e.g.
an editor, player, or software synthesizer.

Effectively a plug-in is a unit generator:
audio inputs
audio outputs
parametric controls

Plug-ins are
dynamically loadable and
self-describing

34

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

35

VST Plug-Ins

Proprietary spec: Steinberg
Commonly used and widely supported
Multiplatform:
Windows (a multithreaded DLL)
Mac OS-X (a bundle)
Linux (sort-of)
Uses WINE (Windows emulation)
Kjetil Matheussen's original ,
The <! project from Paul Davis and Torben Hohn,
Chris Cannam's wrapper plugin

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

36

Example VST GUI

DBEHDNVH[UQ[Rnalog i
81 Synthesis

OSCILLATORS

® ENV

o
WM Mode: (D © Man
* LFO

jack_fst running the Oberon VSTi synth

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

18

VST Conventions

Host calls plug-in, sets up input buffers and
controls buffer size and when processing is
performed

process(): must be implemented, output is
added to the output buffer

processReplacing(): optional, output
overwrites data in output buffer

Parameters range: 0.0 to 1.0 (32-bit float)
Audio samples: -1.0 to +1.0 (32-bit float)

37

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Example Code

AGain: :AGain (audioMasterCallback audioMaster)
: AudioEffectX (audioMaster, 1, 1) //1 program, 1 parameter only
{ £Gain = 1.; //defaultto 0 dB
setNumInputs (2); // stereoin
setNumOutputs (2) ; // stereo out
setUniqueID('Gain') ; //identify
canMono () ; // makes sense to feed both inputs the same signal
canProcessReplacing () ; // supports both accumulating and replacing
strcpy (programName, "Default"); // default program name

}

AGain::~AGain() { } // nothing to do here

‘AV\\ void AGain: :setProgramName (char *name)
. { strcpy(programName, name) ;

void AGain::getProgramName (char *name)
{ strcpy (name, programName) ;
}

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

38

Example Code (2)

void AGain::setParameter (long index, float value)
{ fGain = value;

}

float AGain::getParameter (long index)
{ return fGain;

}

void AGain::getParameterName (long index, char *label)
{ strcpy(label, "Gain"); // default max string length is 24 (!)
}

void AGain::getParameterDisplay (long index, char *text)
{ dB2string(fGain, text);
}

void AGain::getParameterLabel (long index, char *label)
{ strcpy (label, "dB");

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

VS
%

Example Code (3)

bool AGain::getEffectName (char* name)
{ strcpy(name, "Gain");
return true;

}

bool AGain::getProductString(char* text)
{ strcpy(text, "Gain");
return true;

}

bool AGain::getVendorString(char* text)
{ strcpy(text, "Steinberg Media Technologies") ;
return true;

}

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

20

Example Code (4)

void AGain: :process (float **inputs, float **outputs,

{
float
float
float
float

while

{

long sampleFrames)

*inl = inputs[0];
*in2 = inputs[l];
*outl = outputs[0];
*out2 = outputs[l];

(--sampleFrames >= 0)

(*outl++) += (*inl++) * fGain;
(*out2++) += (*in2++) * fGain;

Carnegie Mellon University

// accumulating

(© 2019 by Roger B. Dannenberg

Example Code (5)

void AGain: :processReplacing(float **inputs, float **outputs,
long sampleFrames)

{

float *inl = inputs[0];

float *in2 = inputs[1l];

float *outl = outputs[0];

float *out2 = outputs[l];

while (--sampleFrames >= 0)

{
(*outl++) = (*inl++) * fGain;
(*out2++) = (*in2++) * fGain;

Carnegie Mellon University

// replacing

(© 2019 by Roger B. Dannenberg

21

VST on the Host Side

typedef AEffect *(*mainCall) (audioMasterCallback cb) ;

auslio!.aasterc‘?llback aud::l.oMaster; .)-/ Assume host loaded

void instanciatePlug(mainCall plugsMain luai d has it .

{ AEffect *ce = plugsMain (&audioMaster) ; plugin an as its main
if (ce && ce->magic == AEffectMagic) { }

—————— the main() routine in the plugin (DLL): -------
AEffect *main(audioMasterCallback audioMaster)
{ /I check for the correct version of VST
if ('audioMaster (0,audioMasterVersion,0,0,0,0)) return 0;
ADelay* effect = new ADelay (audioMaster) ; // Create the AudioEffect
if ('effect) return O0;
if (oome) { // Check if no problem in constructor of AGain
delete effect;
return 0;
}
return effect->getAeffect(); //return C interface of our plug-in

43 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

More VST

Program = full set of parameters
Bank = set of programs (user can call up preset)
Interactive Interfaces
Host can construct editor based on text:
Parameter name, display, label — “Gain: -6 dB”
Plug-In can open a window and make a GUI
Plug-In can use VSTGUI library to make a cross-

\ platform GUI
7 | = VSTi - plug-in instruments (synthesizers)
/,,,‘ Plug-In has API for receiving MIDI events
o Carnegie Mellon University (© 2019 by Roger B. Dannenberg

22

LADSPA — Linux Audio Developers’
Simple Plugin Architecture

the plugin library is loaded (using a system-specific method like
dlopen or for glib, gtk+ users, g_module_open).

the plugin descriptor is obtained using the plugin library's
ladspa_descriptor function, which may allocate memory.

the host uses the plugin's instantiate function to allocate a new
(or several new) sample-processing instances.

the host must connect buffers to every one of the plugin's ports.
Itlmqst also call activate before running samples through the
plugin.

the host processes sample data with the plugin by filling the
input buffers it connected, then calling either run or run_adding.
The host may reconnect ports with connect_port as it sees fit.
the host deactivates the plugin handle. It may opt to activate and
reuse the handle, or it may destroy the handle.

the handle is destroyed using the cleanup function.

the plugin is closed. Its _fini function is responsible for
deallocating memory.

45 Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Summary

Audio samples, frames, blocks
Synchronous processing:

Never skip or duplicate samples

Buffers are essential

Latency comes (mostly) from buffer length
PortAudio

Host API

Device

Stream

46

Carnegie Mellon University (© 2019 by Roger B. Dannenberg

Summary (2)

Modular Audio Processing
Unit Generator
Networks of Unit Generators
Synchronous Dataflow
Plug-ins
VST example
Unit Generator that is...
Dynamically loadable
Self-describing
May have its own graphical interface

Carnegie Mellon University

(© 2019 by Roger B. Dannenberg

24

