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Overview 

n Music Style Classification 
n  What’s a classifier? 
n  Naïve Bayesian Classifiers 
n  Style Recognition for Improvisation 
n  Genre Classification 
n  Emotion Classification 

n Beat Tracking 
n Key Finding 
n Harmonic Analysis (Chord Labeling) 
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Music Style Classification 

? Lyrical 

Pointilistic 

Syncopated 

Frantic 
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Video 
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What Is a Classifier? 

n What is the class of a given object? 
n  Image: water, land, sky 
n  Printer: people, nature, text, graphics 
n  Tones: A, A#, B, C, C#, … 
n  Broadcast: speech or music, program or ad 

n  In every case, objects have features: 
n  RGB color 
n  RGB Histogram 
n  Spectrum 

n  Autocorrelation 
n  Zero crossings/second 
n  Width of spectral peaks 
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What Is a Classifier? (2) 

n Training data 
n  Objects with (manually) assigned classes 
n  Assume to be representative sample 

n Test data 
n  Separate from training data 
n  Also labeled with classes 
n  But labels are not known to the classifier 

n Evaluation: 
n  Percentage of correctly labeled test data 
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Game Plan 

n We can look at training data to figure out 
typical features from classes 

n How do we get classes from features? 
n à Bayes’ Theorem 

n We’ll need to estimate P(features|class) 
n Put it all together 
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Bayes’ Theorem 

A B A&B 

P(A|B) = P(A&B)/P(B) 
P(B|A) = P(A&B)/P(A) 

P(A|B)P(B) = P(A&B) 
P(B|A)P(A) = P(A&B) 

P(A|B)P(B) = P(B|A)P(A) 
 
P(A|B) = P(B|A)P(A)/P(B) 
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P(A|B) = P(B|A)P(A)/P(B) 
 
n  P(class | features) =  
            P(features | class)P(class)/P(features) 
n  Let’s guess the most likely class 

n  (maximum likelihood estimation, MLE) 
n  Find class that maximizes: 
            P(features | class)P(class)/P(features) 
n  And since P(features) independent of class, 

maximize 
            P(features | class)P(class) 
n  Or if classes are equally likely, maximize: 
            P(features | class) 
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Bayesian Classifier 

n The most likely class is the one for which the 
observed features are most likely. 

n The most likely class: 

n The class for which features are most likely: 

argmax P(class | features) 
class 

argmax P(features | class) 
class 
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Game Plan 

n We can look at training data to figure out 
typical features from classes 

n How do we get classes from features? 
n à Bayes’ Theorem 

n We’ll need to estimate P(features|class) 
n Put it all together 
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Estimating P(features|class) 

n A word of caution: Machine learning involves 
the estimation of parameters. The size of 
training data should be much larger than the 
number of parameters to be learned. (But recent 
research suggests many more parameters than data can also 
learn and generalize well in certain cases.) 

n Naïve Bayesian classifiers have relatively few 
parameters, so they tend to be estimated 
more reliably than parameters of more 
sophisticated classifiers, hence a good place 
to start. 



7 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg  13 

What’s P(features|class)? 

n  Let’s make a big (and wrong) assumption: 
n  P(f1, f2, f3, …, fn | class) = P(f1|class)P(f2|class)P(f3|

class)…P(fn|class) 
n  This is the independence assumption 

n  Let’s also assume (also wrong) P(fi | class) is 
normally distributed 
n  So it’s characterized completely by: 

n   mean  
n   standard deviation 

n Naive Bayesian Classifier: assumes features 
are independent and Gaussian 
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Estimating P(features|class) (2) 

n  Assume the distribution is Normal  
(same as Gaussian, Bell Curve) 

n  Mean and variance are estimated by simple statistics on test 
set: 
n  Classes partition test set into distinct sets 
n  Collect mean and variance for each class 

n  Multiple features have a 
multivariate normal distribution: 
 

n  Intuition: Assuming independence, P(features|class) is related to 
the distance from the peak (mean) to the feature 
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Putting It All Together 

n Fi = ith feature 
n C = class 
n µ = mean 
n σ = standard deviation 
n ΔC = normalized distance from class 
n Estimate mean and standard deviation just 

by computing statistics on training data 
n Classifier computes ΔC for every class and 

picks the class (C) with the smallest value. 
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Style Recognition for Improvisation 

n  Features are: 
n  # of notes 
n  Avg. midi key no 
n  Std.Dev. of midi key no 
n  Avg. duration 
n  Std.Dev. of duration 
n  Avg. duty factor 

n  Windowed MIDI Data: 

n  Std.Dev. of duty factor 
n  No. of pitch bends 
n  Avg. pitch 
n  Std.Dev. of pitch 
n  No. of volume controls 
n  Avg. volume 
n  Std.Dev. of volume 



9 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg  17 

A Look At Some Data 

(Not all scatter plots show 
the data so well separated)  
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Training 

n Computer says what style to play 
n Musician plays in that style until computer 

says stop 
n Rest 
n Play another style 
n Note that collected data is “labeled” data 
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Results 

n  With 4 classes, 98.1% accuracy 
n  Lyrical 
n  Syncopated 
n  Frantic 
n  Pointillistic 

n  With 8 classes, 90.0% accuracy 
n  Additional classes: blues, quote, high, low 

n  Results did not apply to real performance situation,  
n  but retraining in context helped 
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Cross-Validation 

Training Data 

Test 
Data 

Test 
Data 

Test 
Data 

Test 
Data 

Test 
Data 
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Other Types of Classifiers 

n  Linear Classifier 
n  assumes normal distributions  
n  but not independence 
n  closed-form, very fast training (unless many features) 

n  Neural Networks – capable of learning when features 
are not normally distributed, e.g. bimodal 
distributions. 

n  kNN – k-Nearest Neighbors 
n  Find k closest exemplars in training data 

n  SVM – support vector machines 
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In Practice: Classifier Software 

n  MATLAB – Neural Networks, others 
n  Weka – http://www.cs.waikato.ac.nz/~ml/weka/ 

n  Widely used 
n  General data-mining toolset 

n  ACE – http://coltrane.music.mcgill.ca/ACE/ 
n  Especially made for music research 
n  Handles classes organized as a hierarchical taxonomy 
n  Includes sophisticated feature selection (note that 

sometimes classifiers get better with fewer features!) 
n  Machine learning packages in Matlab, PyTorch, 

TensorFlow 
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Genre Classification 

n  Popular task in Music Information Retrieval 
n  Usually applied to audio 
n  Features: 

n  Spectrum (energy at different frequencies) 
n  Spectral Centroid 
n  Cepstrum coefficients (from speech recog.) 
n  Noise vs. narrow spectral lines 
n  Zero crossings 
n  Estimates of “beat strength” and tempo 
n  Statistics on these including variance or histograms 
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Typical Results 

n Artist ID: 148 artists, 1800 files  
n à 60-70% correct 

n Genre: 10 classes: 
 ambient, blues, classical, electronic, ethnic, 
folk, jazz, new_age, punk, rock  

n à~80% correct 

n Example: http://www.youtube.com/watch?v=NDLhrc_WR5Q 
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Summary 

n Machine Classifiers are an effective and 
not-so-difficult way to process music data 

n Convert low-level feature to high-level 
abstract concepts such as “style” 

n Can be applied to many problems: 
n  Genre 
n  Emotion 
n  Timbre 
n  Speech/music discrimination 
n  Snare/hi-hat/bass drum/cowbell/etc. 
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Summary (2) 

n General Problem: map feature vector to class 
n Bayes’ Theorem tells us probability of class 

given feature vector is related to probability of 
feature vector given class 

n We can estimate the latter from training data 



14 

Beat Tracking 
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The Problem 

n The “foot tapping” problem 
n Find the positions of beats in a song 
n Related problem: estimate the tempo (without 

resolving beat locations) 
n Two big assumptions: 

n  Beats correspond to some acoustic feature(s) 
n  Successive beats are spaced about equally   

(i.e. tempo varies slowly) 
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Acoustic Features 

n Can be local energy peaks 
n Spectral flux: the change from one short-term 

spectrum to the next 
n High Frequency Content: 

spectrum weighted toward high frequencies 
n With MIDI data, you can use note onsets 
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A Basic Beat Tracker 

n Start with initial tempo and first beat (maybe 
the onset of the first note) 

n Predict expected location of next beat 
n  If actual beat is in neighborhood, speed up or 

slow down according to error 
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“Society of Agents” Model 
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Society of Agents (2) 

n Each agent tries to find periodic beats much 
like the basic beat tracker, but with a limited 
range of tempi 

n Agents report how well they are doing 
n A “supervisor” picks the best agent and may 

arrange for “handoff” from one agent to 
another 

n  “Agent” is a bit overblown and 
anthropomorphic – it’s just a simple software 
object 
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Filter Bank and Oscillator Models 

…
 

Onset 
Detect 
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Oscillators 

n Some oscillator models (particularly in work 
by Ed Large) are inspired by actual neurons 

n Oscillators maintain approximate frequency 
but phase can be adjusted 
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Agents and Oscillators 

n  Note that “Agents” act like oscillators 
n  Detect periodicity 
n  “Tuned” to small range of tempi 

n  My opinion: 
n  Music data is so noisy, you need to search within 

a narrow range of tempi 
n  A wide-tempo-range tracker is likely to get lost 
n  That’s why multiple agents/oscillators work 

n  State-of-the art uses machine learning to learn to 
find beats and downbeats, post-processing to 
look for periodicity 
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Key Finding 

n Standard (or at least common) approach is 
based on Krumhansl-Schmuckler Key-Finding 
Algorithm 

n  In turn based on key profile: essentially a 
histogram of pitches observed in a given key. 

n Key is estimated by: 
n  Create a profile for a given work 
n  Find the closest match among the Krumhansl-

Schmuckler profiles 
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Variations on Key Finding 

n Weighting profile by note duration 
n Using exponential decay to give a more local 

estimate of key center 
n Using spectrum rather than pitches when the 

data is audio 
 
n Probably better results can be obtained with 

machine learning approaches and more 
features related to tonal harmony 
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Harmonic Analysis/Chord Labeling 

n An under-constrained problem 
n Goal is to give chord labels to music 

C  F  C 

C 
F is a passing tone 

Labeling #1 

Labeling #2 
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Chords 

n Conventionally, chords have 3 or 4 notes 
separated by major and minor thirds (intervals 
of 4 or 3 semitones) 

Major triad = 4 + 3 

Minor triad = 3 + 4 

Dominant Seventh = 4 + 3 + 3 
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Chords Can Be Complex 

n  Any configuration of notes has an associated chord 
type (which may be highly improbable): 

n  E.g.                          = C dominant seventh 
                                   with a flat-5, added 
                                  sharp 9th, 11th, and 13th  

n  Chords can change at any time: 

n  Chords do not necessarily match all the notes (extra 
notes are called non-chord tones) 
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Chords as “Hidden” Variables 

chord chord chord chord 

Observables: notes 

Hidden State: chords 
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How Can We Approach This 
Problem? 

n Find a balance between  
n  use relatively few chords 
n  get good match between observed notes and 

chords (minimize non-chord tones) 
n Create a scoring function to rate a chord 

labeling 
n  Penalty for each new chord 
n  Penalty for each non-chord tone 

n Search for optimal labeling 



22 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg  43 

What Do We Label? 

n Every place a note begins or ends, start a 
new segment (Pardo and Birmingham call 
this a concurrency) 
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Chord Labeling as Graph Algorithm 

n Cost depends on some assumptions, but can 
be N^2 using shortest path algorithm 

Nodes are  
concurrencies, 
arcs are the cost of  
consolidating  
concurrencies and  
labeling them as  
one chord. 
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Chord Recognition from Audio 

n For the latest, most advanced techniques, 
see the literature (esp. ISMIR Proceedings) 

n Another classification problem? 
n  Given audio, classify into a chord type 
n  Need to think about: 

n  Labeled training data 
n  Features 
n  Training procedure 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg  46 

Chord Recognition: Training Data 

n  (1) Use hand-labeled audio 
n  (2) Create labels automatically from MIDI 

data; create audio by synthesizing MIDI 
n  (3) Create labels automatically from MIDI; 

align MIDI to "real" audio (we will talk about 
alignment later) 

n Note: theoretically 2^12 chords, but typically 
stick to some subset of major, minor, 
dominant 7th, diminished, and augmented 
(each in all 12 transpositions) 
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Features: A Diversion on FFT 

n  Audio analysis often begins with frequency content 
analysis. 
n  Our ear is in some sense a frequency analyzer 
n  Shape of the audio waveform is not really significant -- 

shifting the phase of one note can change wave shape 
completely, even if it "sounds the same" 

n  Every sound can be broken down into frequency 
components: 

frequency 
analyzer 

frequency 
analyzer 

Sound File 
left 

right 
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FFT 

n  Typically many more 
frequency "bins" 

n  Not continuous 
n  Divide signal into regions 

called frames (not to be 
confused with sample 
periods) 

n  Typical frame is 10 to 
100ms 

n  Each frame analyzed 
separately 

n  256 to 2048 frequency 
bins per frame 

http://www.dsprelated.com/josimages/sasp/img1411.png 
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FFT Parameters 

n  Frequencies in audio range from 0 to half the sample rate 
n  An n-point FFT uses n samples, so it spans n/SR seconds 
n  There are n/2 frequency bins, all same width over range 

from 0 to SR/2, so each bin is SR/n Hz wide. 
n  Example: 4096-point FFT and 44.1kHz sample rate 

n  Bins are 44.1k/4096 = 10.7Hz wide 
n  Semitones (ratio of 1.059) are 10.7Hz wide at 181Hz 
n  F3 in Hz is 175, F#3 in Hz is 185 

n  Larger FFT -> better frequency resolution 
n  Smaller FFT -> better time resolution 
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Chroma Vector  

Source: Tristan Jehan, PhD Thesis 
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Chroma Vectors 

n Note that any given tone will have overtones 
that contribute to many chroma bins: 
n  3rd harmonic is roughly 19 semitones 
n  5th harmonic is roughly 28 semitones 
n  6th harmonic is roughly 31 semitones 
n  7th harmonic is roughly 34 semitones 
n  (none of these is a factor of 12) 
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Why Chroma Vector? 

n Experience shows that chroma vectors 
capture harmonic and melodic information 

n Chroma vectors do not capture timbral 
information (well) 
n  C major on a piano looks like C major from 

string orchestra -- this is a good thing! 
n Chroma vectors are typically normalized to 

eliminate any loudness information 
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Building a Simple Classifier 

n Classes are chords 
n  E.g. major/minor * 12 gives 24 classes 
n  Train classifier on labeled data 

n Computation 
n  For each FFT frame: 
n  Compute chroma vector (12 features) 
n  Run classifier 
n  Output most likely chord label 

n  Example: https://www.youtube.com/watch?v=kH8MgjKEFOU
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Using Context 

n  "Absolute" (a priori) information: 
n  Chord probabilities: e.g. P(major) > P(augmented) 

n  Smoothing:  
n  The sequence CCCCGCCCCC is likely all C's 
n  Dynamic programming is a good way to optimize 

tradeoff between "cost" of transitions to new chords 
and likelihoods of chord choices 

n  Context 
n  Chord sequences are not random 
n  Hidden Markov Models often used to model chord 

sequences and prefer chords that are more likely due 
to context. 
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Some References 

n Robert Rowe: Machine Musicianship 
n David Temperley: The Cognition of Basic 

Musical Structures  
n Danny Sleator: 

http://www.link.cs.cmu.edu/music-analysis/ 
(algorithms online) 

n  ISMIR Proceedings (all online) 
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Summary and Conclusions 

n Music involves communication 
n Communication usually involves some 

conventions: syntax, phonemes, frequencies, 
selected/modulated to convey meaning 

n  In music, notes are the syntax; meaning is 
somewhere else 

n Music Understanding attempts to get at these 
more abstract levels of meaning 
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Summary and Conclusions (2) 

n Many of these techniques are for tonal music 
n  It’s rich with structure and convention 
n  We understand it well enough to decide what’s 

right and what’s wrong (to some extent) 
n  But it’s not “what’s happening” now in music 
n  Or at least it’s restricted to popular music 

n Future work needs music theory, 
representations for time-based data, and 
sophisticated pattern recognition 


