## Week 11 Music as Data

#### Roger B. Dannenberg

Professor of Computer Science and Art & Music Carnegie Mellon University

#### MIDI Files as Music Representation

- MIDI messages are limited to performance information
- Standard MIDI Files are somewhere between performance and symbolic notation, providing:
  - Time Signature
  - Tempo
  - Key Signature
- If timing is quantized to beats, you can recover a lot of notation:
  - Bar lines
  - Time signatures
  - Tempo and tempo changes
  - Keys and key changes

Carnegie Mellon University

#### **Limitations of Standard MIDI Files**

- Parameters outside of MIDI:
  - Think of OSC data types and name space
  - Per-note parameters (MIDI control change messages affect entire channel)
- Accidentals (A b or G#?)
- Staves and Voices
  - But every track can have name
- Beams, Slurs, Clef
- Articulation Markings, Dynamics
  - Essentially all annotations
- Graphics
  - Stem direction
  - Spacing
- MIDI does have: tempo, time signature, key signature

3

**Carnegie Mellon University** 

Copyright 2018 by Roger B. Dannenberg

# Note Lists Are the "standard" computer music representation

- Flat list of "notes" with time and duration
- Each note specified by parameters:

```
0.0 0.5 i1 60 1.0 0.3 0.5 0.1 6.2 0.0 0.5 i1 65 1.0 0.3 0.6 0.15 6.2 0.5 0.4 i1 67 0.2 0.1 0.3 0.1 4.0 1.0 2.0 i2 78 0.5 0.4 1.0 0.4 6.0
```

•••

4

**Carnegie Mellon University** 

# Adagio Is a Simple Text-Based Music Representation

- Machine-readable, but sensible to humans
- Performance/Synthesis data only
- (Somewhat) Extensible
- Examples:

#### !tempo 100 t0 c4 q nq cs4 q. Lff V3 th ef w ~23(10) \*control

#### **Comment Character**

```
!CLOCK * turn on MIDI clock
!RAMP X10 X100 Q W2 * linear ramp
!CALL trill(A5,W,2,S,Lmf) T278 V1
!SETI myvar 75
!SETV myarray 5 -4 T100
```

5 Carnegie Mellon University

Copyright 2018 by Roger B. Dannenberg

# Adagio Example Started with PDF – need to change key...

#### Clorinda False, Adieu!



Carnegie Mellon University

# Adagio Example Hand-entered Adagio from Score

```
*m10
d h; g i.; a s; bf i; g
f i.; e s; d i; d; e i.; e s; fs i; g
                                           b q; r i; bf i; a i.; g s; a i; f
fs q; g i; bf; a ; g; a q
                                           g q; a; d4 i; g; f; bf
b q; r i; bf; a i.; g s; a i; f
                                           g q.; a i; fs i; g q; fs i
                                           *letter A
g q; a; d4 i; g; f; bf
                                           g h; r q; g q
                                           bf q.; bf i; a; fs; g h
g q.; a i; fs i; g q; fs i
g q; d; g i.; a s; bf i; g
f i.; e s; d i; d; e i.; e s; fs i; g
                                           *m15
fs q; g i; bf; a; g; a q
                                           fs q; g q; g q;
                                           d5 q.; d i; bf q; c
                                           d5; b; c h
```

**Carnegie Mellon University** 

**Carnegie Mellon University** 

Copyright 2018 by Roger B. Dannenberg

# Adagio Example Adagio to SMF using Nyquist

```
;; Nyquist Program to Translate to Std. MIDI File
set seq = seq-create()
;; open input file and read Adagio file into seq
set inf = open("clorinda-false-adieu.gio", "r")
exec seq-read(seq, inf)
exec close(inf)

;; open output file and write SMF
set outf = open-binary(
    "clorinda-false-adieu.mid", direction: :output)
exec seq-write-smf(seq, outf)
exec close(outf)
```

4

# Adagio Example SMF to PDF using Finale

Trumpet 2 in Bb

#### Clorinda False, Adieu!

Thomas Morley



9

Carnegie Mellon University

Copyright 2018 by Roger B. Dannenberg

## Allegro (Included in Audacity)

- More recent than Adagio
- Libraries in Serpent and C++
- Same general idea: text representation for score
- Attribute/Value syntax:

```
t0 -chani:2 -keyi:60 -gater:100 -pitchr:60 -durr:0.7
```

But thanks to some syntactic sugar, you can also write....

TO V2 C4 LMF Q

10

**Carnegie Mellon University** 

#### **Music Notation**

- Editing requires semantics
  - Placement determined by beats, which are determined by symbolic durations
  - Operations such as transposition require interpretation of pitch, key signatures, etc.
- But semantics are not formal
  - Music is not a graph on a strict coordinate system
  - Music is full of implied meanings and vague instructions

11

**Carnegie Mellon University** 

Copyright 2018 by Roger B. Dannenberg

#### What you should know...

- The general structure of music notation
- Some examples of difficult problems
- Some systems for encoding music notation
- Limitations of MIDI for notation
- General capabilities (and lack thereof) in current music notation software systems

12

Carnegie Mellon University







## **Difficult Representation** (and Editor Interface) Problems

- Scope of symbols
  - Accent marks, loudness indications, etc. can apply to
    - individual notes
    - the staff
    - the system
- Multiple tempi (in contemporary music, see 8:15 in https://www.youtube.com/watch?v=12j1wdKE4zU)
- Voices
  - A "line" of music
- Beats may not add up to full measure

 Merging and splitting – multiple voices r Sometimes rests are missing or shared Voices can cross staves

16

**Carnegie Mellon University** 

#### **Encoding Systems: GUIDO**

- Plain text, human readable, platform independent
- by Holger H. Hoos, Keith A. Hamel, Kai Renz, Jurgen Kilian
- Based on musical concepts as opposed to strictly graphical features
- Alternative strategies:
  - Binary formats (NIFF, SMF)
  - General but complex notation (DARMS, SMDL)
  - Graphics only (cmn)

17 Carnegie Mellon University

Copyright 2018 by Roger B. Dannenberg

### **Example of GUIDO**

[ \title<"Frere Jacques">
\tempo<"Moderato"> \clef<"treble"> \meter<"4/4">
\slur(c1/4 d e c) \slur(c d e c)
\slur(e f g/2) \slur(e/4 f g/2)
\slur(g/8 a g f e/4 c) \slur( g/8 a g f e/4 c)
\slur(c g0 c1/2) \slur(c/4 g0 c1/2) ]



18

Carnegie Mellon University

#### Some Details

- c#1\*1/4. = dotted quarter note middle C#
   "\*" is a separator
- \*1/4 = rest
- Sequences: [ ... ] → sequential in time
- Segments: { ... } → simultaneous
- Tags:

\tagname<parm=value,parm=value>(...)

9

**Carnegie Mellon University** 

Copyright 2018 by Roger B. Dannenberg

### **Example of Advanced GUIDO**

```
\tempo<"Allegro asai",dx=0,dy=9.6>
\space<7.36> \i<"p",dy=-5.76>
\beam(\slur<y=1.92>(
   \crescBegin<dx=1.28,dy=-5.76> d2/8 \space<6.4>
   \merge( b1/16 \crescEnd<dy=-5.76>
   \dimBegin<dx=1.28,dy=-5.76> b )
\space<6.4> d2/16 \dimEnd<dx=0,dy=-5.76>)) _/16...
```



20

**Carnegie Mellon University** 

### **Encoding Systems: MusicXML**

- Michael Good, Recordare LLC, now part of Make Music, Inc.
- XML-based representation for music notation
- Supports notation, analysis, information retrieval, and performance applications
- Used by Finale & SharpEye Music Reader, Sibelius, MuseScore, >100 more

21

**Carnegie Mellon University** 

Copyright 2018 by Roger B. Dannenberg

### Example



```
<?xml version="1.0"
  encoding="UTF-8" standalone="no"?>
                                          <time>
                                           <beats>4</peats>
<!DOCTYPE score-partwise PUBLIC
                                           <beat-type>4</beat-type>
  "-//Recordare//DTD MusicXML...//EN"
                                          </time>
 "http://www.musicxml.org/...">
<score-partwise>
                                           <sign>G</sign>
 <part-list>
                                           <score-part id="P1">
                                          </clef>
  <part-name>Music</part-name>
                                         </attributes>
  </score-part>
 </part-list>
                                          <pitch>
 <part id="P1">
                                           <step>C</step>
  <measure number="1">
                                           <octave>4</octave>
  <attributes>
                                          </pitch>
    <divisions>1</divisions>
                                          <duration>4</duration>
    <key>
                                          <type>whole</type>
     <fifths>0</fifths>
                                         </note>
    </key>
                                        </measure>
                                       </part>
                                      </score-partwise>
```

22

**Carnegie Mellon University** 





## Lillypond example

25 Carnegie Mellon University

Copyright 2018 by Roger B. Dannenberg

#### **ENP - Expressive Notation Package**



26

**Carnegie Mellon University** 

#### **Current Music Notation Systems**

- Nearly all published music is now done with computers
- At least two powerful commercial systems: Finale, Sibelius
- Some open source editors: MuseScore, LillyPond
- A web-based (in Flash) editor: NoteFlight
- Combine semantic-based layout with open-ended manual layout
- Lacking:
  - Constraint systems to maintain manual placement when automatic spacing changes
  - Tracking change from score to parts and vice-versa (at least this seems overlooked or limited)
  - Robust interchange formats but MusicXML offers a path
  - APIs giving programmable access to notation (but this exists in at least limited forms for more than one notation system)

27

**Carnegie Mellon University** 

Copyright 2018 by Roger B. Dannenberg

#### **Operations On Scores**

- Reference: Laurie Spiegel, "Manipulations of Musical Patterns." In Symposium on Small Computers in the Arts. Los Angeles: IEEE Computer Society. 1981. pp. 19-22.
- Transposition: add constant offset to pitch (expressed in log frequency units)
  - can apply to other parameters, especially amplitude (in dB)
- Reversal
  - Pitch reversal:  $p_i' = C p_i$  (a.k.a. *inversion*)
  - Order reversal:  $n_i' = n_{N+1-i}$  (i=1...N) (retrograde)
  - Reversal of structure: abc\_grs\_xyz → xyz\_grs\_abc

28

**Carnegie Mellon University** 

### Operations on Scores (2)

- Rotation:
  - Sequences:  $n_i' = n_{((i+C) \mod N)+1} (i=1...N)$
  - Chord inversion is a form of rotation
- Phase Offset and Phasing
  - Rotation relative to a (same or different) cyclic pattern
  - Cyclic patterns of unequal length
  - Parametric phasing as in isorhythmic motet, e.g.:
    - Pitch sequence of length 9, 4 times
    - Rhythmic sequence of length 12, 3 times

29

**Carnegie Mellon University** 

Copyright 2018 by Roger B. Dannenberg

### Operations on Scores (3)

- Rescaling
  - Augmentation/diminution (scaling the number of beats in each note)
  - Tempo change (scaling duration of a beat)
  - Reversal is related to a special case (-1)
- Interpolation
  - Linear (or other) interpolation between points
  - Melodic "interpolation" over chords
  - Variations of a theme
  - Embellishments with trills and ornaments

30

Carnegie Mellon University

#### Operations on Scores (4)

- Extrapolation (no operational definition)
- Fragmentation: Isolation and reuse of a sub-pattern
  - Generally along time axis
  - Can be through separation and application of different parameters
- Substitution: of elements or sub-patterns
  - Without rule
  - By some orderly process
  - Individually or as part of a coordinated exchange
  - Perception of substitution requires perception of pattern

31

**Carnegie Mellon University** 

Copyright 2018 by Roger B. Dannenberg

### Operations on Scores (5)

- Combination: mixing, overdubbing, counterpart, harmony,...
- Sequencing: append, splice, delete, ...
  - Temporal dimension of Combination (above)
  - Disjunct/conjunct/overlapped
  - Continuous/discrete
- Repetition
  - Fundamental to music
  - Repetition in time
  - Duplication of voices or sound sources

32

Carnegie Mellon University

### Hierarchical Representations

- You've seen hierarchy already in MusicXML and GUIDO
- Combining flat note-list representation with combination/transformation primitives gives a hierarchical representation
- This is the basis for many functional-style programming languages, including Nyquist

33

**Carnegie Mellon University** 

Copyright 2018 by Roger B. Dannenberg

## Nyquist can be viewed as a Hierarchical Score Representation

- Combination:
  - SIM simultaneous
  - SEQ sequential
- Transformation:
  - TRANSPOSE pitch offset
  - LOUD loudness/dynamics offset
  - SUSTAIN "articulation"/duration scaling
  - STRETCH time stretch/tempo change
  - AT shift
- Structure:
  - DEFUN introduce named phrase
  - SEQREP, SIMREP iteration

34

**Carnegie Mellon University** 

```
Nyquist Example
      (defun mel1 ()
                                     ; loop and tempo
         (seq (note c4 q)
                                     (segrep (i 4)
              (note d4 q)
                                      (stretch 0.25
              (note e4 h)))
                                       (seq (mel1) (mel2)))) (
      (defun mel2 ()
                                     ; transpose
        (seq (note c5 i)
                                     (defun mel ()
              (note b4 i)
                                       (seq (mel1) (mel2)))
              (note a4 i)
                                     (seq (mel)
              (note b4 i)
                                          (transpose 2 (mel))
              (note g4 q)))
                                          (mel))
      ; sequencing
                                     ; articulation/legato
      (seq (mel1) (mel2))
                                     (seq (mel)
      ; dynamics
                                          (sustain 0.5 (mel))
      (seq (mel1)
                                          (sustain 1.5 (mel))) (
            (loud -90 (mel2)))
                                     ; sim and at
                                    (sim (mel) (at 0.1 (mel)))
35
     Carnegie Mellon University
                                              Copyright 2018 by Roger B. Dannenberg
```



## Multiple Hierarchies (aka Heterarchies) are important in music and complicate representations

- Hierarchies can be independent
  - Measures cut across voices
  - Slurs can cross bar lines
- Even hierarchies of a given type can overlap:
  - Notes can participate in the end of one phrase and the beginning of the next
  - Sections can begin/end in the middle of measures
  - Voices can cross staves
- Note that this does not lead to a clean, humanreadable, linear text encoding

37

**Carnegie Mellon University** 

Copyright 2018 by Roger B. Dannenberg

#### Conclusions

- Music defies a single representation
- Compare to Mathematics and Math notation
- Notation (♪♪) is easy for musicians to read, but difficult to manage in general
- Many composers work with simpler representations:
  - Note lists (abstract parameter data)
  - Midi files (performance data, not notation)
  - Simple music notation software for visualization
  - Full-blown notation systems to prepare scores for performance by humans

38

Carnegie Mellon University