
1

Week 10 – Concurrency

Roger B. Dannenberg
Professor of Computer Science, Art, and Music
Carnegie Mellon University

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 2

Introduction

n Why concurrency?
n Concurrency problems
n Synchronization
n More Problems
n  Lock-free synchronization
n Aura Example

2

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 3

What Is Concurrency?

Process

Stack

Program
Counter

Registers

Process

Stack

Program
Counter

Registers

(Virtual) Memory: Address Space

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 4

Concurrent Execution

n  With a single CPU,
n  each process runs for awhile
n  processes switch at distinct time points
n  …but…
n  switch can happen at any time
n  on any instruction boundary

n  We must assume any ordering of instructions is
possible

n  With multiple CPUs,
n  Atomic memory operations (read & write)
n  ...but...
n  Memory reads and writes are not in instruction order

3

Carnegie Mellon University

Concurrent and Parallel

n Concurrent means multiple processes (or
threads) that either
n  Run in an interleaved fashion, or
n  Run on multiple processors (or cores)

n Parallel means the latter: running on multiple
processors (or cores)

Copyright 2019 by Roger B. Dannenberg 5

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 6

Non-Reasons for Concurrency

n Multiple tasks
n … but tasks can be interleaved in a single

threaded program
n  Example: our discrete event simulations

n  I have to pause task 1 and let others proceed
n … but you can break up task 1 into multiple

code blocks and run them separately
n … or you can use active objects to retain state
n … or you can use co-routines (not quite a

process because there’s no preemption; aka
cooperative multitasking)

4

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 7

More Non-Reasons for
Concurrency

n  I need to block on I/O devices without
blocking other tasks
n … but you can use asynchronous I/O

(sometimes)

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 8

Reasons for Concurrency

n  Fault-tolerance: isolate programs so that bugs do
not bring down entire system

n  Time-sharing:
n  prevent any program from taking control of the

computer system
n  allow multiple programs to run without any designed-in

cooperative behavior
n  Software Architecture

n  make programs easier to build and understand
n  Low latency/fast response:

n  … by preempting a slow process

5

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 9

Concurrency Problems

insert(list_node** list,
 item)
 node = new(list_node)
 node->value = item
 node->next = *list
 *list = node

node = new(list_node)
node->value = item
 node = new(list_node)
 node->value = item
node->next = *list
 node->next = *list
*list = node
 *list = node

*list

list

…

item

item

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 10

Another Example

def withdraw(m)
 balance = balance – m

load r1, balance
load r2, m
sub r1, r2
store balance, r1

 load r1, balance=100
 load r2, m=75
 sub r1=100, r2=75
load r1, balance=100
load r2, m=60
sub r1=100, r2=60
store balance, r1=40
 store balance, r1=25

So balance == 25!

6

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 11

Yet Another Example

Parameter Update:
 (lowpass filter)

lp_set_cutoff(hz):
 b=2.0-cos(hz*PI2/sr)
 c2=b-sqrt((b^2)-1)
 c1=1-c2

 b=2.0-cos(hz*PI2/sr)
 c2=b-sqrt((b^2)-1)
b=2.0-cos(hz*PI2/sr)

(maybe the filter runs here in a

third thread!)

c2=b-sqrt((b^2)-1)
c1=1-c2
 c1=1-c2

This c2 is in a CPU register.

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 12

Atomicity and Critical Sections

n We say that a set of operations is “atomic” if
no other operations can be interleaved or
concurrent.

n Some machine steps are always atomic, e.g.
n  Loading a memory word to a register
n  Storing a memory word from a register

n A set of operations that must be atomic for
correctness is called a “critical section”

7

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 13

Critical Sections Can Be
Implemented with Locks
insert(list_node**list,
 item)
 LOCK(list_lock)
 node = new(list_node)
 node->value = item
 node->next = *list
 *list = node
 UNLOCK(list_lock)

LOCK(list_lock)
node = new(list_node)
node->value = item
 LOCK(list_lock)
node->next = *list
*list = node
UNLOCK(list_lock)
 node = new(list_node)
 node->value = item
 node->next = *list
 *list = node
 UNLOCK(list_lock)

Blocked

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 14

Another Example

def withdraw(m)
 LOCK(account)
 balance = balance – m
 UNLOCK(account)

call LOCK(account)
load r1, balance
load r2, m
sub r1, r2
store balance, r1
call UNLOCK(account)

 call LOCK(account)
 load r1, balance=100
 load r2, m=75
 sub r1=100, r2=75
call LOCK(account)
 store balance, r1=25
 call UNLOCK(account)
load r1, balance=25
load r2, m=60
sub r1=25, r2=60
store balance, r1=-35
call UNLOCK(account)

So balance == -35!

Blocked

8

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 15

Yet Another Example

Parameter Update:
 (lowpass filter)

lp_set_cutoff(hz):
 LOCK(filter_lock)
 b=2.0-cos(hz*PI2/sr)
 c2=b-sqrt((b^2)-1)
 c1=1-c2
 UNLOCK(filter_lock)

 LOCK(filter_lock)
 b=2.0-cos(hz*PI2/sr)
 c2=b-sqrt((b^2)-1)
LOCK(filter_lock)
 c1=1-c2
 UNLOCK(filter_lock)
b=2.0-cos(hz*PI2/sr)

(maybe the filter tries to run here in

a third thread!)

c2=b-sqrt((b^2)-1)
c1=1-c2
UNLOCK(filter_lock)

Blocked

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 16

Synchronized Communication
Is a Standard Problem
n Process1 puts tasks in a queue for Process2
n What should Process2 do when queue is

empty?

Process1 Process2 Queue

loop
 generate data
 queue.insert(data)

loop
 data=queue.remove()
 if data
 process data

Busy
Wait

else sleep(1)
Adds
Latency

9

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 17

Events and Signals Are the
Standard Alternative to Polling

n Event object
n  States: signaled, nonsignaled
n  Operations: SetEvent, WaitEvent

n SetEvent: sets state of Event to signaled
n WaitEvent:

n  block until state is signaled, then atomically:
n  [unblock caller and set state to nonsignaled]
n  Only one blocked thread is released per

SetEvent

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 18

Event/Signal Example

Process1 Process2 Queue

loop
 generate data
 queue.insert(data)
 SetEvent(qevt)

loop
 data=queue.remove()
 if data
 process data

else WaitEvent(qevt) Proof by contradiction:
 assume queue non-empty and waiting forever
 in order to be waiting, queue was empty
 after queue was empty, it became non-empty
 but after an insert, Process1 calls SetEvent
 so Process2 will proceed from WaitEvent.

Note many hidden assumptions:
no other processes,
strict execution order,
queue access primitives atomic

10

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 19

Semaphores Are Another Approach
to Many Synchronization Problems

n  Similar to Event objects, but
n  State is an integer
n  Signal (V) increments integer (atomically)
n  Wait (P) blocks until state > 0, then

n  [decrements integer, unblock caller] atomically

n  If initialized to 1, LOCK = P(s), UNLOCK = V(s)

n  Useful for queues, allowing n processes to share a
resource, pools of n resources

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 20

Semaphore Example

Process1 Process2 Queue

Initially, qsem == 0

loop
 generate data
 queue.insert(data)
 V(qsem)

loop
 P(qsem)
 data=queue.remove()
 process data

Note that we still need mutual
exclusion on queue access.

11

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 21

Readers and Writers Problem

n A classic concurrency problem:
n  Only one process can write at a time
n  Any number of processes can read

concurrently
n  Why would you want this?

n We won’t take time to present the solution
n See any OS textbook or the web
n You should recognize the problem when you

see it

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 22

Fairness and Starvation

n  If many threads wait on a lock, a process may
never wake up – starvation

n You can wait in a FIFO queue
n You can wake up a random process
n Maybe the process waiting the longest should

get the lock next – this is a fairness
consideration.

n Fairness requirements can make analysis
even more difficult

12

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 23

Deadlock Is Another Potential
Problem in Concurrent Programs
LOCK(a)
LOCK(b)
work with a and b
UNLOCK(b)
UNLOCK(a)

LOCK(b)
LOCK(a)
work with a and b
UNLOCK(a)
UNLOCK(b)

OOPS! OOPS!

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 24

Monitors Are an Attempt to Create More Intuitive,
High-Level Abstractions for Concurrency

n Roughly speaking, an object that allows at
most one process to execute any method is
called a Monitor

n Nice abstraction: methods become atomic
operations

n  Java uses synchronized keyword to require
object to be locked before executing the
method

13

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 25

Monitor Example

class Queue {
 synchronized void enqueue(Item *item);
 synchronized Item *dequeue();
};

Calling q.enqueue(item) effectively does this:

 lock(q.lock);
q.enqueue(item);
unlock(q.lock);

Monitors have additional features to block and wake up

(what happens in dequeue() when queue is empty?)

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 26

Nested Monitor Calls Require
Great Care

n Problem:
n  Monitor A calls method in Monitor B
n  Monitor B calls a different method in Monitor A
n  DEADLOCK!

14

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 27

Real-Time Issues: Priority

n Recall that within single applications, the only
essential reason for concurrency is to reduce
latency

n We want to preempt long-running tasks to
meet deadlines

n Two popular methods:
n  Deadline Scheduling
n  Fixed-priority Scheduling

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 28

Deadline Scheduling Is Optimal, But
Failure Mode Can Be Arbitrarily Bad
n  Every task has a deadline
n  Run the task with the nearest deadline first
n  Optimal, if all deadlines can be met
n  But it could force you to miss all deadlines
n  Another problem: what’s a deadline?

n  Maybe easy when controlling hardware
n  For audio computation, deadline is when the output

buffer runs out of samples
n  Difficult to say when controlling music processes

n  Effectively, our class project schedulers are deadline
schedulers because they sort events by their ideal
execution times and run them in that order.

15

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 29

Fixed Priority Is Commonly
Available and Very Usable
n  Each process has a fixed priority
n  Run the highest priority process that is ready to run
n  Often implemented in OS’s
n  Often used for periodic tasks of various periods

n  If the tasks are schedulable
n  In this case, called rate-monotonic scheduling

n  Fairly easy mapping to music tasks:
n  Audio computation gets highest priority
n  (MIDI) control gets medium priority
n  Graphical user interface gets low priority

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 30

Priority Inversion Can Lead to
Disasters
n Static priority scheduling and synchronization

primitives can have catastrophic interactions
 low priority lock(L)

med priority

high priority
lock(L)

unlock(L)

unlock(L)

Priority Inversion

16

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 31

Solving the Priority Inversion Problem

n Priority Ceiling: when you acquire a lock,
raise your priority to the highest priority of any
other process that might acquire the lock

n Priority Inheritance: make the priority of the
lock holder greater than or equal to the
priority of any process waiting on the lock

n Probably cannot depend on OS solving this
problem for you unless you control the OS

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 32

Priority Inversion Solved

low priority lock(L)

med priority

high priority
lock(L)

unlock(L)

unlock(L)

Priority Inversion

Priority raised to ceiling
 or inherited from
high priority thread

unlock(L)

17

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 33

Lock-Free Synchronization

n Priority inversion problem can make available
synchronization primitives unusable for
(reliable) real-time applications

n Alternative: synchronization without locks
n Simplest example: Atomic memory writes

n  you can share a 32-bit value and assume
reads/writes are atomic

n  Writer can update value asynchronously
n  Reader always gets an (almost) up-to-date

value

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 34

Lock-Free Queue

Tail

Head

18

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 35

Single CPU, Single-Reader,
Single-Writer Queue
hd = 0
tl = 0
q = array(N)
def insert(x)
 if tl < hd + N
 q[tl%N] = x
 tl = tl + 1
def remove()
 if hd < tl
 var x = q[hd%N]
 hd = hd + 1
 return x
 else
 return EMPTY

n  Note that the order of instructions is critical
n  Must store value before incrementing tl
n  Must retrieve value before incrementing hd
n  Compilers may cause problems: see
“volatile” attribute in C compiler

n  There are versions without “%” operation,
e.g. (hd & mask).

n  There are versions without unbounded hd
and tl (otherwise this approach would be
pretty useless)

hd tl

hd tl

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 36

Why did we specify “Single
CPU” for the Queue Example?
n  Multiprocessors rely on

multi-level cache
n  What happens when

there are multiple reads
and writes to the same
address?

n  Modern systems
increasingly allow
reordering of memory
reads and writes(!) primary memory

secondary
cache

cache

secondary
cache

cache cache cache

CPU CPU CPU CPU

19

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 37

What Can Go Wrong?

hd = 0
tl = 0
q = array(N)
def insert(x)
 if tl < hd + N
 q[tl%N] = x
 tl = tl + 1
def remove()
 if hd < tl
 var x = q[hd%N]
 hd = hd + 1
 return x
 else
 return EMPTY

Out of order writes cause
problem:

 store
 read
 read (the wrong value!)
 store

This used to be only :-) a
problem of
preventing the optimizing
compiler from reordering
assignments, but now
write reordering happens in
hardware.

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 38

A Multiple-CPU, Single Reader,
Single Writer FIFO Queue

n  Communication through “handshaking”:

n  Slight change: send non-zero value:

Process 1:
 while true:

 if not flag
 flag = true

Process 2:
 while true:

 if flag
 flag = false

var buf = 0
def send(x):
 while buf != 0:

 nil
buf = x

def receive():
 while true
 var r = buf
 if r != 0
 buf = 0
 return r

Processes synchronize in setting flag to true/false.
Depends only on atomic memory reads/writes.

20

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 39

Light Pipe Algorithm -
Alexander Dokumentov

n Expand buf to be a circular buffer:
var buf = array(N)
initialize buf to zero
var i = 0
def send(x):
 while buf[i] != 0:

 nil
buf[i] = x
i = (i + 1) % N

var j = 0
def receive():
 while buf[j] == 0:

 nil
var result = buf[j]
Buf[j] = 0
j = (j + 1) % N
return result

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 40

Light Pipe Algorithm (2)

n  What about zero values?
n  Encode M words with zeros as M+1 words:

Reference: http://www.ddj.com/dept/cpp/189401457

21

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 41

Other Lock-Free Algorithms

n  Some based on CAS
(Compare-and-Swap)

bool cas(a, e, n) {
 atomically {
 if (*a == e) {
 *a = n;
 return true;
 }else
 return false;
 }
}

n  Examples of Lock-Free Algs:
n  FIFO queue
n  Freelist

n  “The difficulty of achieving lock-free
64-bit-clean implementations of such
mundane data structures strongly
suggests that improved hardware
support is necessary before practical
lock-free data structures will be widely
available.”

n  Simon Doherty, Maurice Herlihy, V.
Luchangco and M. Moir. Bringing
practical lock-free synchronization to
64-bit applications. Twenty-Third
Annual Symposium on Principles of
Distributed Computing (PODC).31-39.

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 42

Memory Consistency and Future
Processors

n  Memory Barrier Instruction and WriteMB
n  The MB instruction can be used to maintain program

order from any memory operations before the MB to
any memory operations after the MB.

n  See S. V. Adve and K. Gharachorloo, "Shared
memory consistency models: A tutorial," in Technical
Report WRL-TR 95/7, Digital Western Research
Laboratory, September, 1995.

22

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 43

Blocking vs. Polling

n  Lock-free synchronization does not allow
processes to block

n Standard solution is polling
n  Wake up every 1ms or so,
n  Do whatever work there is to be done
n  Go to sleep (here’s where blocking takes

place) for 1ms or so

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 44

Periodically “Waking Up”

n Use an OS call to sleep
n Use an OS blocking call with a timeout
n Block waiting for audio input (wake up every

32 or 64 samples)
n Use a timer facility like Window MM system

timer that calls a function periodically

23

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 45

Is Polling Bad?

n  Waste of CPU time when nothing to do.
n  But CPU load can be low: 1 to 5%
n  In dedicated systems, there’s no cost (well maybe power)

n  Context switches are expensive
n  But if there’s work to do, you’re going to context switch

anyway
n  Synchronization primitives are expensive too

n  Latency: code doesn't run immediately after data available
n  But if polling frequency is high enough, latency is negligible
n  Real time systems care about being fast enough, not being

as fast as possible.
n  Polling is more efficient as load increases, so polling can

actually be better from a real-time perspective (real time
systems care about the worst case, not the average case).

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 46

Example: Aura Architecture

n Goal 1: General platform for interactive
multimedia

n Goal 2: Open-ended, extensible for video,
graphics, networking, software systems.

n Based on Real-Time Distributed Object
System

n Objects have globally-unique 96-bit names
n Asynchronous messages
n  Location independent

24

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 47

Communication with Aura

n Remote Method Invocation
n  send_set_hz_to(osc, 440.0)
n  Automatically generated macros to send

messages
n  Receiver is indicated by globally unique ID

n  Location Transparency
n  Object in same thread – synchronous call
n  Object in same address space – msg queue
n  Object on remote machine – TCP/IP to msg

queue

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 48

Messages and
Location Transparency

Machine 1 Machine 2

Zone 1

Zone 2

Obj1 Obj2

Obj3

Zone 1

Zone 2

Obj4

Obj5

A

B C

25

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 49

Aura Details

n Each Zone (thread + memory + scheduler):
n  Memory pool and real-time allocator
n  Calendar Queue-based scheduler
n  Time (seconds) based on audio sample count

n Pre-processor generates:
n  RPC message handlers
n  Stubs to pack parameters into msgs and send
n  Macros to make them easy to call

n Structure by latency, not function

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 50

Message Passing Details

26

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 51

Zone Processing Loop

n  Every zone runs periodically
n  Messages are blocks of memory:

n  [bytecount, timestamp, object-ID, method, arglist]
n  Poll:

n  Dispatch any scheduled messages
n  Check each incoming queue for messages

n  Either dispatch immediately (no copy), or
n  Allocate memory, copy, and schedule future msg

n  Actions can send and schedule new messages
n  No blocking except:

n  Audio thread does blocking I/O (32 samples = 0.7ms)
n  Midi thread sleeps 1ms when nothing to do
n  Graphics thread run by GUI, uses periodic callback

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 52

Aura Objects

zones
Free Memory

Per-zone Real-Time
Memory Allocator

next
AuraID

next
AuraID

pointers to
message queues

8
16
24
32
40
48
…

hash table

scheduler

27

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 53

Aura ID

n  96-bit globally unique identifier (48 low-order
bits of two 64-bit words)

Local Object ID
Zone #

Address Space # Creating Address Space #

Creating Zone #

48-bit “serial” number
from creating zone

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 54

Sending a Message

if space(msg.dest) == my_space_id
 if zone(msg.dest) == my_zone_id
 if msg.timestamp >= NOW
 obj = zone[my_zone_id].lookup(msg.dest)
 obj->msg_handler(msg)
 else
 zone[my_zone_id].schedule(
 msg.timestamp, msg)
 else
 zone[my_zone_id].queue[zone(msg.dest)].
 enqueue(msg)
else
 space_proxy[space(msg.dest)]->send(msg)

28

Carnegie Mellon University Copyright 2019 by Roger B. Dannenberg 55

Summary

n  Concurrency: good reasons and bad reasons
n  In real-time systems, preemption->low-latency
n  Atomic actions and Critical sections
n  Synchronization primitives:

n  locks, events, semaphores, monitors
n  The dark side:

n  Starvation, Deadlock, Priority Inversion
n  Lock-free structures
n  Polling vs Blocking
n  Aura

