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Why Computers and Music?

Music in every human society!
Computers are everywhere!
Music is technological!

Computing can make music:
= More Fun

= More Available
= Higher Quality
= More Personal
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My Background

m Always interested in math and music and
making things

Trumpet player since age 11

Discovered synthesizers in high school
Discovered computers about the same time
Discovered computer music in college
Musical Acoustics with Art Benade

Research motivated by musical experience:
= Computers as performers

= Expressive programming languages for music

= Audacity Audio Editor (co-creator)
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Overview

m Introduction

m How Is Computation Used in Music Today?

m New Capabilities:
What Can Computers Do Tomorrow?

m \What Will Music Be Like in the Future?
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How Is Computation Used in Music Today?

making-music.blogspot.com
Indabamusic.com

iLike Rate artists

Dm Sebastian A v

Tell us which artists you like

We'll recommend you new music and caiculate your music compatibility with your friends on iLike. The more artists you rate, the b

Thievery Corporation CarrieUnderwood  Keith Urban Coldplay Beyoncé

Leona Lewis Radiohead The Beatles Kelly Clarkson Pearl Jam

http://venturebeat.com/
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Music Computation Today
Production: digital recording, editing, mixing
m Nearly all music production today...
= Records audio to (digital) disk
= Edit/manipulate audio digitally
= Equalization
= Reverberation
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= Etc. potocts.com
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Music Computation Today

Musical Instruments: synthesizers and controllers

Synthesizer (Solaris) Drum Machine (Yamaha)

5

Linnstrument (Roger Linn) Sonic Spring (Tomas Henriques)

© 2015 Roger B. Dannenberg



Carnegie Mellon

Music Computation Today

Distribution: compression, storage, networks
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Music Computation Today

Search, recommendation, music fingerprinting
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Overview
m Computer Music Introduction

m How Is Computation Used in Music Today?

m New Capabilities:
What Can Computers Do Tomorrow?

m \What Will Music Be Like in the Future?
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New Capabilities: What Can
Computers Do Tomorrow?

m Computer accompaniment
m Style classification

m Score alignment

m Onset detection

m Sound synthesis
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Accompaniment Video
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Computer Accompaniment

Performance Score for Score for

\ Performer Accompaniment
Input Matchling | Accompaniment
Processing Performance

Music
Synthesis

Accompaniment
= /
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Computer Accompaniment
e 3

Performance [ Score for  Score for J
l Performer Accompanimen
Performance — Input L, Matc;ling | Accompaniment
Processing Performance
A|B A
m \ 4
8 A ®1 Music
@ B |1 2 )2 Synthesis
VB l1]2]2 |
Al |2 ‘@ \_ Accompaniment /
C| [2]3 Dynamic Programming, plus ...
B 3 , ,
G On-line, column-by-column evaluation

Windowing for real-time evaluation
Heuristics for best-yet matching

Penalty for skipping notes
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Computer Accompaniment

a O
Performance [ Score for Score for J
l Performer Accompanimen
Input — Matc;ling 1+ Accompaniment
Rule-based Sy5t9m: Processing Performance
E.g. If matcher is confident and Music
: : Synthesis
accompaniment is ahead < 0.1s, I
stop until synchronized. L Accompaniment
If matcher is confident and
accompaniment is behind <0.5s,
speed up until synchronized.
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Vocal Accompaniment

m Lorin Grubb’ s Ph.D. (CMU CSD)

m Machine learning used to:
= | earns what kinds of tempo variation are likely
= Characterize sensors
= When is a notated G sensed as a G#?

m Machine learning
necessary for good
performance
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Vcal Accompaniment
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How It Works

m Score position modeled as
a probability density
function

m Bayesian update rule:
P(s|o) = P(o|s)P(s)

m P(o|s) is e.g. "probability of
observing pitch G if the
score says play an A."
Simple statistics on
labeled training data.

m Prior P(s) by fast
convolution with a log

normal (describes tempo
and tempo variation)
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Commercial Implementation
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Style Classification:
Listening to Jazz Styles

/7
— Lyrical

™ Frantic
Syncopated
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Jazz Style Recognition
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Techniques

m Extract features from audio:
= Note density
= Mean & Std. Dev. of pitch range
= Mean & Std. Dev. of pitch intervals
= Silence vs. Sounding ("duty factor")
= _..and many more

m Features over 5-second windows

m Standard Classifiers (Naive Bayes, Linear,
Neural Net)
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Polyphonic Audio-to-Score Alignment

350

Acoustic Recording (s)

= dl it "',.
B E=aAE. I

0 50 100 150 200 250 300 350
Audio from MIDI (s}
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Audacity Editor with Automatic
Audio-to-MIDI Alignment
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Intelligent Audio Editor

m This excerpt is included in the audio examples:
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s Before: After:
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Finding Note Onsets
(How to segment music audio into notes.)

m Not all attacks are clean
m Slurs do not have obvious (or fast) transitions

m \We can use score alignment to get a rough idea of where
the notes are (~1/10 second)

m Then, machine learning can create programs that do an
even better job (bootstrap learning).

Estimated Note Onsets from Alignment

-------- Detected Note Onsets by Segmenter w/ Bootstrap

PDF

Acoustic

Waveform
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Expressive Performance
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Phrase-based Synthesis

Note-by-Note Synthesis

e

Phrase-based Synthesis
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Example Envelopes

Normalized RMS
Amplitude

~.

Normalized Time

Normalized RMS
Amplitude

Normalized Time
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Synthesis Examples

m Good trumpet sounds, mechanically
performed: Q

= Same sounds, but performed with Al-based
model of trumpet performance:

m Another example:
m [rumpet example from Ning Hu’'s thesis: @
m Bassoon example from Ning Hu'’s thesis: (§)
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Overview
m Computer Music Introduction

m How Is Computation Used in Music Today?

m New Capabilities:
What Can Computers Do Tomorrow?

m \What Will Music Be Like in the Future?
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Human Computer Music Performance

s OPPORTUNITY

= State-of-the-art computer music systems for
popular music performance

= Autonomous Intelligent Machine Musicians
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Example

m Suppose you want to get together and play music
... BUT, you're missing a __dass player.

credit: Green Day
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What Research Is Needed’?

m Synchronization
= Signal processing
= Machine learning
= Human interface
m Digital Music Display
= Representation issues

m Improvisation
= Models of style

m Sound Production
= Phrase-based synthesis?

m Modularity/Systems issues
= Real-time systems
= Software architecture

m Interaction
= HCI
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Is There a Market? What's the Impact?

m S8B annual US music sales
= Excluding recordings, education, performances

5 million musical instruments per year
Performance revenue is on the order of $10B
Recording revenue is similar; order of S10B

Approximately 1/2 of all US households have a
practicing musician

m ...so very roughly S10+B and 100M people!
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Rock Prodigy

m Guitar Hero for Real
Guitars

m Game design, content,
animation, etc. by others

m (Play Video)
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Rock Prodigy

m Unsolicited comment: "The best part about it is
polyphonic pitch detection”
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An Example
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&
Arrangements: Flexibly
Adapting Music Data for
Live Performance

Roger B. Dannenberg
Andrew Russell

Carnegie Mellon University

Copyright © 2015 by Roger B. Dannenberg and Andrew Russell 1
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Another Application: Internet
Drum Circle

m Latency is key:
OK Shakers with 0.1s delay

m Can computers
= Play drums?
" Lead humans to keep it interesting 24x77?
= Help keep the beat steady?
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Online, collaborative development of creative
content is already here...

wg wikifonia
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What Will People Do With HCMP?

Practice with virtual bands.
Create their own arrangements.
Post machine-readable music online, share.

Blend conventional performance with
algorithmic composition, new sounds, new
music.

Robot performers.
m Eventually ... new art forms

m Think of the electric guitar, drum machine in
music, camera in visual art, ...
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Conclusion

m Automating Music Understanding
(and Human Computer Music Performance)
will enrich musical experiences for millions of
people, including both amateurs and
professionals.

m If we build computers that use understanding
and intelligence to perform popular music,
great music will be made.
That is the future of music performance.
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