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Introduction 

n Why concurrency? 
n Concurrency problems 
n Synchronization 
n More Problems 
n  Lock-free synchronization 
n Aura Example 
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What Is Concurrency? 

Process 

Stack 

Program 
Counter 

Registers 

Process 

Stack 

Program 
Counter 

Registers 

(Virtual) Memory: Address Space 
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Concurrent Execution 

n  With a single CPU,  
n  each process runs for awhile 
n  processes switch at distinct time points 
n  …but… 
n  switch can happen at any time 
n  on any instruction boundary 

n  We must assume any ordering of instructions is 
possible 

n  With multiple CPUs, 
n  Atomic memory operations (read & write) 
n  ...but... 
n  Memory reads and writes are not in instruction order 
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Concurrent and Parallel 

n Concurrent means multiple processes (or 
threads) that either  
n  Run in an interleaved fashion, or 
n  Run on multiple processors (or cores) 

n Parallel means the latter: running on multiple 
processors (or cores) 
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Non-Reasons for Concurrency 

n Multiple tasks 
n … but tasks can be interleaved in a single 

threaded program  
n  Example: our discrete event simulations 

n  I have to pause task 1 and let others proceed 
n … but you can break up task 1 into multiple 

code blocks and run them separately 
n … or you can use active objects to retain state 
n … or you can use co-routines (not quite a 

process because there’s no preemption; aka 
cooperative multitasking) 
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More Non-Reasons for 
Concurrency 

n  I need to block on I/O devices without 
blocking other tasks 
n … but you can use asynchronous I/O 

(sometimes) 
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Reasons for Concurrency 

n  Fault-tolerance: isolate programs so that bugs do 
not bring down entire system 

n  Time-sharing:  
n  prevent any program from taking control of the 

computer system 
n  allow multiple programs to run without any designed-in 

cooperative behavior 
n  Software Architecture 

n  make programs easier to build and understand 
n  Low latency/fast response: 

n  … by preempting a slow process 
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Concurrency Problems 

insert(list_node** list, 
       item) 
  node = new(list_node) 
  node->value = item 
  node->next = *list 
  *list = node 

 
node = new(list_node) 
node->value = item 
 node = new(list_node) 
 node->value = item 
node->next = *list 
 node->next = *list 
*list = node 
 *list = node 
 

*list 

list 

… 

item 

item 
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Another Example 

def withdraw(m) 
  balance = balance – m 
 
 
load r1, balance 
load r2, m 
sub r1, r2 
store balance, r1 

 
 load r1, balance=100 
 load r2, m=75 
 sub r1=100, r2=75 
load r1, balance=100 
load r2, m=60 
sub r1=100, r2=60 
store balance, r1=40 
 store balance, r1=25 
 

So balance == 25! 
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Yet Another Example 

Parameter Update: 
  (lowpass filter) 
 
lp_set_cutoff(hz): 
  b=2.0-cos(hz*PI2/sr) 
  c2=b-sqrt((b^2)-1) 
  c1=1-c2 

 
  b=2.0-cos(hz*PI2/sr) 
  c2=b-sqrt((b^2)-1) 
b=2.0-cos(hz*PI2/sr) 
 
(maybe the filter runs here in a 

third thread!) 
 
c2=b-sqrt((b^2)-1) 
c1=1-c2 
  c1=1-c2 

 
This c2 is in a CPU register. 
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Atomicity and Critical Sections 

n We say that a set of operations is “atomic” if 
no other operations can be interleaved or 
concurrent. 

n Some machine steps are always atomic, e.g. 
n  Loading a memory word to a register 
n  Storing a memory word from a register 

n A set of operations that must be atomic for 
correctness is called a “critical section” 
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Critical Sections Can Be 
Implemented with Locks 
insert(list_node**list, 
       item) 
  LOCK(list_lock) 
  node = new(list_node) 
  node->value = item 
  node->next = *list 
  *list = node 
  UNLOCK(list_lock) 

LOCK(list_lock) 
node = new(list_node) 
node->value = item 
 LOCK(list_lock) 
node->next = *list 
*list = node 
UNLOCK(list_lock) 
 node = new(list_node) 
 node->value = item 
 node->next = *list 
 *list = node 
 UNLOCK(list_lock) 
 

Blocked 
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Another Example 

def withdraw(m) 
  LOCK(account) 
  balance = balance – m 
  UNLOCK(account) 
 
call LOCK(account) 
load r1, balance 
load r2, m 
sub r1, r2 
store balance, r1 
call UNLOCK(account) 

 call LOCK(account) 
 load r1, balance=100 
 load r2, m=75 
 sub r1=100, r2=75 
call LOCK(account) 
 store balance, r1=25 
 call UNLOCK(account) 
load r1, balance=25 
load r2, m=60 
sub r1=25, r2=60 
store balance, r1=-35 
call UNLOCK(account) 
 

So balance == -35! 

Blocked 
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Yet Another Example 

Parameter Update: 
  (lowpass filter) 
 
lp_set_cutoff(hz): 
  LOCK(filter_lock) 
  b=2.0-cos(hz*PI2/sr) 
  c2=b-sqrt((b^2)-1) 
  c1=1-c2 
  UNLOCK(filter_lock) 

  LOCK(filter_lock) 
  b=2.0-cos(hz*PI2/sr) 
  c2=b-sqrt((b^2)-1) 
LOCK(filter_lock) 
  c1=1-c2 
  UNLOCK(filter_lock) 
b=2.0-cos(hz*PI2/sr) 
 
(maybe the filter tries to run here in 

a third thread!) 
 
c2=b-sqrt((b^2)-1) 
c1=1-c2 
UNLOCK(filter_lock) 
 

Blocked 
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Synchronized Communication 
Is a Standard Problem 
n Process1 puts tasks in a queue for Process2 
n What should Process2 do when queue is 

empty? 

Process1 Process2 Queue 

loop 
  generate data 
  queue.insert(data) 

loop 
  data=queue.remove() 
  if data 
    process data 

Busy 
Wait 

else sleep(1) 
Adds 
Latency 
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Events and Signals Are the 
Standard Alternative to Polling 

n Event object 
n  States: signaled, nonsignaled 
n  Operations: SetEvent, WaitEvent 

n SetEvent: sets state of Event to signaled 
n WaitEvent:  

n  block until state is signaled, then atomically: 
n  [unblock caller and set state to nonsignaled] 
n  Only one blocked thread is released per 

SetEvent 
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Event/Signal Example 

Process1 Process2 Queue 

loop 
  generate data 
  queue.insert(data) 
  SetEvent(qevt) 

loop 
  data=queue.remove() 
  if data 
    process data 

else WaitEvent(qevt) Proof by contradiction: 
  assume queue non-empty and waiting forever 
  in order to be waiting, queue was empty 
  after queue was empty, it became non-empty 
  but after an insert, Process1 calls SetEvent 
  so Process2 will proceed from WaitEvent. 

Note many hidden assumptions: 
no other processes,  
strict execution order,  
queue access primitives atomic 
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Semaphores Are Another Approach 
to Many Synchronization Problems 

n  Similar to Event objects, but 
n  State is an integer 
n  Signal (V) increments integer (atomically) 
n  Wait (P) blocks until state > 0, then 

n  [decrements integer, unblock caller] atomically 

n  If initialized to 1, LOCK = P(s), UNLOCK = V(s) 

n  Useful for queues, allowing n processes to share a 
resource, pools of n resources 
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Semaphore Example 

Process1 Process2 Queue 

Initially, qsem == 0 
 
loop 
  generate data 
  queue.insert(data) 
  V(qsem) 

loop 
  P(qsem) 
  data=queue.remove() 
  process data 

Note that we still need mutual 
exclusion on queue access. 
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Readers and Writers Problem 

n A classic concurrency problem: 
n  Only one process can write at a time 
n  Any number of processes can read 

concurrently 
n  Why would you want this? 

n We won’t take time to present the solution 
n See any OS textbook or the web 
n You should recognize the problem when you 

see it 
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Fairness and Starvation 

n  If many threads wait on a lock, a process may 
never wake up – starvation 

n You can wait in a FIFO queue 
n You can wake up a random process 
n Maybe the process waiting the longest should 

get the lock next – this is a fairness 
consideration. 

n Fairness requirements can make analysis 
even more difficult 
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Deadlock Is Another Potential 
Problem in Concurrent Programs 
LOCK(a) 
LOCK(b) 
work with a and b 
UNLOCK(b) 
UNLOCK(a) 

LOCK(b) 
LOCK(a) 
work with a and b 
UNLOCK(a) 
UNLOCK(b) 

OOPS! OOPS! 
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Monitors Are an Attempt to Create More Intuitive, 
High-Level Abstractions for Concurrency 

n Roughly speaking, an object that allows at 
most one process to execute any method is 
called a Monitor 

n Nice abstraction: methods become atomic 
operations 

n  Java uses synchronized keyword to require 
object to be locked before executing the 
method 
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Monitor Example 

class Queue { 
    synchronized void enqueue(Item *item); 
    synchronized Item *dequeue(); 
}; 
 
Calling q.enqueue(item) effectively does this: 

 lock(q.lock); 
q.enqueue(item);  
unlock(q.lock); 

 
Monitors have additional features to block and wake up  

(what happens in dequeue() when queue is empty?) 

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 26 

Nested Monitor Calls Require 
Great Care 

n Problem: 
n  Monitor A calls method in Monitor B 
n  Monitor B calls a different method in Monitor A 
n  DEADLOCK! 
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Real-Time Issues: Priority 

n Recall that within single applications, the only 
essential reason for concurrency is to reduce 
latency 

n We want to preempt long-running tasks to 
meet deadlines 

n Two popular methods: 
n  Deadline Scheduling 
n  Fixed-priority Scheduling 
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Deadline Scheduling Is Optimal, But 
Failure Mode Can Be Arbitrarily Bad 
n  Every task has a deadline 
n  Run the task with the nearest deadline first 
n  Optimal, if all deadlines can be met 
n  But it could force you to miss all deadlines 
n  Another problem: what’s a deadline? 

n  Maybe easy when controlling hardware 
n  For audio computation, deadline is when the output 

buffer runs out of samples 
n  Difficult to say when controlling music processes 

n  Effectively, our class project schedulers are deadline 
schedulers because they sort events by their ideal 
execution times and run them in that order. 
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Fixed Priority Is Commonly 
Available and Very Usable 
n  Each process has a fixed priority 
n  Run the highest priority process that is ready to run 
n  Often implemented in OS’s 
n  Often used for periodic tasks of various periods 

n  If the tasks are schedulable 
n  In this case, called rate-monotonic scheduling 

n  Fairly easy mapping to music tasks: 
n  Audio computation gets highest priority 
n  (MIDI) control gets medium priority 
n  Graphical user interface gets low priority 
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Priority Inversion Can Lead to 
Disasters 
n Static priority scheduling and synchronization 

primitives can have catastrophic interactions 
 low priority lock(L) 

med priority 

high priority 
lock(L) 

unlock(L) 

unlock(L) 

Priority Inversion 
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Solving the Priority Inversion Problem 

n Priority Ceiling: when you acquire a lock, 
raise your priority to the highest priority of any 
other process that might acquire the lock 

n Priority Inheritance: make the priority of the 
lock holder greater than or equal to the 
priority of any process waiting on the lock 

n Probably cannot depend on OS solving this 
problem for you unless you control the OS 
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Priority Inversion Solved 

 
low priority lock(L) 

med priority 

high priority 
lock(L) 

unlock(L) 

unlock(L) 

Priority Inversion 

Priority raised to ceiling 
 or inherited from  
high priority thread 

unlock(L) 
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Lock-Free Synchronization 

n Priority inversion problem can make available 
synchronization primitives unusable for 
(reliable) real-time applications 

n Alternative: synchronization without locks 
n Simplest example: Atomic memory writes 

n  you can share a 32-bit value and assume 
reads/writes are atomic 

n  Writer can update value asynchronously 
n  Reader always gets an (almost) up-to-date 

value 
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Lock-Free Queue 

Tail 

Head 
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Single CPU, Single-Reader, 
Single-Writer Queue 
hd = 0 
tl = 0 
q = array(N) 
def insert(x) 
  if tl < hd + N 
    q[tl%N] = x 
    tl = tl + 1 
def remove() 
  if hd < tl 
    var x = q[hd%N] 
    hd = hd + 1 
    return x 
  else 
    return EMPTY 

n  Note that the order of instructions is critical 
n  Must store value before incrementing tl 
n  Must retrieve value before incrementing hd 
n  Compilers may cause problems: see 
“volatile” attribute in C compiler 

n  There are versions without “%” operation, 
e.g. (hd & mask). 

n  There are versions without unbounded hd 
and tl (otherwise this approach would be 
pretty useless) 

hd tl 

hd tl 

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 36 

Why did we specify “Single 
CPU” for the Queue Example? 
n  Multiprocessors rely on 

multi-level cache 
n  What happens when 

there are multiple reads 
and writes to the same 
address? 

n  Modern systems 
increasingly allow 
reordering of memory 
reads and writes(!) primary memory 

secondary 
cache 

cache 

secondary 
cache 

cache cache cache 

CPU  CPU CPU CPU 
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What Can Go Wrong? 

hd = 0 
tl = 0 
q = array(N) 
def insert(x) 
  if tl < hd + N 
    q[tl%N] = x 
    tl = tl + 1 
def remove() 
  if hd < tl 
    var x = q[hd%N] 
    hd = hd + 1 
    return x 
  else 
    return EMPTY 

Out of order writes cause 
problem: 

 store 
 read 
 read (the wrong value!) 
 store 

 
 
This used to be only :-) a 
problem of 
preventing the optimizing 
compiler from reordering 
assignments, but now 
write reordering happens in 
hardware. 
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A Multiple-CPU, Single Reader, 
Single Writer FIFO Queue 

n  Communication through “handshaking”: 

 

n  Slight change: send non-zero value: 

Process 1: 
  while true: 

  if not flag 
     flag = true 

Process 2: 
  while true: 

  if flag 
     flag = false 

var buf = 0 
def send(x): 
  while buf != 0: 

  nil 
buf = x 

def receive(): 
  while true 
    var r = buf 
    if r != 0 
        buf = 0 
        return r 
       

Processes synchronize in setting flag to true/false.  
Depends only on atomic memory reads/writes. 
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Light Pipe Algorithm - 
Alexander Dokumentov 

n Expand buf to be a circular buffer: 
var buf = array(N) 
initialize buf to zero 
var i = 0 
def send(x): 
  while buf[i] != 0: 

  nil 
buf[i] = x 
i = (i + 1) % N 

var j = 0 
def receive(): 
  while buf[j] == 0: 

  nil 
var result = buf[j] 
Buf[j] = 0 
j = (j + 1) % N 
return result 
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Light Pipe Algorithm (2) 

n  What about zero values? 
n  Encode M words with zeros as M+1 words: 

Reference: http://www.ddj.com/dept/cpp/189401457 



21 

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 41 

Other Lock-Free Algorithms 

n  Some based on CAS 
(Compare-and-Swap) 
 
bool cas(a, e, n) { 
    atomically {  
        if (*a == e) { 
            *a = n; 
            return true; 
        }else 
            return false; 
    } 
} 
 

n  Examples of Lock-Free Algs: 
n  FIFO queue 
n  Freelist 

n  “The difficulty of achieving lock-free 
64-bit-clean implementations of such 
mundane data structures strongly 
suggests that improved hardware 
support is necessary before practical 
lock-free data structures will be widely 
available.” 

n  Simon Doherty, Maurice Herlihy, V. 
Luchangco and M. Moir. Bringing 
practical lock-free synchronization to 
64-bit applications. Twenty-Third 
Annual Symposium on Principles of 
Distributed Computing (PODC).31-39. 
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Memory Consistency and Future 
Processors 

n  Memory Barrier Instruction and WriteMB 
n  The MB instruction can be used to maintain program 

order from any memory operations before the MB to 
any memory operations after the MB. 

n  See S. V. Adve and K. Gharachorloo, "Shared 
memory consistency models: A tutorial," in Technical 
Report WRL-TR 95/7, Digital Western Research 
Laboratory, September, 1995.  
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Blocking vs. Polling 

n  Lock-free synchronization does not allow 
processes to block 

n Standard solution is polling 
n  Wake up every 1ms or so, 
n  Do whatever work there is to be done 
n  Go to sleep (here’s where blocking takes 

place) for 1ms or so 
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Periodically “Waking Up” 

n Use an OS call to sleep 
n Use an OS blocking call with a timeout 
n Block waiting for audio input (wake up every 

32 or 64 samples) 
n Use a timer facility like Window MM system 

timer that calls a function periodically 
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Is Polling Bad? 

n  Waste of CPU time when nothing to do. 
n  But CPU load can be low: 1 to 5% 
n  In dedicated systems, there’s no cost (well maybe power) 

n  Context switches are expensive 
n  But if there’s work to do, you’re going to context switch 

anyway 
n  Synchronization primitives are expensive too 

n  Latency: code doesn't run immediately after data available 
n  But if polling frequency is high enough, latency is negligible 
n  Real time systems care about being fast enough, not being 

as fast as possible. 
n  Polling is more efficient as load increases, so polling can 

actually be better from a real-time perspective (real time 
systems care about the worst case, not the average case). 
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Example: Aura Architecture 

n Goal 1: General platform for interactive 
multimedia 

n Goal 2: Open-ended, extensible for video, 
graphics, networking, software systems. 

n Based on Real-Time Distributed Object 
System 

n Objects have globally-unique 96-bit names 
n Asynchronous messages 
n  Location independent 
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Communication with Aura 

n Remote Method Invocation 
n  send_set_hz_to(osc, 440.0) 
n  Automatically generated macros to send 

messages 
n  Receiver is indicated by globally unique ID 

n  Location Transparency 
n  Object in same thread – synchronous call 
n  Object in same address space – msg queue 
n  Object on remote machine – TCP/IP to msg 

queue 
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Messages and  
Location Transparency 

Machine 1 Machine 2 

Zone 1 

Zone 2 

Obj1 Obj2 

Obj3 

Zone 1 

Zone 2 

Obj4 

Obj5 

A 

B C 
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Aura Details 

n Each Zone (thread + memory + scheduler): 
n  Memory pool and real-time allocator 
n  Calendar Queue-based scheduler 
n  Time (seconds) based on audio sample count 

n Pre-processor generates: 
n   RPC message handlers 
n  Stubs to pack parameters into msgs and send 
n  Macros to make them easy to call 

n Structure by latency, not function 
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Message Passing Details 
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Zone Processing Loop 

n  Every zone runs periodically 
n  Messages are blocks of memory: 

n  [bytecount, timestamp, object-ID, method, arglist] 
n  Poll: 

n  Dispatch any scheduled messages 
n  Check each incoming queue for messages 

n  Either dispatch immediately (no copy), or 
n  Allocate memory, copy, and schedule future msg 

n  Actions can send and schedule new messages 
n  No blocking except:  

n  Audio thread does blocking I/O (32 samples = 0.7ms) 
n  Midi thread sleeps 1ms when nothing to do 
n  Graphics thread run by GUI, uses periodic callback 
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Aura Objects 

zones 
Free Memory 

Per-zone Real-Time  
Memory Allocator 
 

next 
AuraID 

next 
AuraID 

pointers to  
message queues 

8 
16 
24 
32 
40 
48 
… 

hash table 

scheduler 
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Aura ID 

n  96-bit globally unique identifier (48 low-order 
bits of two 64-bit words) 

Local Object ID 
Zone # 

Address Space # Creating Address Space # 

Creating Zone # 

48-bit “serial” number 
from creating zone 
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Sending a Message 

if space(msg.dest) == my_space_id 
    if zone(msg.dest) == my_zone_id 
        if msg.timestamp >= NOW 
            obj = zone[my_zone_id].lookup(msg.dest) 
            obj->msg_handler(msg) 
        else 
            zone[my_zone_id].schedule( 
                              msg.timestamp, msg) 
    else 
        zone[my_zone_id].queue[zone(msg.dest)]. 
                         enqueue(msg) 
else 
    space_proxy[space(msg.dest)]->send(msg) 
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Summary 

n  Concurrency: good reasons and bad reasons 
n  In real-time systems, preemption->low-latency 
n  Atomic actions and Critical sections 
n  Synchronization primitives:  

n  locks, events, semaphores, monitors 
n  The dark side: 

n  Starvation, Deadlock, Priority Inversion 
n  Lock-free structures 
n  Polling vs Blocking 
n  Aura 


