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Abstract

This report documents the design, implementation and testing of a prototype experimental
latency-based system (ELBS) for networked musical performance. The system creatively incorpo-
rates a potentially disruptive amount of latency as a feature of performance and an opportunity for
novel musical experiences. Specifically, the system introduces a model of performance influenced
by technical restrictions (remote users subject to significant latency interacting through personal
computers) and aesthetic characteristics associated with performance (in-time creation of complex
music whose coherence can be attributed to ensemble coordination and individual musicianship).
A further goal was to include four features not previously integrated in a single networked musical
performance system: To allow the sequential relaying and interpretation of musical instructions,
to create different versions of ensemble musical output for different end users, to sonify / artfully
represent network characteristics, and to allow further editing of performances out of time. The
complete prototype is a web application with a virtual machine-hosted server and a browser-based
client application, which can be made accessible to users via an independently distributed URL.
The report details further specifics of the playing paradigm, the prototype implementation, and
the test session at which the system was tested to demonstrate its basic performance functionality.
A composition derived from the edited output of the first test session was also created.

1 Introduction

Asynchronous or “out of time” musical collaboration via file sharing is commonplace. However, there
are very few compelling systems for quasi-real time collaboration, other than emulations of being
present in the same physical space in real time, an experience that is not possible to replicate perfectly
due to communication latency. Some degree of latency is inevitable in networked systems, and is usually
considered a problem whose effects on emulating real-time communication should be mitigated. Less
explored is the idea of embracing latency as a feature of a networked application, and developing
composition and performance techniques that incorporate delay.

Broadly, the goal of the proposed system is to facilitate non-realistic musical performance over a
network. In the service of facilitating performance, the ELBS prototype has the following character-
istics: The system gives users the impression that they are playing “live”, emulating or mediating
characteristics associated with liveness when necessary. It supports the collaborative, simultaneous
and in-time creation of music. Henceforth, “user” refers to a human operating a system.

In the service of facilitating performance that deviates from conventional models of performance
without shifting musical agency away from users, the ELBS prototype has the following characteristics:
The controls of the digital instruments provided to users are such that there is a low bar for entry,
but skill can be developed such that complex music can be produced and virtuosity is possible. The
number of dimensions of salience are reduced due to technical constraints and aesthetic concerns.
While the system pursues secondary goals of facilitating novel interactions between users and with the
network itself, the primary goal of enabling the creation of coherent music that displays complexity,
in its dimensions of salience, that can be attributed to user activity, is not compromised.

We introduce several other goals that have not yet been explored within the same application: (1) to
facilitate both performance and composition support, (2) to explore cascades of musical responsibility,
(3) to display users’ musical activity to each other, (4) to produce distinct but equally valid musical
outputs for different users, and (5) to sonify and artfully represent network characteristics.



To show that the prototype is functional and is nominally operable as a performance system, I
presented a usable prototype of the system to the members of my thesis committee at an informal
testing session. Between the session and my thesis defense, I used the record of the performance as a
starting point for a piece of music composed out of time.

2 Background

2.1 Primer on Networking

The following is a review of some of the basic principles and considerations of networking.

2.1.1 Packet-Switched Networks

In “packet-switched” networks, data streams are segmented into datagrams or packets. Packets are
transmitted, routed, and received independently on network links connected by packet switches, sim-
ulating a permanent and direct connection between end users. [1, Chapter 1.3, 2.2]. Packets contain a
“payload”, a segment of the data stream, and a “header” with data identifying its source, destination,
and other details necessary for reconstructing data after successful transmission.

Transport-layer protocols, or sets of rules that operate on the level of endpoints for communication,
or sockets, facilitate the partitioning, transmission and reception of packets. Protocols are also respon-
sible for recovering from packet losses. A packet’s payload and header size depend on the protocol
used. Payload size is also limited by the connection’s maximum transmission unit (MTU), the largest
amount of data that can be transmitted as one packet. [1, Chapter 7.7]. Transmitting a data frame
in larger and fewer packets lowers the total packet processing overhead.

Generally, network performance is evaluated based on the amount of data that can be transmitted
per unit time (bandwidth / throughput) and the amount of time it takes for a packet to travel between
endpoints (latency). Delay is inherent to networked communication; packets cannot be transmitted
and received over a network link instantaneously.

2.1.2 Types of Latency

Sources of delay include transmission, propagation, and queuing delay. Transmission delay, or the
time required to “place” a data frame onto a network link, depends on the amount of data and the
bandwidth of the link. Propagation delay, or the time required for a packet to travel across a network
link, depends on the medium of propagation and the length of the link itself. Queuing delay, or the
time a packet is stored at a switch before transmission, depends on the congestion control mechanisms
enacted by the router and the transport-level protocol. [2, Chapter 1.5]. While transmission and
queuing delay can scale up with distance due to intermediate switches (also called store-and-forward
delay), propagation delay increases significantly and reliably with distance.

Due to unpredictable congestion and delays, the transmission time between end users for a packet
can vary. Variation in packet delay is called jitter; it typically increases with physical distance between
network endpoints, as longer routes can expose data to more variables that can affect packet timing.

2.1.3 TCP Packet Loss Recovery

Packets may be dropped, duplicated or delayed substantially due to network errors. Some protocols
implement mechanisms that recover automatically from these issues. One such protocol, TCP, im-
plements an acknowledgement mechanism that detects and triggers the retransmission of a dropped
packet. TCP endpoints (senders and receivers of segmented data) monitor a sequence number, which
increases with the payload size of each received packet. When a packet is successfully received, the
receiver sends an acknowledgement (ACK message) with the next expected sequence number back to
the sender, communicating that the data up to that sequence number has been successfully received.
If the sender receives an unexpected sequence number or an ACK message is not received within the
retransmission timeout (RTO), TCP protocol on the sender side assumes the packet has been dropped
and triggers retransmission.

Thus, given TT as the best-case transmission time between sender and receiver, the worst-case
transmission time given one dropped packet is TT + RTO. [3]. The minimum value of RTO set by



the TCP standard is one second [4]. A dropped packet can also be detected by the TCP receiver.
If a packet is dropped, the next packet sent to the receiver P after the first will have an incorrect
sequence number. This triggers the receiver to send a NACK message back to the sender, triggering
the transmission of the data associated with the lost packet. The worst-case transmission time given
one dropped packet detected by the receiver is then (3 * TT) + P. P depends on user activity and
implementation details.

Another protocol, UDP, is best-effort and does not offer a reliable in-order stream of data. In a
nutshell, TCP is appropriate when reliability of transmission is prioritized over worst-case latency, and
vice versa for UDP.

TCP headers are 20 bytes minimum [5].

2.2 Early and Influential Networked Music Systems

Throughout literature on networked music, two groups are consistently cited as influential in their use
of networked computers in music creation and performance: the League of Automatic Music Composers
(LAMC) and the Hub.

The LAMC was active between 1978 and 1982. LAMC members wrote programs they called sub-
compositions to process and generate musical control data like melodic structures or pitch information.
These programs were written on single-board KIM computers [6] which, while affordable and accessible,
did not enable standard networking. The group resourcefully exploited the computers’ parallel ports
and interrupt lines to carry out rudimentary networking, exchanging control data between machines.
Control data output by the network was converted to sound through direct digital synthesis [7] or
used to control synthesizers. The goal of the music produced by the LAMC was to manifest network
activity, rather than individual creative expression [8].

The Hub was active between 1985 and 1995. The group utilized a client-server system in which
musical control data could be written to or read from common memory. Before performances, the group
agreed on a protocol for sharing control data; performers then programmed their own instruments to
communicate accordingly. The Hub is credited with introducing “distributed” musical performance,
in which musicians are separated by physical distance significant enough that conventional methods
for collaboration and coordination are no longer possible, or require substantial technical support. A
1987 performance saw two groups performing concurrently at separate locations in the same city, with
their respective hubs linked via a modem over a telephone line. The groups created distinct musical
outputs based on the same shared data.

Both the LAMC and the Hub both created unpredictable and occasionally chaotic music. While
the former hoped to attribute the novelty of the music to the activity of the network, the latter hoped
that it arose from the new forms of human interaction the system enabled. [8] [9, Chapter 2.2.1].

In the initial “performances” carried out by the LAMC, the system was set up and allowed to
generate music autonomously. Later performances saw them adjusting parameters of the system in
real time, as they found it “more fun to perform along with the network” [8]. John Bischoff, a former
member of the LAMC, described the activities of the group as “network music” [10]. Chris Brown, a
former member of the Hub, used the phrase “Computer network music” to refer to musical processes
that “[aim] to reveal the voice of the system itself, the sound of the network instrument”, positioning
the network itself as the primary instrument and source of musical agency, in contrast with traditional
emphasis on the virtuosity of the individual in conventional performance [8].

While the Hub and LAMC are frequently cited as progenitors of the subfield of networked music now
called “networked music performance” [11, 12, 13, 9], neither phrase used to describe their activities
mentions performance. In 2001, John Lazzaro and John Wawrzynek used the phrase “networked
musical performance” (NMP) to describe “a group of musicians, located at different physical locations,
[interacting] over a network to perform as they would if located in the same room” [14]. This phrase
now refers to a much wider class of systems, as new ideas about what constitutes performance have
developed.

2.3 Theories of Liveness and Performance

Musical performance has long been associated with “liveness”. Liveness is often defined by its contrast
to what is mediatized, or simulated, shaped or altered by technology to some extent for aesthetic
reasons. The value of liveness in musical performance, as defined by an absence of mediatization, is



attributed to unique feelings that music that has been broadcast or recorded cannot replicate [15, 16].
Mediatization can be contrasted with mediation. Musical instruments, by design, mediate music
creation. Complex musical patterns are associated with gestures, which then become specific and
measurable goals that can be directly pursued and maintained through clearly defined actions [17].
Traditional acoustic musical instruments are recognized for their capacity to produce complex music
and the skill required for their use.

The liveness of an event is commonly associated with its spatial proximity to and temporal simul-
taneity with an audience. During live musical performance, music is being created “in-time”, or such
that it is perceived in full during its creation[18]. In musical scenarios that do not accommodate a
separate audience, such as a “jam” session of simultaneous collaborative musical activity, performers
are effectively each other’s audience. Here, liveness can also be associated with temporal simultaneity
of performers.

Early discussions of liveness in the age of recorded music acknowledged that some conventions
of liveness did not account for emerging musical experiences facilitated by technology. For example,
[14] describes a system that connects remotely located and visually isolated keyboard players by
transmitting players’ gestures and reproducing them at each other’s instruments; musicians interact
simultaneously but are physically separated.

In an contemporary exploration of liveness in modern music, Paul Sanden proposes an audience-
centered definition of performance. He suggests that performance is characterized by particular forms
of mediatization, rather than their absence. From the perspective of an audience, “corporeality, spon-
taneity, interaction, temporality, and spatial proximity all contribute to the experience of liveness
associated with ... performance” [19, Chapter 1]. These characteristics are interconnected; they can
be mediatized to varying extents or completely absent without compromising an audience’s ability to
experience an event as live. For example, audiences’ appreciation of live musical performance is as-
sociated with their appreciation of the physical effort required for virtuosic instrumental performance
[20]. If a performer convincingly mimics gestures associated with playing an instrument while accom-
panied by audio playback, an audience may perceive the event as a live musical performance. The
liveness of an event is determined by its audience’s belief in its liveness, regardless of the agency of the
“performer” over the sound being produced.

In a survey of the field of performance studies, Marvin Carlson proposes a performer-centered
theory of performance. He suggests that performance is associated with engagement with the rules
of a performance space (sonic, physical, virtual), an appreciation of the skill required to follow said
rules, and an awareness of some standard for performances [21]. Thus, both musical and interpersonal
skills are required for performance, and the musical output of the ensemble can be attributed back
to performer activity. While rules and standards vary between music systems, Carlson proposes that
systems for in-time music creation in which these skills are utilized continuously and simultaneously
can be said to enable musical performance.

Consider that as a system deviates from traditional models of performance, different or fewer
skills may be required to perform music. For example, consider again the system proposed in [14]:
Introducing artificial delay between when gestures are produced and transmitted could potentially
go unnoticed by users, or attributed to slow user reactions rather than system design. Users could
also be presented with novel digital instruments that introduce new musical conventions and simplify
interactions. Key presses could trigger pre-composed musical segments, These alterations could reduce
the possibility of chaotic musical output by reducing the skill required to engage with other users or
the level of engagement needed to produce music [22]. Alternatively, they could require musicians to
develop new skills and accommodate a different but no less demanding performance paradigm.

Carlson argues that performance stems from the agency of human participants, and their interac-
tion with instruments, the environment, and each other. In a contemporary discussion of liveness in
performance, Di Scipio proposes a more distributed perspective of agency in performance. He defines
performance as the manner in which a system of human and mechanical resources and the site at which
it is deployed combine to create a self-sustaining dynamic “performance ecosystem”, both spatially, as
encouraged by the site, and temporally. A performance ecosystem achieves its goals by sensing and
acting on its environment, making it “self-observing” [23]. The network of interactions between system
and site that cannot be attributed to musicians’ agency alone are part of performance. This viewpoint
could be seen to extend Carlson’s. While both perspectives address the importance of dynamic social
interaction in the performance process, Di Scipio proposes that music can emerge from other kinds



of interaction. For example, user activity can be “circulated and modulated” [24] through a series of
feedback mechanisms incorporated into the performance site. If a user is aware of how their musical
gestures are “transformed” while propagating through the site, music produced can be called a result
of the interaction between system (users) and site.

Henceforth, unless used when referencing Di Scipio’s theory of performance, “system” refers to the
instrument that facilitates interaction between users, and not the users themselves, e.g. performance
systems enable musicians to perform. Carlson’s theory of performance suggests that in a performance
system that transforms user input through feedback networks, informed and skilled interaction with the
feedback network itself is necessary for musical activity with the system to be considered performance.
If this hypothetical performance system is collaborative, skilled and informed interaction with other
users is also necessary. All three of these complementary perspectives - Sanden’s primarily audience-
oriented perspective, Carlson’s primarily performer-oriented perspective, and Di Scipio’s consideration
of the interplay between system and site - are relevant to and provide context for contemporary
discussions of traditional (co-located and instrumental) and networked musical performance.

2.4 Goals of Traditional (Co-Located, Instrumental) Musical Ensembles

Most existing music performance systems, traditional or novel, share the goal of producing coherent
and complex music in-time. Music is complez if it displays some degree of “dimensional salience” [25],
such that the features that are important to the music (e.g. rhythms in percussive music) are coherent.
Music produced by an ensemble is coherent if it displays some degree of order along its dimensions of
salience [26].

In traditional musical performance, liveness is experienced directly with minimal mediatization
(Sanden). Performers engage with well-established rules and standards of musical performance, and
can appreciate each other doing so (Carlson). Interplay between system and site is subtle but still
present (Di Scipio).

2.4.1 How is Coordination Achieved?

In traditional ensembles, coherence is primarily the result of coordination between musicians. Coher-
ence is achieved via joint action, in which two or more musicians coordinate their actions to bring
about a change in their environment [26].

Two skills that enable musical joint action are anticipatory auditory imagery and prioritized inte-
grative attention. Anticipating sounds or movements helps musicians achieve intermediate goals that
support musical cohesion. “Imagery” here can also include the interaction of other sensory information,
such as visuals, with audio [27]. For example, musicians can play drums “on beat” with a metronome
ticking at regular intervals by anticipating its sound and noting its movement. In the absence of direct
visual contact, musicians often use cues from their peripheral vision [28]. Other visual methods for
musical synchronization include eye contact [29] and breathing [30]. This has also been described as
“synchronization by anticipation” [31].

Prioritized integrative attention refers to the division of a musician’s attention between their own
actions and those of others. The former is prioritized over the latter to the extent that the overall
sound of the ensemble is maintained. This skill enables musicians to adapt their actions based on
others’ behavior [32].

[33] defines “situational visibility” as the design space that encompasses the physical arrangement
of the performance space and the placement of visualizations within that space, with respect to how
these affect visibility among participants. This idea applies to both traditional and novel performance
scenarios. Consider how this reflects Di Scipio’s idea of the self-observing performance ecosystem, as
discussed in 2.3: The performance site is an environment, virtual or physical, from which musicians
rely on feedback to make decisions and adjust their behavior.

Many genres of music demand a level of musical synchronization between performers further than
just simultaneity / synchronicity in periods of musical interaction, such as rhythmic or dynamic syn-
chronization. In traditional co-located instrumental ensembles, this is accomplished via joint action,
which is supported by continuous and near-immediate multi-sensory feedback. Musicians in close prox-
imity can observe each other’s movements and connect each other’s gestures to sounds they produce
[22], in part because delay between one musician’s action and other musicians’ perception of said action
is small enough to not be considered disruptive to musical activities. Sound travels at roughly 343



m/s, and the delay experienced by members of co-located ensembles can range from 5-10 milliseconds
in a small room to 80-100 milliseconds on opposite sides of a concert hall [34].

Additionally, members of traditional instrumental ensembles can be assumed to have a basic un-
derstanding of the sounds each musician’s instrument can produce. This helps them to identify who
is making what sound, which contributes to ensemble cohesion [35]. Coordination can also take place
via visual cues agreed upon beforehand, such as a conductor [36] or, as in semi-improvisational “game
pieces”, visual cues that encourage imitating [37] or interpreting [38] other musicians’ actions in dif-
ferent ways.

2.4.2 How is Complexity Achieved?

The relationship between control complexity and complexity of music produced, as well as the tradeoff
between the former and the learning curve required to operate it, are well documented in instrument
design literature [39, 40, 41]. The ideal musical instrument controls present a low barrier for entry,
but skill with the instrument can be developed such that there is no upper limit to virtuosity or
musical output complexity [42, 43]. In [43], Jorda introduces “efficiency” as a meaningful goal for
musical instruments, defining it as the ratio of musical output complexity and “performer freedom” to
control input complexity. Performer freedom can be understood as the amount of meaningful control
performers can exert over the output of the instrument, such that they are playing music rather
than playing “with” music [44]. While an instrument should facilitate the performance of coherent
and complex music, it should also support the production of incoherent music, such that coherence is
mostly a result of users’ virtuosity, as opposed to a built-in “safety net” or a lack of performer freedom.

The use of familiar physical instruments sets a baseline for musical complexity in traditional ensem-
bles; it can be assumed that creating music, individually or as a group, requires skill. This contrasts
with “soundtoys”, a well-established class of electronic musical “things” designed for play and explo-
ration, rather than composition. They typically have simple controls and can only be used to create
simple music [45].

2.5 Networked Music
2.5.1 Effects of Latency on Musical Interaction over Networks

While auditory latency experienced by members of traditional ensembles is usually less than 100
milliseconds, latency in networked music tools can be much higher. As noted in 2.1, certain sources
of latency scale up significantly with distance between users. Estimates of latency between end users
within the continental United States given in previous NMP literature are on the order of tens of
milliseconds [46, 47]. [13] gives 5 milliseconds of propagation delay per 1000 kilometers between
end users and 10 milliseconds of queuing delay as average values. As discussed in 2.1.3, one packet
loss can raise this transmission time to the order of seconds. While multiple retransmissions of the
same packet are uncommon, atypical network conditions or client-side issues may lead to packet loss
or unacceptable delays. In networked music literature, latency below 25 milliseconds is generally
considered unobtrusive, and musicians connected over a two-way audio stream can play with up to
75 milliseconds of latency without needing to actively manage their auditory feedback [13]. Above
this range, issues with rhythmic synchronization, such as gradual deceleration, start to occur [48], and
interaction may feel “lacking in musicality” [34].

At least three kinds of rhythmic timing are affected by latency: pacing, the shared tempo of the
performance, regularity, timing within individual parts, and coordination, or timing between parts
(henceforth called rhythmic coordination to differentiate from earlier discussions in the context of
general musical coordination)

Jitter (discussed in 2.1) has the potential to be more disruptive than latency on rhythmic synchro-
nization, as users may need to re-synchronize their playing every time the latency changes [13].

2.5.2 Activities Called “INNetworked Musical Performance”

The term “networked musical performance” has endured as the name of an established subfield of
networked musical tools. It now accommodates a wider range of tools and perspectives on liveness and
performance than the early definition given in [14]. Tt is commonly abbreviated to NMP, which can be
used interchangeably to refer to a system and the event it facilitates. Additionally, frameworks that



have attempted to categorize the entire field of networked music have identified subsets of the entire
field classifiable as performance tools.

An early framework for networked music tools by Alvaro Barbosa, widely cited in networked music
literature [49, 31, 13, 9, 50], proposed a distinction between synchronous and asynchronous collabora-
tive music systems [51]. Systems are asynchronous if the period of musical interaction between users
is not simultaneous. It is given that in these systems, music is created asynchronously; participants
do not contribute to and hear the complete and combined musical output at the same time. Barbosa
describes systems as synchronous if the period of musical interaction between all users is simultaneous.
This is the fundamental requirement for any further degree of synchronicity in collaborative music
systems, and the only degree of synchronicity that can be assumed when a system is described as syn-
chronous. This bare minimum level of synchronicity is considered a precondition for ‘in-time” musical
interaction [31]. This is not true of asynchronous music creation, so “synchronous” is sometimes used
to imply in-time music creation, and in turn, performance.

We see the tendency to associate synchronicity with performance and in-time creation, and an
emphasis on performance in the context of in-time creation despite the vagueness of the term, reflected
in contemporary NMP. A 2023 survey by Miriam Iorwerth posits that NMP has “become accepted
to mean any type of musical interaction that requires a computer network”. However, “synchronous
NMP” (defined by Iorwerth as “all participants playing at the same time as one another and interacting
musically in real time”) is a more popular area of study [13, Chapter 1]. In a 2016 survey of wireless
networked music performance systems, Leonardo Gabrielli and Stefano Squartini define NMP as “the
practice of conducting real-time musical interaction over a computer network” [9, Chapter 2.1], but they
only cover “synchronous approaches”. This observation supports Sanden’s audience-focused theory of
performance. Given that truly “real-time”, instantaneous interaction over a network is not possible,
similarities in these characterizations suggest that anything that mediatizes temporal simultaneity
effectively can be called an NMP system.

As mentioned in 2.4.1, musical performance often requires further levels of synchronization between
performers, which are made possible by continuous adaptation to multi-sensory feedback from the rest
of the ensemble. Consider how this can be disrupted in systems with remotely located participants. As
discussed in 2.1, latency scales up with physical distance between network endpoints. In systems that
accommodate arbitrarily displaced users, it cannot be assumed that the latency present is low enough
to avoid disrupting certain kinds of musical coordination. The rate at which musical joint action can
occur is slowed as latency increases. As described in 2.5.1, longer and more unpredictable delays have
been known to make this kind of musical coordination more difficult.

Given the challenge of distributing less accessible hardware like virtual reality headsets or bespoke
musical instruments, it is practical to assume that distributed users communicate using personal com-
puters, and rely on digital interfaces for communication. While users may be able to connect and
coordinate via separate applications during a period of musical activity, it is inconvenient to switch
between applications during in-time music creation.

As discussed in 2.3, liveness and performance are often associated with the impression of temporal
simultaneity and spatial proximity. The complete lack of spatial proximity and the issues with ensuring
temporal simultaneity make it challenging to create something that “feels” live. Given these issues,
fully remote and simultaneous in-time music creation has become a popular set of technical restrictions
to apply in networked music, given the goal of facilitating performance. In [51], Barbosa describes this
subset of networked music tools as “remote music performance” systems (RMPs). There is precedent
in contemporary surveys of NMP to say that RMP is its only focus [52]. There is also precedent for
works that place themselves in the NMP tradition to give implicit [53] or explicit [54, 30] definitions
of NMP that encompass only RMP.

2.5.3 Activities Not Called “Networked Musical Performance”

Golo Follmer’s 2002 survey of “net music” categorizes works based on three key characteristics of
network-influenced remote music production systems: interplay with network characteristics, or the
extent of the structure and activity of the network itself on musical output, interactivity / openness,
or the extent of exploration and interactivity possible with the system, and complexity / flexibility,
or the extent of musical complexity and variability possible with the system [55]. Systems for fully
remote and simultaneous in-time music creation can embody these traits to varying degrees.

Broader studies of networked music that define a “performance” category of tools place systems



in this group based on how well they conform to Carlson’s standards for performances, as outlined in
2.3 It is reasonable to assume that a networked performance tool might pursue multiple goals, and
that more technical restrictions may require more mediation or introduce playing paradigms in which
more mediatization is acceptable. There is precedent in networked music tools for limiting musical
exploration in the service of encouraging more complex group dynamics and social interaction [22].
However, there is precedent for not classifying systems as performance tools based on the extent to
which musical interaction between users and the system is restricted or simulated in service of goals
less related to complexity /flexibility. For example, in [51], Barbosa differentiates between RMPs and
“shared sonic environments”, which accommodate users without prior musical experience, manifest
network characteristics in the sound produced, and facilitate new kinds of social interactions. In [55],
Follmer similarly introduces a “Performance” category, composed of tools designed to emulate live
performance digitally. Other categories identified by Follmer include “Soundtoys”, which, as described
in 2.4.2, limit user control and interaction to the extent that no musical skill is required for operation,
and “Algorithm and Installation”, where the music produced is more a reflection of characteristics of
the network than user activity, or interaction is facilitated through music, rather than in the service
of creating music.

Given their pertinence across literature, we generally apply Carlson’s criteria for liveness when
evaluating how and if novel music systems enable performance. In networked musical performance,
technological mediation enhances rather than diminishes the sense of liveness (Sanden), to the extent
that skill is still required to take part in performance (Carlson). In some networked performance
systems, attributes of the network used to facilitate the performance itself are manifested in the music,
subtly or directly. While the coherence and some of the complexity of the music can still be attributed
to user activity (Carlson), the music produced is influenced by user interaction with and via the system
(Di Scipio). Systems that accommodate issues with temporal delay and a lack of visual feedback by
modifying the interaction paradigm to something not resembling traditional music performance must
ensure that users themselves remain the locus of musical agency [23].

2.6 Networked Music Performance
2.6.1 Realistic and Non-Realistic Networked Musical Performance

Two prevailing approaches exist to networked musical performance.

The first approach, sometimes called the “realistic interaction approach” [9] or “realistic NMP”
[56], focuses on simulating the conditions of co-located instrumental performance to the closest extent
possible. Systems like these could appeal to groups of musicians whose desire to create music as
they would in a traditional setting is impeded by the distance between them [47]. Recall Follmer’s
characteristics of net music systems outlined in 2.5.2: Realistic interaction systems, by design, mitigate
or disguise network characteristics that disrupt conventional performance. Interactivity / openness is
a goal inasmuch as these systems emulate the kind of interactivity and openness present in traditional
co-located non-networked settings. Notable recent works in this vein, such as JackTrip Virtual Studio
(8.3), Lola [57] and Ultragrid [58] connect musicians through video and audio links that offer round-trip
latency on the order of tens of milliseconds, enabling near real-time interaction. Video links provide
visual feedback and anticipatory auditory imagery, and the use of conventional musical instruments
implies a passing understanding of each other’s abilities and the skill required to fulfill genre-specific
musical responsibilities. These systems include specifications for optimal connection quality [59, 58]
or depend partially on the quality of end users’ audio and video streaming capabilities [57].

The second general approach does not simulate traditional musical performance. Surveys of NMP
characterize work in this vein as “non-realistic NMP” [52]. Early surveys of works for remotely located
users described these as distributed music systems [50]. More detailed discussion of specific systems in
this vein can be found in Section 8. Systems like these might appeal to groups of musicians without the
resources necessary to carry out successful realistic NMP performances, such as acoustic instruments
or high-bandwidth connections. They might not rely on custom servers, and thus would use one of
the transport-layer protocols considered acceptable for use over the Internet. Considering Follmer’s
characteristics of net music systems outlined in 2.5.3, this direction might also appeal to groups of
musicians who are interested in novel forms of musical social interaction, experimentation with sounds
that reflect the network and its qualities, or both. The Hub and LAMC, as described in 2.2, were
driven by similar motivations. While such a tool may serve multiple goals, musical complexity must



be prioritized so as not to compromise a system’s classification as a performing instrument.

Two important considerations in non-realistic NMP systems are (1) how latency is managed in
musical communication, and (2), how coordination is encouraged without spatial proximity and con-
tinuous, intuitive multi-sensory feedback from other musicians. As we see in the following sections 2.6.2
and 2.6.3, both of these issues may require simplifying certain aspects of the musical or interaction
paradigm. In departing from a conventional musical paradigm to accommodate issues with latency and
user interaction, performers themselves must maintain their musical agency, such that the complexity
and coherence of musical output can be attributed to user activity.

2.6.2 Non-Realistic NMP: Changing the Music-Making Paradigm to Manage the Effect
of Latency on Auditory Coordination

When bandwidth is limited and continuously streaming audio between users is impractical, sending
control data like MIDI data (8.4), representations of gestures with physical instruments ([14], 8.4, 8.6),
or other application-specific information (8.1, 8.2) are viable alternatives. In systems with non-realistic
playing paradigms, this can also mean reducing the number of dimensions of salience (described in
2.4.1) of the music produced with the system. This does not entail reducing the complexity of the
music; simplifying some musical aspects can allow greater complexity in others. For example, as
discussed in 2.5.1, pacing is one of several musical timings that can be affected by latency. Enforcing
a set tempo supports users’ pacing while allowing them to focus more on regularity and rhythmic
coordination.

Systems can also restrict their focus to musical styles less dependent on precise timing, such as
texture-based experimental music (8.1, 8.4), such that users can ignore delays and play without adjust-
ing their auditory feedback. This would be acceptable so long as the coherence and complexity reflected
in the complete music can be attributed to user activity, such that musical intention is mediated, rather
than mediatized. A mediatization-based approach might involve restricting control over a significant
portion of the complete music or entire dimensions of salience by automating or pre-composing specific
musical elements.

Latency compensation techniques for rhythmic synchronization often consider a hierarchical “conductor-
player”-like dynamic, in which one party leads with musical cues and the other follows. We introduce
the convention of upstream and downstream roles to describe this playing relationship; downstream
roles receive and follow musical cues from upstream roles to fulfill their rudimentary musical respon-
sibilities in a “chain” or “cascade” of responsibility. In this context, rudimentary refers to the funda-
mental musical responsibilities assigned as part of a hierarchical system. We distinguish these from
other actions because they represent the core responsibilities in the upstream-downstream dynamic.
Non-rudimentary actions include embellishments, improvisations, or responses that add musical com-
plexity but are not critical for maintaining cohesion. Upstream and downstream to describe the flow of
rudimentary musical responsibility, not the flow of information. While these approaches can limit spon-
taneous jamming and other non-hierarchical interactions, in practice, various methods are combined
to allow for a broader range of musical interactions.

For example, in the master-slave approach (MSA) put forward by [9], “slave” users synchronize
with delayed musical output from a “master” user. Synchronization and coherence are achieved only
at the slave’s side, as masters also perceive the delayed output of all slaves. An arbitrary amount of
latency can be accommodated, assuming that masters can adjust their auditory feedback and avoid
the influence of the reconstructed output of slave players.

An approach originally proposed in [60] and described in [9] as the fake time approach (FTA)
maintains rhythmic synchronization for all users. Control data for future events is sent in advance,
such that it is received before it is scheduled to be executed. A system establishes a set tempo,
then adds artificial latency such that the total time between when an action takes place and when
it is perceived by other users is a multiple of one musical cycle (e.g. beats, measures) based on said
tempo. Thus, rhythmic synchronization is maintained in the combined outputs of all participants.
This approach requires clients to maintain synchronized local clocks, such that a consistent timeline
is established and accidental scheduling of events long before or after their intended execution time is
avoided. Systems that apply this method are described in 8.2, 8.4, and 8.6. The fake time approach is
not explicitly hierarchical, but informal influence patterns have the potential to emerge between users
with shifted timelines such that upstream/downstream relationships develop.



[61] proposes a similar setup, the “mutual anticipated session” (MAS). Performers’ musical contri-
butions, called “precedent musical performance”, are delayed by the “precedent time”, which exceeds
the estimated worst-case latency and is quantized to subdivisions of a measure, or “beats”. Precedent
times can vary between pairs of performers. This delay causes performers to hear each other’s overlap-
ping contributions while staying on beat in a “canon-like” style. This approach synchronizes rhythms
while creating different time-shifted and rhythmically coherent versions of the music for different lis-
teners and performers. Varying delays between performers can reveal the potential for new musical
interactions and opportunities for users to coordinate and develop said skills.

Delaying all musical cues by one measure reduces the rate at which joint action occurs, and may
feel like playing along to a recording [31]. While constraints (non-instantaneous message delivery)
and precautions (adding delays to allow transmission of data) make immediate action in response to
events impossible, faster information exchange is preferable. The ideal precedent time is long enough
to consider constraints and precautions but short enough that interactions feel smooth and continuous,
in the absence of visual feedback or mediatizations of spontaneity.

Note that the approaches explored in this section assume that all users perceive the musical output
of all other users; individual user output is not “muted” if it is incoherent. If concrete upstream-
downstream relationships were established, coherence could be maintained by muting the outputs of
all users not directly upstream, as their output does not necessarily need to be perceived for upstream
users to fulfill their rudimentary musical responsibilities. For example, the master-slave approach
could be improved by muting the outputs of slave players to master players. Making this change to
a simple setup like the MSA, in which only one “link” exists in the “chain” of musical responsibility
(between master role and slave role), masters would be unaware of the music being produced by
slaves. This idea could be explored more compellingly in a system with more complicated upstream-
downstream relationships, or one that provides other ways to assess downstream user activity, like a
visual representation of musical activity.

2.6.3 Providing Visual Feedback to Compensate for Visual Isolation and Unfamiliarity
with Novel Instruments

Latency notwithstanding, in systems with visually isolated participants using digital instruments,
musical joint action is inhibited by a lack of visual feedback from other users [30] and unfamiliarity
with each other’s instruments [33]. In networked music literature, these issues are associated with
a lack of “awareness”, or the ability to perceive and understand the actions of other actors within
a collaborative environment. This is a similar concept to situational visibility (described in Section
2.4.1); where situational visibility focuses on visual feedback, awareness refers to a broader ability to
understand and process information about others’ actions. In systems with displaced participants,
the relationship between situational visibility and awareness is important because users are visually
isolated. Physical visual cues can no longer be relied on.

In task-oriented settings, visual artifacts that help users understand a problem and its constraints
while carrying it out can promote awareness [62], so some systems provide users with task-specific
visualizations that change according to performance conditions. For example, there is precedent in
co-located electronic music ensembles to visualize musical activity such that users can differentiate
their contributions [63, 64]. This allows users to assess each other’s musical activity, such that they
can self-correct if their playing breaks convention [35].

Collaborative context notwithstanding, individual musicians can benefit from visualizations of their
own musical activity. Synchronized multimodal feedback has been shown to positively affect musical
experiences [65], and responsiveness is considered a favorable trait of digital instruments [44].

A common task-specific visual artifact is a shared representation of a virtual performance “space”,
populated by avatars representing users. Shared mental models of a performance space can help
musicians anticipate and coordinate their actions [66]. “Abstract and iconic” [65] representations
of users are preferred, as realistic representations can imply a more natural and realistic level of
interaction than possible given technical constraints. New social dynamics can be explored in the
service of music creation if, in addition to representing sounds, the positions of artifacts also influence
the sound produced by the ensemble. This has precedent in systems for musical exploration with co-
located participants, in which users’ positions and groupings in the physical installation space affect
the music produced [67, 68]. Some installations provide users with physical avatars on a “tabletop”
space [69], or with simple digital avatars in GUIs, which users may be responsible for monitoring to
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fulfill their musical responsibilities [68].

The ideas in this section have also been explored in virtual reality (VR) research. Virtual real-
ity, as defined by Jonathan Steuer in 1992, is any “simulated environment in which one experiences
telepresence” [70], where “telepresence” is the sensation of one’s presence in a remote location, rather
than one’s actual physical space [71]. While VR today is commonly associated with the use of “inter-
active computer simulations that sense the participant’s position and actions and replace or augment
the feedback to one or more senses” to achieve the same effect [72], Steuer’s definition also includes
the installations for co-located participants discussed in this section. These are worth consideration
because they suggest techniques for creating shared and immersive experiences without replacing or
augmenting every part of the experience.

2.6.4 Non-Realistic NMP: Visual Feedback with Respect to Latency-Accommodating
Playing Paradigm

The techniques for encouraging awareness described in 2.6.3 are mostly implemented in co-located
ensembles, in which network latency is not significant enough to disrupt the prompt visualization of
musical activity.

A side effect of the fake time approach introduced in 2.6.2 is that as latency increases, the rate at
which joint action can occur is lowered, and musical interactions can shift from feeling continuous to
“turn-based”. This can make users feel they are playing over a delayed recording, rather than “live”
with others [31]. A common solution to this problem is to allow continuous interaction with a locally
rendered interface that provides immediate visual feedback synchronized with musical gestures, such
that interaction with the rest of the ensemble is mediatized by interaction with the interface. Said
interface must be rendered locally, as latency prevents it from being updated continuously. Thus,
user-GUI and perceived user-ensemble interaction can remain continuous as the actual rate of musical
joint action becomes more and more discrete (8.2, 8.5), evoking telepresence in the virtual space.

Systems utilizing the fake time approach that present shared representations of user activity could
improve user experience by providing them with immediate visual feedback to their own gestures, while
other users “see” / other clients display the same visual cues delayed.

Research on tools for co-located participants that utilize miniature physical avatars has noted
that situational visibility is impeded by crowding within the virtual space [73, 74]. A networked
implementation with a similar approach would require a limit on the number of avatars present in the
space (implemented in 8.1) or some way of scaling up the virtual space such that clarity is maintained.

2.7 Motivation for New Work

In sections 2.6.2 and 2.6.3, techniques for adapting conventions of performance to a non-realistic remote
networked performance system were discussed. As explored in 2.6.1, some non-realistic NMP work is
motivated by the desire to explore novel interactions with other users and with the network itself. In
this subsection, we address some of the unique possibilities afforded by networked performance, which
can reinforce design decisions made in the interest of facilitating the in-time creation of coherent and
complex music. It would be novel to explore all of these possibilities at once.

2.7.1 Allowing “Out Of Time” Editing of Performances

There is precedent for networked performance tools that allow for out of time reordering of material
generated during play (8.5, 8.2). These tools only provide audio stems; more flexible and detailed
control data, such as MIDI, would be more suitable for those interested in more advanced editing and
reworking of material. In [51], Barbosa introduced the “composition support system” as a class of
networked music tool, instances of which aim to support in some way the out of time production of
music. A compelling and novel direction for a networked music performance tool would be to allow
users to download records of musical sessions as MIDI files, such that they can be used as starting
points for compositions created out of time.

2.7.2 Cascades of Rudimentary Musical Responsibility

As discussed in Section 2.6.2, some latency compensation techniques for rhythmic synchronization
consider a hierarchical “master-slave” or “conductor-player” dynamic, in which one party leads with
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musical cues and the other follows. Defining rudimentary musical responsibilities helps musicians
navigate new performance contexts.

This idea can be extended further by introducing “cascades” of upstream-downstream relationships
between classes of users, such that they have different roles in gradually shaping the music produced by
the ensemble. This idea has been explored before in some co-located game pieces (previously mentioned
in Section 2.4.1), in which previously agreed-upon visual cues prompt co-located instrumentalists to
change their playing, instructing them to “follow” other participants musically or “match” their play-
ing in different ways. Musical agency is distributed among musicians to promote musical exploration.
Individual rudimentary musical responsibilities may be simplified, as following a designated lead per-
former is simpler than coordinating with multiple ensemble members simultaneously. This is a result
of the “game piece” approach to musical exploration; it is not done in the service of maintaining co-
herence or lowering the amount of skill required to participate. A compelling and novel direction for
a networked music performance tool would be to assign roles to users in the same way.

2.7.3 Visualizing Musical Activity

The benefits of visualizing user activity and the concept of situational visibility discussed earlier in
Section 2.6.3.

In the aforementioned game pieces, participants are co-located and perceive the combined output of
all musicians. They can then be influenced by musicians to whom they are not explicitly “connected”
through an upstream-downstream relationship, by taking note of the activity of the full ensemble, as
well as how their own musical activity is “circulated and modulated” [24] by users further downstream.
Their non-rudimentary musical activities (as described in Section 2.6.2) are enriched and informed by
their perception of the ensemble, with which they are co-located. Musicians can take note of each
other’s playing sensibilities and gauge emergent standards for following upstream users.

It would be novel to experiment with this idea in a networked setting by presenting a shared
visual representation of all users’ activity. Users could carry out their own rudimentary musical
responsibilities using information presented via this representation, and they could perceive other
users doing the same. Thus, their non-rudimentary musical activity could be influenced by other
users, as it would be in a co-located ensemble.

The implementation must address the challenges outlined earlier in Section 2.6.4. While the shared
representation cannot be updated continuously, continuous interaction with this representation should
mediatize continuous interaction with the rest of the ensemble. User experience could be improved by
providing immediate audiovisual feedback to their own gestures, such that other clients display (other
users “see”, or are shown) the same visual cues delayed.

2.7.4 Bi-Located Patterns

Co-located instrumental performers experience their collective musical output almost identically and in
real time. In remote music systems, variations between inter-user latencies can result in each musician
hearing a slightly different version of the collective output, such that musical activity is not disrupted.
Early work on distributed music systems noted this occurring unintentionally and described its effect
as “semi-synchronous” musical performance. More recent work suggests that this is compelling and can
be exploited musically; [75] proposes a system in which “bi-located” rhythmic patterns are perceived
differently by different end users, based on inter-user latency. The MAS framework can be utilized to
similar effect, given variation between precedent times.

2.7.5 Sonification / Artful Representation of Network Characteristics

As discussed in 2.5.2, musicians may be drawn to non-realistic NMP or network-based music tools
by an interest in manifesting sonically or sonifying network characteristics. Interest has grown in
embracing network latencies and disruptions as “crucial” characteristics of the network medium worth
embracing [76, 77]. There is precedent for installations [78] and sound design tools / network soundtoys
[79] that use repeated measurements of network latency to modify the parameters of sounds produced
with Karplus-Strong synthesis [80]. These tools are more suited to sound design and exploration than
music creation. [75] proposes using differences in inter-user latencies to modulate the parameters of
spatial diffusion algorithms. Few networked music tools explore this further, notably not those that
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also allow for out of time editing of material generated during sessions. Given a MAS-like system, it
would be novel to scale up precedent times based on estimates of inter-user latencies.

3 Goals

Broadly, the goal of the proposed system is to facilitate non-realistic musical performance over a
network, and explore the five ideas explored in 2.7 that have yet to be simultaneously explored in one
application.

Based on a literature review of what constitutes networked musical performance, both in the
established field of NMP, a term whose scope now includes systems that facilitate any kind of networked
musical interaction, and in surveys of the broader field of networked music, a performance system
should have the following features: It should give users the impression that they are playing “live”,
mediatizing features commonly associated with liveness when necessary due to technical restrictions.
It should support the collaborative, simultaneous and in-time creation of music. The controls of
the instruments provided to users should be such that there is a low bar for entry, but skill can be
developed such that complex music can be produced and virtuosity is possible. Based on further
review of what constitutes non-realistic performance specifically, further goals are as follows: The
number of dimensions of salience may be reduced due to technical constraints or aesthetic concerns.
While the system may pursue secondary goals of facilitating novel interactions between users and with
the network itself, they should not compromise the primary goal of enabling the creation of coherent
music that displays complexity, in its dimensions of salience, that can be attributed to user activity.

We assume that users are physically displaced, and therefore, visually and sonically isolated. Thus
we introduce the goal of accommodating an arbitrary transmission latency between clients, and the
restriction of relying only on communication through the digital interfaces provided by the system.

The system’s design is motivated by the preceding technical restrictions and guiding principles, as
well as the goal of exploring the five ideas given in 2.7. The system is designed to work best when
users are visually and sonically isolated and operate one client each; we call this the “ideal” setup for
the system.

3.1 Playing and Interaction Paradigm for Proposed Application
3.1.1 Timing and Scheduling

An advance scheduling system is implemented and a set tempo is enforced throughout the ensemble as
part of a MAS-like fake time approach to incorporating latency into the playing paradigm as a musical
strategy.

The scheduling system allows clients to schedule future events locally and on other clients by sending
messages that are timestamped with an execution time, ensuring precise timing. The scheduling
system also requires clients to maintain and synchronize their local clocks, establishing a consistent
timeline such that events are not accidentally scheduled to take place long before or after their intended
execution time.

The system also enforces a tempo across all clients. The tempo itself can be changed but is always
present. Tempo is calculated as a mapping from time to beats, which are incremented at a regular rate
according to the tempo.

The specifics of scheduling and tempo are discussed further in the Requirements (4). We introduce
the details most relevant to the playing and interaction paradigm here first to make it easier to discuss
related concepts.

3.1.2 Drumming

The dimensions of salience of the music produced using the system are solely rhythmic. Users are
presented with a drum-like digital instrument, which plays back percussive sounds in response to key
presses. The action of playing a hand drum translates especially well to a computer keyboard-based
digital instrument, both produce sound immediately and offer a natural rebound when “struck”. The
widespread appeal of drums, especially in a collaborative “drum circle” setting, can be attributed to
their accessibility for beginners and potential for advanced musicianship, making them an ideal starting
point for a digital instrument.

13



Henceforth, drum hit refers to the effect of a user tapping their keyboard to “play” a virtual
drum, which can vary in its intended effect and interpretation by other users. Drum hit information
is transmitted between clients as control data, rather than a real-time audio stream, to conserve
bandwidth.

3.1.3 Client Classes and Rudimentary Musical Responsibilities

Generally, we address the second goal of exploring cascades of responsibility by introducing multiple
classes of clients with different rudimentary musical responsibilities. Each class has a role in shaping
the music produced by the system.

The application implements three client classes, Composer, Performer and Listener. Each class
has a different role in creating music and a different relationship to the three kinds of rhythmic timing
(pacing, regularity and rhythmic coordination) described in Section 2.5.1.

The rudimentary responsibilities of each role are as follows: Composers “play drums” by tap-
ping their computer keyboards. The composer role requires an awareness of pacing and regularity in
that playing along with the metronome encourages coherence downstream. Composers can “connect”
themselves to performers, who follow along with their drums.

Performers only follow along with drums from the performers to which they are connected. Be-
cause of this relationship, we refer to the drums played by composers as instructional drums, and to
performers’ drums as response drums. Multiple composers can be connected to the same performer.
The performer’s only rudimentary musical responsibility is to play along with its connected composers’
instructional drums, also “on beat”. The performer role requires an awareness of rhythmic coordina-
tion, to the extent that performers follow along with what is played by composers. Performers also
have agency in how closely they choose to follow composers’ drums.

Listeners do not play drums; they “perceive” the combined and overlapping response drums from
all performers. They do not perceive composer drums, only performer output. Because they can hear
the overlapping output of all performers, they are aware of other users’ relationships to and ability to
carry out rhythmic timing. Listeners are the end of the “life cycle” of a beat. Despite the presence of
a “listener” class, each musical perspective is legitimate and coherent, irrespective of the number of
contributors.

Thus, music is created in-time (as it is perceived) and collaboratively, and the rhythmic complexity
of the musical output of the system can be attributed to user activity. This also accomplishes the goal
of exploring upstream-downstream cascades, as described in Section 2.7.2; as each class has a distinct
but complex role in shaping the music produced by the system.

3.1.4 Interactive Local Representation of Other Clients and Musical Activity

All users are presented with (all clients display) an interactive shared representation of the entire
ensemble, in which other clients (users) and their musical activity are represented as icons in two-
dimensional space. Users can continuously interact with or be influenced by this representation, such
that interaction with the rest of the ensemble feels continuous. Henceforth we refer to this component
of the UI as the grid.

Clients are represented with simple avatars in the grid. They are differentiable by client class, and
users can identify their client’s avatar. Avatar positions are quantized to grid points, such that they
are separated by small integer numbers of grid squares.

3.1.5 Drum Delay

Drum hits are represented on the grid by shapes that move between avatars. Drum delay refers to
the time it takes for a drum hit’s visual artifact to move from an upstream to a downstream client.
This is also the time between when a downstream client displays an upstream client’s drum hit, and
the time at which said downstream client is expected to act on it or passively experiences its effect,
i.e. how long the drum is delayed. Because client avatars are placed on grid coordinates, and because
drum hits move one grid square per beat, drum delays are quantized to beats. Thus, if composers
play “on beat”, the combined outputs of all connected composers will be rhythmically coherent and
beat-aligned at the performer. Likewise, if performers play “on beat”, the combined outputs of all
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performers’ response drums at a listener will be beat-aligned and rhythmically coherent, producing
canon-like rhythmic music that preserves performers’ rhythmic regularity around beats.

Based on the differences in drum delay between themselves and all other performers, perceives a
unique and rhythmically coherent version of the combined output of all performers. This accomplishes
the goal of exploring bi-located patterns, as described in Section 2.7.4.

The musical paradigm of upstream and downstream roles separated by quantized drum delays is
reflected on the grid as follows:

Composers can draw lines, or connections, between themselves and other performers on the grid.
Connections are made up of individual horizontal or vertical line segments that span grid squares.
Connections can vary in length and direction and can be drawn at any time. Composers’ drums
/ instructional drums are displayed as small nodes that traverse drawn connections, moving from
composer to performer avatar at one grid square per beat. Henceforth we refer to the visual artifacts
that represent composer drum hits as traversing hits. The drum delay between a composer and
performer is the length of the connection drawn between them. Composers can be connected to
multiple performers, but only one connection can exist between a composer-performer pair at a time.
Connections also cannot intersect with other nodes (besides the ones at their endpoints) or other
connections.

The movement of traversing hits along connections acts as a scrolling score for performers, who
play drums in response as the traversing hits reach their avatars. Performer drum hits are displayed
as rotated squares that propagate outward from their avatars at a rate of one grid unit per beat.
Henceforth we refer to the visual artifacts that represent performer drum hits as propagating hits.

As propagating hits expand outward, they “collide” with listener avatars. When a listener “sees”
a propagating hit (when the listener client displays a propagating hit) colliding with its avatar on its
grid, it hears a drum being played (it plays back a drum sound). Thus, the drum delay between a
performer and listener is the Manhattan distance between the two avatars on the grid. Listeners can
move around on the grid by clicking and dragging their avatars, changing the drum delay between
themselves and all performers.

All clients display musical contributions on the grid as traversing and propagating hits. When a
composer or performer plays a drum, the resulting traversing or propagating hit is displayed in all
clients, not just those downstream. Thus, musicians can make informed musical decisions based on
perceived user activity, even if following along with certain users is not part of their rudimentary
musical responsibilities. For example, while performers are not upstream or downstream from each
other, they can adjust their playing to balance or counteract each other’s activity levels. If users can
see each other’s musical contributions, they can better understand each other’s playing styles and
assess how well they are fulfilling their rudimentary musical responsibilities. This fulfills the goal put
forward in Section 2.7.3

Allowing further editing of performances out of time, as described in Section 2.7.1, is accomplished
as follows: A record of the performances, as perceived by listeners, are recorded during a session. At
the end of a session, all users are given the option to download files containing performance data from
the perspectives of listeners, such as when drum hits and tempo changes occurred. These files can
then be edited or used as starting points for compositions developed out of time.

The final goal of the application is to sonify and artfully represent network characteristics. This is
incorporated by making drum delays proportional to crude estimates of latency between clients. We
crudely estimate the network latency between pairs of clients, then place their avatars within on the
grid such that the distance between any two avatars is approximately proportional to the sum of their
corresponding clients’ end-to-end latency. Each point is then quantized to a grid point, such that the
final drum delays are quantized to integer beat multiples. Thus, the configuration of avatars on the
grid reflects the network “distance” between end users.

3.2 Hiding Transmission Delay

The drum delay bears similarity to the precedent time introduced by [61] in that beat-quantized
delays preserve rhythmic coherence when multiple clients’ output is combined. However, the precedent
time includes the transmission time, while the drum delay does not. To accommodate transmission
latency, we “delay” drum hit messages by some additional “hidden delay” H > MAX NET DELAY, where
MAX_NET_DELAY is an estimate of the worst-case end-to-end latency between clients. Recall that clients
can schedule events to take place on other clients by timestamping messages with an intended execution
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time. If a client sends a message at time ¢, if its timestamp is at least ¢t + H, its successful reception
can be assumed to take place before its execution time.

As shown in Sections 3.2.1 and 3.2.2, this strategy can be used to effectively “shift” the performer’s
timeline forward, such that transmission latency from composer to performer is hidden from the per-
former and the listener. Introducing a hidden delay does not require changing what has been previously
described, only specifying its implementation requirements.

3.2.1 Naive Strategy for Implementing Hidden Delay

Consider an example setup with one of each client type, in which the drum delay between composer and
performer is Dy, and the drum delay between performer and listener is Ds. As mentioned previously,
drum delays are quantized to beats, so D; and D5 are both integer multiples of the duration of one beat
at the current tempo of the ensemble B. When the composer plays a drum at time 0, the composer
client immediately displays a traversing hit above its corresponding avatar, which begins to move one
grid unit per beat immediately, such that it reaches the performer avatar at time D;. At the same time
(t = 0) the composer client transmits a message scheduling a traversing hit to be displayed at time
H, such that the performer sees it reach its own avatar at time H + D;. It also transmits a message
that schedules a traversing hit to appear on the listener’s grid at time 2H, such that the listener sees
it reach the performer avatar at time 2H + D;.

At time H, from the performer’s perspective, a traversing hit appears at the composer’s avatar and
begins to move immediately, at a rate of one grid unit per beat. At time H + Dy, the performer sees
the traversing hit reach its own avatar and plays a drum in response, timing their drum hit as closely
as they can to the arrival of the traversing hit. When the performer plays a drum at time H + D1,
from the performer’s perspective, a propagating hit appears and begins to move immediately, at a
rate of one grid unit per beat. At the same time, the performer transmits a message that schedules a
propagating hit to appear on the listener’s grid at time 2H 4 D1, such that the listener sees it reach
its own avatar at time 2H + D + Ds.

In accordance with the goal of displaying individual user activity to all other users, we also schedule
a propagating hit to appear in the composer grid at 2H + D;. This is the closest time to D1, when
the composer sees its own traversing hit reach the performer’s avatar, that the performer’s response
can be displayed to the composer. Showing the hit “late” is preferable to showing it even later or not
at all, given the goal of displaying all users’ musical activity.

At time 2H + D;, from the listener’s perspective, multiple events occur simultaneously: The
traversing hit from the composer reaches the performer’s avatar and disappears. At the same time, a
propagating hit appears at the performer’s avatar and begins to move outward at a rate of one grid
unit per beat. The listener sees the propagating hit intersect with its own avatar at time 2H + Dy +
D5. Shifting downstream client timelines forward by an arbitrary H conceals transmission delays;
downstream users cannot tell when upstream users actually played their drum hits.

Consider now how the same series of events might appear to an additional two clients present in the
system, another performer and another composer, who are not connected to each other or to any other
clients. There are multiple ways in which composers / performers could perceive the activity of other
composers / performers, as well as performers / composers to which they are not connected. Given
that the grid exists in part to allow users to assess each other’s timing sensibilities, and given that
the relative simultaneity of traversing hits reaching composers and propagating hits leaving composers
indicates the timing accuracy of the latter, we say that the non-connected composer and performer
see the drum hits of the connected composer and performer on the same delay as the listener. Thus,
the performer’s response time is accurately displayed to all users.

3.2.2 Naive Strategy Example with Graphs

Consider an example configuration of five client avatars on the grid, labeled 1-5. Avatars are colored
corresponding to their class - composers are red, performers are blue, listeners are green - and numbered
with their ID. One of the composers (1) is connected to one of the performers (2). Their avatars and
that of a listener (3) are arranged in a line, such that the “life cycle” of a beat is shown by the
movement of a traversing hit left to right from composer to performer, then a propagating hit from
performer to listener. Another composer (4) and performer (5) are horizontal only with each other
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and not connected to any avatars. Avatars 1-5 are placed at (x,y) grid coordinates (0,1), (8,1), (11,1),
(4,0) and (8,0) respectively.

This setup covers all possible user perspectives in the system. If composer (4) were connected to
performer (5) and playing drums, the same distortions would be applied to the “other” perspective.

The connection between this composer and performer is eight grid units long, and the performer
and listener are three grid units apart. Thus, D; = 8B and D; = 3B, where B is the duration of one
beat in time units.

Henceforth we refer to the avatars labeled 1-5 as the connected composer, connected performer,
listener, non-connected composer, and non-connected performer, respectively. In the naive solution,
the hidden delay H can have any value greater than or equal to MAX_NET_DELAY, Because all other
delays in the naive solution are small integer beat multiples, we set H = 4B so that delays can be
uniformly represented in the figures that follow. In the naive solution, H is not required to be an
integer beat multiple.

This configuration of avatars, as it would appear on the grid during play, is shown in Figure 1.
Figures 2, 3, 4, 5 and 6 show the distance of a drum hit from the connected composer (measured in grid
squares) as its influence propagates through the ensemble over time (measured in beats), as outlined
in 3.2.1, as perceived by all clients in the example setup. On the figures, red lines represent the paths
of traversing hits from the connected composer, and blue lines represent the paths of propagating hits
from the connected performer.

There are multiple issues with simply shifting downstream client timelines forward. We address
these issues in Sections 3.2.3, 3.2.4, 3.2.5, and 3.2.6.

3.2.3 Visualizing Connected Performer Response Time to Connected Composers and
Non-Connected Performers

While the flow of musical responsibility is one-directional, the flow of information throughout the
system is not. We want performer activity to be visible to composers and inform their musical
decision-making. More specifically, we wish to visualize how well performers’ playing engages with
the established rules and standards of performers, such that they can appreciate each other doing
so. Performers are responsible for playing “on beat” while following along with composer drums,
responsibilities previously referred to in Section 2.5.1 as regularity and rhythmic coordination.

In sections 3.2.1 and 3.2.2, we saw that the naive timeline-shifting strategy could be used to hide
the delay between a connected composer and performer (labeled 1 and 2, respectively, in Figure 1) to
all users, except for the connected composer (1) itself, as shown in 2. This is because the connected
performer’s drum hit message needs an additional H to be transmitted back to the connected composer.

Composers should be able to assess rhythmic coordination based on the relative simultaneity of a
traversing hit reaching a performer and a propagating hit emanating from it. Thus, the proposed mod-
ification to the naive solution should accurately display performers’ response times to the composers
to which they are connected.

3.2.4 Accommodating “Non-Ideal” Scenarios to Broaden Demonstration Capabilities:
Quantizing H to Beats

It is also important to consider that this is an in-development prototype. To be marketable and to
encourage wide use, it should accommodate non-ideal scenarios (besides the “non-ideal” scenario of lots
of latency, which the delay-based playing paradigm already addresses), so that it can be demonstrated
in a variety of situations.

Requiring three remotely located users to operate the application is inconvenient for demonstration.
Potential users may be hesitant to gather a group solely to test the system, so the system should allow
the operation of multiple clients on the same device. Additionally, at music technology exhibitions
or conferences, demonstrating the system on multiple co-located machines could better showcase the
system’s collaborative potential than a demonstration on one device.

In previous sections, we described an “ideal” scenario in which physically displaced users operate
one client each. Users / clients were visually and sonically isolated outside of the interfaces provided
by the system. The settings described in this section are “non-ideal” in that the overlapping output
of multiple instances of the client application can be heard.
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In service of accommodating these “non-ideal” scenarios, we introduce the following requirements
for a modification of the naive solution: The system must preserve rhythmic coherence when the out-
puts of multiple clients producing sound simultaneously are overlapped. The system must synchronize
the intersection of propagating hits with listener avatars across clients.

To preserve rhythmic coherence when the outputs of multiple clients producing sound simultane-
ously are overlapped, we quantize H to an integer multiple of the duration of one beat, such that
HmodVMAX_NET DELAY = 0 and H = zB, where B is the duration of one beat and x is H in beat units.
In the ideal scenario, users / clients are sonically isolated. If the output of multiple clients is perceptible
at once and H is not beat-aligned, overlapping contributions will be rhythmically incoherent.

This introduces another issue with the hidden delay. Recall that the proposed application also
accommodates tempo changes. The duration of one beat depends on the ensemble’s tempo, so H
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must also change if the tempo changes. H and z could be changed every time the tempo is changed
by rounding MAX NET _DELAY up to the nearest integer multiple of B. Alternatively, x could be held
constant, and the maximum tempo could be restricted such that the duration of B = H is always
greater than MAX_NET_DELAY. Using this approach, H changes every time the tempo is changed, but =
does not. We take this approach because a consistent number of beats could be used as a reference
point in visualizations.

3.2.5 Accommodating “Non-Ideal” Scenarios to Broaden Demonstration Capabilities:
Synchronizing Propagating Hit Intersection and Listener Avatar Intersection Across
Clients

We also want to ensure that clients display propagating hits intersecting with listener avatars at the
same time. This is done with a specific demonstration setup in mind, which could be compelling when
carried out at an expo or conference.

Consider a scenario in which individual clients are set up on separate machines, which are dis-
tributed throughout a space. Each client is being operated by one user. Machines running listener
clients play audio back through their speakers, and machines running performer and composer clients
play audio back through headphones. The grid and UI are visible on all machines. While a session
is taking place, an audience present in the space can see the grid on all machines, and can hear the
combined output of all performers at the listener clients.

If the intersection of propagating hits with listener avatars is synchronized across clients, audience
members could observe any client’s grid to see how performer output is combined at the listeners,
while simultaneously experiencing the output of all listeners. In this way, the ideal scenario for the
application could be demonstrated in non-ideal scenarios, in a more engaging way than if all users
/ clients were isolated. Because the hidden delay is quantized to beats, the complete output of the
system remains rhythmically coherent, even if machines running composers or performers play audio
back through speakers, instead of headphones.

3.2.6 Locally Rendered Grid Responsiveness to User Activity

Immediate responsiveness to user input is a favorable trait of instruments. Thus, when a composer or
performer plays a drum, we want a visual artifact to appear immediately. To mediatize continuous in-
teraction between users, we want this artifact to appear in the locally rendered grid immediately, before
the reception of the corresponding message has been confirmed by the server, or before MAX_NET DELAY
has passed and the message’s successful reception can be safely assumed. Two of the conventions
that have already been introduced for displaying drum hits - that they move one grid unit per beat,
and that the intersection of propagating hits and listeners is synchronized across clients - make this
problematic, as shown by the following example:

Consider a configuration in which a performer and listener are separated by one grid square (drum
delay of one beat between them). Assume that H = MAX_NET DELAY and H = 4B time units, or z = 4
beats. When the performer plays a drum, a propagating hit appears and begins to move one grid
square per beat, such that the performer sees it intersect with the listener’s avatar one beat after it is
played, before the listener has played the beat or even received the corresponding message. This issue
is similar to the one outlined in Section 3.2.3 in that clients display the intersection of their own drums
with downstream clients avatars before their response can be transmitted back, or before the message
can be assumed to have been received. Both issues could be solved by loosening the requirement that
drum hits always move one grid square per beat after appearing.

The next modification we make to the naive solution is that in the locally rendered grid, drum hits
do not start to move one grid unit per beat until at least = beats after they are triggered. After a
performer plays a drum, they see a drum hit appear immediately in their locally rendered grid. This
is before x beats have passed and before the message can be assumed to have been received by the
server. However, the drum hit will move a rate of 1/(x + 1) grid units per second, such that all clients
display the hit one grid unit away from the performer avatar after x 4+ 1 beats have passed. Thus the
intersection of propagating hits and listeners can be synchronized across clients, even if listeners are
just one grid unit away from performers, by distorting the distances between them.

We use a similar strategy to solve the issue outlined in 3.2.3, in which an extra hidden delay must be
accommodated to display the performer’s response to the composer. After a composer plays a drum,
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they see a drum hit appear immediately in their locally rendered grid, before x beats have passed and
before the message can be assumed to have been received. However, the drum hit moves 1/(2z + 1)
grid units per second, such that all clients display the hit one grid unit away from the composer avatar
after 2x + 1 beats have passed. In short, the distance between a composer and performer appears
longer to the composer than to it does to other clients, including any performers to which they are
connected. Performers see a shorter path, so they play earlier than composers “expect”, such that
their drum hit messages can be assumed to have been successfully delivered before they need to be
displayed. This distance-distorting technique and the quantization of the hidden delay completes the
non-naive approach to the hidden delay problem.

3.2.7 Complete Hidden Delay Strategy with Example

To further clarify the complete, non-naive approach to disguising delay, we re-examine the example
configuration used to explain the naive strategy in Section 3.2.2, shown again here in Figure 7 for con-
venience. Again, we refer to the avatars labeled 1-5 as the connected composer, connected performer,
listener, non-connected composer, and non-connected performer, respectively. We note again that this
setup covers all possible user perspectives in the system.

Avatars are colored corresponding to their class and numbered with their ID. The connected com-
poser, connected performer, and the listener are arranged in a line, such that the “life cycle” of a beat
is shown by drum hits moving from left to right over time. We quantize H for the reasons outlined in
Section 3.2.4, and set = 4 beats arbitrarily for the example.

Recall that if composer (4) were connected to performer (5) and playing drums, the same distance
distortions would be applied to the “other” perspective. We see in Figure 8 that when the connected
composer plays a drum, the corresponding traversing hit is displayed moving slowly across one grid
unit over the course of 2x + 1 beats. If composer (4) were connected to performer (5) and playing
drums, it would be possible for composer (1) to display composer (4)’s drums on the same delay as
the listener and other performers, as shown in figures 10 and 12. No distance distortion needs to take
place for other composers’ drum hits; composer and performer clients would only display their own
drum hits slowly accelerating.

Consider that a user operating a composer client would see their own drum hits moving at 1/(2z+1)
grid units per beat for the first 2z + 1 beats after playing a drum, while all other composers’ drum
hits are displayed moving at a constant speed. Users might believe they are experiencing lag if their
visualizations move dramatically slower than other clients of the same class. To combat this, the
composer client instead displays other composers’ drum hits as shown in 11. This way, the difference
between the initial speeds of traversing hits of composers, as displayed in the composer client, is more
consistent. We do not implement a similar technique in the performer client, as the difference in speed
between a performer’s own propagating hits and other performers’ propagating hits is less dramatic.

3.3 Completion Criteria

I first implemented the system consisting of the interfaces described in 3.1. There is precedent for
evaluating musical prototypes by conducting informal test sessions with novice users, followed by
surveys on the prototype’s nominal functionality and ease of use [68, 81, 82]. To show that the
prototype functions as a performance system, I tested it during two informal group sessions. First,
I held an optional session outside of the Music and Technology seminar for interested participants,
in which I introduced the system, gave a short demonstration, then invited attendees to participate.
After this session, I polled participants on their experience and incorporated some of their feedback
into a new version of the system. Between the first session and my thesis defense, I used the record of
the performance as a starting point for a piece of music composed out of time. I also used the record
of the performance as a starting point for a piece of music, and presented the finished piece to show
how the system’s results can be utilized.

To summarize, the complete thesis project consisted of the creation of a system that implemented
the playing paradigm given in 3.1 (1), holding a test session with said system to generate material and
incorporate feedback into the final system (2), the completion and presentation of a piece of music
using the material from said session (3), and the complete thesis document (4).

The system can be evaluated on its completion according to the specifications in 3.1. The pre-
sentation and test session can be evaluated based on the nominal operability of the application and
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the satisfaction of the preceding specifications. The music generated during the test session can be
evaluated on whether or not it incorporated the material generated during the test session.

4 Requirements
This section outlines the software requirements and additional UI components necessary to implement

the system described in 3.1 Previously described features give rise to the requirements outlined in this
section.
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4.1 Architecture

There is precedent in other networked music tools to implement a “hub-and-spoke” network topology,
in which information from end users is routed through and stored on a central server (8.1, 8.6, 8.4,
8.3, 8.2).

A front end for client operations and a back end for server functionality must also be developed.
The server is then responsible for managing and updating the state of all connected clients, and
should allow clients to connect through an Internet browser using an independently distributed link.
Connections must remain stable, allow two-way data transfer, and maintain association with their
initiating clients. The client application must implement an interactive user interface and functionality
for audio playback.

4.2 Communication and Timing

A standardized format must be established for bidirectional control data transmission between client
and server, such that control data can be routed between clients. The implementation must tolerate
the occasional loss of commonly transmitted control data, such that ensemble performance is not
significantly affected.

In keeping with the fake time approach, control data for future events is sent in advance, such that
it is received before it is scheduled to be executed. This requires clients to maintain synchronized local
clocks, such that a consistent timeline is established and accidental scheduling of events long before
or after their intended execution time is avoided. The chosen communication format and timing
convention must support scheduling future events.

A mapping between time and beats based on tempo must also be implemented to maintain the
beat-based musical and visual conventions introduced in previous sections. The server is responsible
for keeping track of the ensemble tempo and maintaining the fields necessary to support a mapping
from beat to time. The server is also responsible for establishing and maintaining a consistent reference
clock to which clients synchronize, and for initiating a clock synchronization procedure between itself
and clients. The server must track whether or not individual clients are synchronized, and individual
clients should maintain their synchronization status.

Additionally, an upper bound for end-to-end communication must be defined, and the application
cannot depend on messages arriving faster than in this worst-case scenario.

4.3 Setup

Clients are responsible for joining the ensemble before a session takes place. For security reasons,
we require users to enter a valid username and password before joining an ensemble; the latter can
be distributed via alternate channels prior to a session. The server must keep track of the correct
password.

As part of this process, each client’s transmission time to the server is roughly estimated. A client
is walidated once a valid username and password have been entered, its clock is synchronized with that
of the server, a mapping from time to beats based on an initial tempo has been established, client-side
audio playback has been initialized, and the server-client transmission time has been roughly estimated.

Thus, the client is responsible for measuring and reporting its transmission time. The server is
responsible for maintaining and changing information about connected clients, including their user-
names, whether or not they have entered correct passwords, their individual connections to the server,
and their transmission time estimates.

Recall that at least one of each client type (composer, performer, listener) is necessary to carry
out a session. When at least one of each client type has been validated, all validated clients display a
voting button to initiate the session. If a new client joins or leaves the ensemble, the voting process
resets. If a client leaves the ensemble and there are no longer enough clients of each type to carry out a
session, the client must hide the option to confirm the ensemble. The server is responsible for assessing
when there are enough validated clients of each class to begin a session. The client and server must
implement a method for notifying clients when one of each type has successfully joined, and present
the option to confirm the existing configuration of the ensemble to clients.

When all validated clients have voted, the estimates of client-server transmission time are used to
generate estimates of end-to-end latency. These are scaled and used to generate a two-dimensional

22



configuration of points on a grid whose relative distances reflect the relative physical or network-
constrained “distance” between players. These points are then used as the positions of avatars on the
grid. This step can only be carried out once all validated clients have voted to start the session. The
server is responsible for carrying out this process and reporting a configuration of avatars on the grid
back to clients. Clients that are still at intermediate setup stages are shut out of the session before
this step begins.

4.4 Session Activities

After the positions of avatars on the grid have been generated, validated clients display a Ul containing
the complete grid, a chat box, a window with the current tempo of the ensemble, volume sliders for
different sources of drums, and an indicator of whether the ensemble is started or stopped. The
composer Ul differs in that the tempo and start/stop artifacts are interactive. Any composer can
start /stop or change the tempo from an initial value set by the server before or after voting is complete.
Once any composer initiates this, the session is started and play begins. After this point, clients
display their own and others’ activity in the grid listener “perspectives” are logged by the server,
and beats begin to increase incrementally with time based on the tempo. Composers can play drums
and draw connections between themselves and performers, performers can play along with connected
composers, and listeners can move their avatars. Different client classes and users’ own avatars should
be distinguishable within the grid.

Clients are responsible for displaying the grid and other responsive UI elements that allow these
interactions and others described in 3.1. All clients must implement functionality for displaying connec-
tions drawn by composers, traversing hits, propagating hits, avatars, and other Ul elements necessary
for play. After a tempo change, traversing and propagating hits should continue to move at a rate
of one grid square per beat. Composers must implement functionality for establishing and deleting
connections, playing instructional drums, and sending tempo change, start and stop messages. Per-
formers must implement functionality for receiving instructional drums and playing response drums.
Performers should also implement a scrolling score to combine instructional drums from all connected
players; while the movement of traversing hits on the grid can function as a scrolling score, the size
of traversing hits, their changes in direction along drawn connections, and the amount of other in-
formation being communicated to the user via the grid make this difficult, necessitating a separate,
more streamlined scrolling score. Listeners must implement functionality for receiving and playing
back response drums, and for moving to different positions on the grid when clicked and dragged.

The server must keep track of the state of the session (started, stopped, in progress) and avatar
positions on the grid, and broadcast it to clients for consistency throughout the ensemble. All connected
clients must implement functionality for updating their own locally rendered grid given a listener
position change. All clients must also implement the distance distortion mechanic described earlier,
such that delay is disguised, the timeliness of performers’ response drums is visualized on the grid
grid, which is kept as consistent as possible across clients at all times. It is also necessary to limit
the number of connected clients and the size of the grid, such that the user interface does not become
overwhelmingly cluttered.

4.5 Conflict Resolution and Verification

The server is responsible for verifying that a connection drawn by a composer or a new position chosen
by a listener do not conflict with other grid elements. The server is responsible for maintaining a record
of occupied and unoccupied positions on the grid, such that when a composer draws a connection or a
listener moves their position, this record can be referenced to determine if the new position does not
conflict with any other visual artifacts on the grid. If the action is valid, this record is updated and
is used as a reference for any future actions, before it is guaranteed that the action that changed the
record has propagated to the rest of the ensemble. Invalid actions trigger error messages that explain
why the action was rejected.

To prevent listeners from being moved too quickly, a listener position change is followed by a
cooldown period, during which the listener cannot be moved a second time. The cooldown period
must be greater than MAX_NET_DELAY, such that it can be reasonably assumed that the position change
message has been broadcast to all clients by the time the period is complete. Tempo changes and
connections drawn between composers and performers are followed by a similar cooldown period; after
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a tempo change message has been received by the server from a composer, all composers’ tempo wheels
are locked for some cooldown time. This also prevents rapid tempo and listener position changes from
disrupting playing.

4.6 Shutting Down

Any composer has the ability to stop the ensemble, given that a cooldown period following previous
stop/start commands has passed. When the ensemble is stopped, the grid stops displaying user
activity and drum hits no longer trigger audio playback on the client. When the server receives a stop
instruction from a composer, records of the performance are used to generate performance files, which
are made available to download after being generated. The server is then responsible for implementing
a logging system for performers’ response drums (as perceived by listeners) and for implementing a
process by which this information can be disseminated, either after being converted to a format that
lends itself to further editing, or after providing users with some resource to convert to a new format.

The server must implement functionality for stopping a session if a client prematurely disconnects,
and for delivering a record of the session up until its interruption to clients. The client Ul must
communicate to users that the session has been interrupted or stopped.

5 Implementation

A note on naming: The Global Drum Circle (GDC), a distributed web-based system to enable drum
circle performances across the Internet that I developed collaboratively with my academic advisor,
Professor Roger Dannenberg, was used in software that formed the basis for this new system, called
“ELBS” (experimental latency-based system), hence identifiers and filenames in the implementation
often use “GDC” instead of “ELBS.” Sections 5.1.1, 5.1.2, 5.2, and 5.5.3 through 5.5.7 refer to imple-
mentation details that are unchanged or only slightly adapted from GDC. Other aspects of GDC are
described in Section 8.6.

5.1 Client-Server Implementation

The application implements a hub-and-spoke network topology. To maximize accessibility, the client
application is a browser-based interface. One user is responsible for setting up a server and distributing
a link to access a client. During testing, the server was set up on a Google Cloud virtual machine with
a public TP address. Multiple client instances can easily be opened in separate browser tabs.

5.1.1 Back End

The back end implementation uses WebSocket, a communications protocol that enables full-duplex
transmission between a client and server via a single TCP connection [83], to establish and maintain
connections between clients and the server. Using a tool intended for facilitating persistent connections
is more appropriate than keeping a GET request open beyond the typical request-response cycle of
traditional HTTP. The back end is implemented in Java; at the time the project was started, I had
more experience writing applications in Java than in other languages. There also existed an easily
extensible base code for a Java-based WebSocket and HTTP server, Joe Walnes” Webbit [84]. A
possible alternative would have been to use JavaScript and node.js to write a server. Node.js is a
collection of independently managed libraries, which undergo frequent and unpredictable changes,
leading to an unstable foundation for code development. I decided to use Webbit rather than node.js
to avoid frequent updates and versioning complexities. The server implementation is composed of
a main class Gdc. java responsible for establishing an HTTP server, and an extension of the base
WebbitServer implementation GdcWebSockets. java that implements the ELBS server interface using
the O2lite protocol over websockets.

5.1.2 Front End

The project’s front end is written in p5.js, a free and open-source JavaScript library for graphics
programming [85]. p5.js allows the embedding of “canvases” within web pages and offers many drawing
primitives (circle, rectangle, line, etc.), but has a very limited audio API and no support for interacting
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with a back end. There is some precedent for utilizing p5js in networked music tools with GUIs [75].
Because the project is a prototype, it is appropriate to decouple the back end implementations of
graphics and audio scheduling to allow for re-implementations in various languages and frameworks
without being constrained by the details of the prototype implementation.

An alternative to p5.js would be to use ReactJs, an open-source JavaScript library for building
user interfaces [86]. React’s unique component-based development system makes it difficult to express
components in terms of simple primitives. Because the images that need to be displayed are very
specific to how the prototype operates, it makes more sense to draw from primitives than to try to
use auxiliary tools like Framer Motion and React Reveal to animate elements of the page. React also
utilizes unidirectional data flow, such that child components are not able to update data from a parent
component; it seemed unwise to introduce this restriction when developing a prototype I knew would
have to contain mutually dependent components that reacted in different ways to user input.

The client implementation consists of a directory js/ containing several JavaScript files, o2us. js,
an implementation of O2lite over websockets, scheduler. js, which implements the scheduling algo-
rithm, key_positions. js, which contains the keys whose general positions on the left and right side of
the keyboard are the same across ANSI, ISO, and JIS standards, and elbs_client.js, elbs_ui.js,
grid.js and sketch.js, which register handlers, keep track of state, and render the user interface
using the p5js library. The p5js library itself is also included in the client implementation. Each client
class is linked to a directory that includes a user_unique. js file containing handlers and object classes
exclusive to said class, to replicate as little code as possible while minimizing the need to check the
client class, as well as a file index.html that references the above files in js/.

5.1.3 Upper Bound for End-To-End Communication

It is necessary to set an upper bound for end-to-end communication. The application cannot depend
on messages arriving before this time.

Recall from 2.1 that the worst-case transmission time from sender to receiver, given one dropped
packet detected by the sender, is TT + RTO, and that RTO > 1000 ms. Given a dropped packet detected
by the received, the worst-case transmission time is (3 * TT) + P, where P is the time between the
transmission of the dropped message and the subsequent message. These are shown in Figures 13
and 14, respectively. While an upper bound cannot be placed on RTO, one can be set for P, such
that the worst-case transmission time between client and server is reduced by forcing the receiver to
acknowledge a dropped packet: A timer on the client side triggers the transmission of a “no operation”
(NOP) message, some P’ ms after every message containing data is sent. However, we set P’ > 2 *
TT to accommodate the transmission time of an acknowledgment message and avoid transmitting a
NOP message prematurely.

Client Server Client Server

......... = T

seq=a, ack=b P seq=a, ack=b

RTO

SQQQQ
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Figure 13: A timing diagram showing a packet
loss detected by a TCP sender.

Figure 14: A timing diagram showing a packet
loss detected by a TCP receiver.
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If the sender transmits another message be-

fore P’ has passed, the timer is reset. Thus, Client 1 Server Client 2
the worst-case client-server transmission time, = ~—
assuming one dropped packet, is P> + TT, where P!

P < P’. It follows that the estimated worst-case
transmission time between a client with trans-
mission time TT; to the server and another client ™1
with transmission time TTy to server, assuming
one dropped packet, can be reduced to P’ +

3TT; + TTs. This is shown in Figure 15. We ac- -
count for one packet loss in our chosen value for ...
the end-to-end transmission time; there is theo- T1

retically no upper bound given the possibility of
repeated packet losses, but this is unlikely. =

Setting an upper bound then requires an esti- TT2
mate of the worst-case one-way transmission time
between clients. It is necessary for other aspects
of the implementation to make rough estimates
of the one-way transmission times of clients (de-
scribed further in 5.3.2). These values are on Figure 15: A timing diagram showing end-to-end
the order of milliseconds, so it would be naive transmission between end users, given one lost
to reference them as part of an estimate of the packet detected by the server.
worst-case delay. Google Cloud’s virtual machine
performance dashboard provides a number of useful statistics; at time of writing, the highest median
round-trip transmission time is roughly 300 milliseconds between an external endpoint and Google
Cloud region and 600 milliseconds between two Google Cloud regions. The highest packet loss rate
between regions is roughly 0.1 percent [87]. Note that the values given by [87] do not take into consid-
eration application-specific sources of latency, some of which are referenced in 5.3.2. To acknowledge
other sources of latency possibly absent from the statistics in [87], we use the worst-case round-trip
time of 300 milliseconds between an external endpoint and Google Cloud region as the worst-case
one-way transmission time such that TT; = TTy = 300 milliseconds. We set P’ = 3 % T'T" = 900 ms,
which is shorter than the minimum RTO.

We then set MAX_NET_DELAY = 2100 ms, but because this is still a rough estimate, the implementa-
tion ensures that play is not disrupted even if messages are received late.

5.2 Communication and Timing
5.2.1 O2lite Messages

02 is a network protocol for music control that supports clock synchronization. O2lite is a subset of
02 that operates over WebSockets and allows applications to connect to an O2 host that can relay
messages to an ensemble. The implementation uses O2lite to facilitate communication between client
and server. Java and JavaScript implementations of O2lite are utilized on the server and client side,
respectively.

In O2lite, a “message” is an address pattern representing a designated operation or function, a
string of characters representing parameter types (“type string”), and a set of values representing
parameters with the types specified in the type string. A “service” is a named server or client that
receives and acts on O2lite messages. A collection of collaborating processes is called an “ensemble”;
all components belong to an ensemble and communication is only supported between members of the
ensemble. Messages are delivered to and handled by services within an ensemble, and a handler must
be installed for every type of message a service receives. The ELBS application implements handlers
for all message types.

All O2lite messages are timestamped such that their associated functions can be called according
to their timestamp [88]. The ELBS application implements its own scheduling system, so all O2lite
messages are timestamped with 0.0. Thus, associated functions are called immediately and the custom
scheduling system supersedes O2lite’s.
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5.2.2 Clock Synchronization

O2lite also implements algorithms for synchronizing internal clocks between processes. One process’
clock is designated a “reference” to which all other processes’ clocks are synchronized. Time is counted
in double-precision seconds since start. In the ELBS application, the server’s clock is designated as
the reference clock and used to synchronize clients. The O2 clock synchronization algorithm was
re-implemented in Java so that the existing JavaScript implementation of O2lite could be used as is.

5.2.3 Tempo and Beats

Tempo is calculated and enforced as a mapping from time to beats, which are incremented at a regular
rate according to the tempo and the time offset, or the time at which the tempo was changed. This
value in beats is called the beat offset. Both values are maintained by the server. The ensemble always
starts from beat = 0.0 and time = 0.0. Beats are mapped to time via the following equation:

Beat = BeatOf fset + Tempo x (Time — TimeO f f set) (1)

Where Tempo, Time, Beat, BeatOffset and TimeOffset are maintained by the server and kept
consistent throughout the ensemble. Other values monitored by the server are TempoEpoch, which
prevents tempo change conflicts, and StartTime, the start time of the ensemble; both are also broadcast
to clients.

Note that if one were to send timing commands of the form “start now at 100 BPM,”, jitter
could cause all clients to operate somewhat out of synchronization. To avoid this problem, we send
mappings from real time to beat time where mappings are determined by Tempo, BeatOffset and
TimeOffset. Since all clocks are synchronized and mappings are time-invariant, it follows that the
locally calculated beat is consistent across all clients. Mappings are transmitted in advance with a
timestamp and updated synchronously across all clients.

The ELBS application supports tempo changes between nonzero positive values, as well as stop-
ping (decreasing tempo to zero) and starting (increasing tempo from zero). Tempo changes are syn-
chronized across clients. When a client initiates a tempo change from Tempo to NewTempo at time
TempoChangeTime in seconds and TempoChangeBeat in beats, the timemap (the new tempo repre-
sented in beats per second, as well as the time and beat offset the tempo change was initiated) is sent
to the server, along with the TempoEpoch of the client.

If the value of TempoEpoch sent with the tempo change message is the same as the value on the
server, the server increments TempoEpoch. In the new timemap, MAX_NET_DELAY/2 (an appropriate
estimate of the maximum net latency between server and client) are added to the time offset to ensure
synchronization between clients. The current beat is then

Beat = BeatOf fset + Tempo x (TempoChangeTime + (MAX_NET_DELAY/2) — TimeOf fset) (2)

and the new timemap values are calculated with

BeatOf fset = Beat (3

Tempo = NewTempo (4
TimeOf fset = TempoChangeTime + (MAX_NET_DELAY/2) (5
TempoEpoch = TempoEpoch + 1 (6

~ — ~— —

The new timemap and TempoEpoch are then broadcast to all clients. A function sched_set_timemap ()
is called to then effectively change the rate at which beats progress with time.

5.2.4 Beat-Based Scheduling

The ELBS application implements its own scheduling system; all messages are timestamped with 0.0
so that associated functions are called immediately.

Events scheduled on the client side are represented as “pending events” which are composed of the
beat at which an event should take place, the function to call at said beat, and the parameters to said

27



function. An empty queue of pending events is initialized when the timemap is initially received from
the server. Pending events are internally executed at the specified times and cleared from the pending
events queue once executed. Functions also exist for converting beats to time, and vice versa.

5.3 Setup
5.3.1 Server Setup and Initialization

Setting up the server requires installing Java and Maven on a virtual machine with a public IP address,
transferring the project from GitHub to said machine, creating a .txt file with the correct password
to join the ensemble, and compiling and running the Maven application to generate a link to the role
selection page, which can be sent manually to interested users. The password is created during the
setup process to avoid storing the password with source code. A shell script runscript.sh is also
available in the Git repository to carry out most of this process on a Google Cloud virtual machine. So
far, I have used an e2-micro instance, which, without any additional tiers enabled, has 1 Gbps ingress
bandwidth and 7 Gbps egress bandwidth [89).

The server implements an enumerated type SessionState to manage the state of the session. The
possible values are SETUP (still waiting for a sufficient number of clients to connect), ACTIVE (clients are
actively participating in composition and performance), GENERATINGMIDIS (server is generating MIDI
files to be sent to connected users), and COMPLETE (the session has been stopped and is complete).

To keep track of the information associated with each connected client, a ConnectionInfo class is
implemented with a constructor that initializes an ID number for the object. The ConnectionInfo
also contains an enumerated type SetupState with possible values INIT (client has not yet been
validated), VALIDATED (client’s local clock is synchronized to reference clock and a valid username and
password have been entered), and VOTED (client has voted to begin the session after an appropriate
number of clients of each type have joined). It is initially set to state INIT. The ConnectionInfo
also keeps track of whether or not a client’s clock has been synchronized, valid credentials have been
entered, and a maximum round-trip time between the client and server has been determined out of
recorded values. It also keeps track of the client’s class (one of COMPOSER, PERFORMER, LISTENER).
This can be used to determine whether or not at least one of each client type has been validated by the
server. The server also implements mappings ConnectionsMap between Websocket connections and
ConnectionInfo objects, and handlersMap between message addresses and handlers. TempoEpoch
and the timemap values Tempo, BeatOffset and TimeOffset are set to zero. StartTime is set to the
system time.

The server also implements fields IDCounter and TempoEpoch that are initially set to 0. When a
new client connects with the server, a new ConnectionInfo object is initialized with ID IDCounter,
a mapping <WebSocketConnection, ConnectionInfo> pair is inserted into ConnectionsMap, and
IDCounter is incremented.

5.3.2 Client Initialization

Clients implement a state machine to manage the steps of setup. The possible states are INIT (audio
has not yet been set up), SYNCING (audio has been set up but local clock has not been synchronized to
server clock), READY (audio has been set up, clock is synchronized, tempo on client side is zero), and
PLAYING (same conditions as ready, but tempo on client side is greater than zero).

Clients implement boolean variables to track their own setup steps (valid_credentials_entered,
timemap_set, client _voted, client validated by_server) and to track the state of the entire en-
semble and determine which UI elements to display (voting over_grid_initialized).

Clients implement a class UserInfoTable to store information about each client connected to the
ensemble, including their position on the grid (in grid coordinates and window coordinates - the latter
is referenced when drawing), user name, ID, and user type (composer, performer, listener). User type
and user name are stored in arrays and are accessed with a mapping between IDs and array indices.
The UserInfoTable also maintains counters for the number of connected clients of each type, which are
maintained and displayed in the UT only during setup. Client-side audio playback is implemented via a
JavaScript AudioContext. The AudioContext begins in the suspended state. audioContext.resume ()
is called during the client initialization process, which switches the state to running. The Au-
dioContext state is polled to determine if this has taken place. Once the AudioContext state is
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running, the client enters the state SYNCING. Upon connection to the server, clock_synchronized,
timemap_set, valid_credentials_entered, vote_cast = false. New users are prompted with the
option to choose between client types (Figure 16), which, as previously mentioned, are implemented
as different web pages, such that multiple clients can be opened at once.

ELBS - Experimental Latency-Based System for Composition and Performance
Composer

Listener

Performer

rbd-+gde at cs.cmu.edu & aliloia@andrew.cmu.edu

Figure 16: The client type selection screen displayed to users after initial connection to the server.

Users select a client class by clicking on a class name, after which different client types display the
same setup screen in different colors. To give users a sense of the state of the setup process, when a
client first connects, its UserInfoTable is updated with the number of clients of each type already in
the state VALIDATED. This information is displayed via the UI during setup only. (Figure 17).

@ Composers: 1

. Composers: 0 Enter username and password below:
Enter userame and password below: p . u . .
sername: Performers: 0

Username: | @ Performers: 0 Password:

Password: |

[ submit info) Listeners: 0

Listeners: 0

Figure 18: The composer client’s Ul after a user-
name and password have been entered, but before
there are enough validated clients to begin a ses-
sion.

Figure 17: The composer client’s Ul for entering a
username and password. Background color is set
using the corresponding class color on the table.

When this page is displayed, the server assigns an ID number to the client, and the O2lite clock
synchronization procedure begins. The server sends the timemap to the client after their clocks have
been synchronized. The Ul components that enable username and password entry are also displayed
during this step. When a user enters a name and password, the client transmits it to the server, which
determines their validity. If they are valid, the username and password entry sections are hidden
(Figure 18).

5.3.3 Estimating TTs

The process of estimating client-server transmission times is then initiated.

Accurately measuring the transmission time during setup is challenging because it can vary over
short or long periods of time [1, Chapter 9.14], [90]. Averages from numerous measurements are not
necessarily stable or accurate. However, transmission time is influenced by factors that tend to remain
stable (physical distance, network infrastructure, protocol overhead) and factors that can be expected
to fluctuate (available network bandwidth, network congestion, whether or not packets have been
dropped). We can assume that variation between measurements is due to fluctuating factors, and that
the minimum transmission time measured over a given time results from factors that remain stable
during that time.

Transmission times are estimated using round-trip O2lite message times in milliseconds, using
universal time. During solo testing of the application with multiple clients open in multiple tabs, the
average setup time for an entire ensemble of 3 to 10 people was roughly 20 seconds. A pattern by which
to fan out messages and compare their transmission and reception time was developed that took 20
seconds. Given N = 10, S = 20, and F = 2, N measurements are captured, with S milliseconds between
the first two, and the time gap between measurements increasing in each iteration by a factor of F.
With these values, the process of taking one estimate is roughly 20 seconds. Once N measurements are
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taken, the minimum round-trip transmission measured is halved, transmitted to the server, stored in
the client’s ConnectionInfo object, and associated with it for the rest of the session.

While we use multiple O2lite messages to include the latency and overhead produced by the appli-
cation itself in the estimate, the ping command could alternatively be used to measure the round-trip
time [91].

When the server determines that a client’s clock has been synchronized, it has entered a valid user-
name and password, and a minimum transmission time has been established, all clients’ UserInfoTables
are updated with the number of validated connected clients. The client is also notified that it has been
validated.

5.4 Client Voting

To support different configurations of client types with more than 3 clients, the ACTIVE state is not
entered automatically once enough clients of each type have joined.

When the client determines that timemap_set, client_validated by_server = true and from
the UserInfoTable that at least one client of each type has connected, it is presented with the option
to vote to begin the session in the existing ensemble state.

When the vote is cast, vote_cast = true and SetupState = VOTED on the client and associated
server-side state machines.

If a new client is validated or disconnects during the voting process, voting resets. vote_cast
= false and SetupState = VALIDATED on the client and associated server-side state machines. If,
after a valid client disconnects, there are still enough players of each type to begin a session, the vote
submission UI is displayed.

Once all validated clients have confirmed to start the session, the server begins generating a con-
figuration of avatar positions and SessionState = ACTIVE is set.

@ Composers: 1

Vote to start the session.

Username: @ Performers: 1

Password:

Listeners: 1

Confirm Ensemble

Figure 19: The composer client’s Ul after enough clients of each type have been validated.

5.4.1 Converting Transmission Times to Drum Delays

The transmission time estimates taken in the previous step are used to generate the configuration
of avatars presented on the grid. Thus, the distance between client avatars on the grid is roughly
proportional to the sum of their roughly estimated transmission times to the server.

The server implements a class GridState that carries out this process. GridState implements
a class Node with information about each validated client’s ID and transmission time, as well as
information about their position in two-dimensional space and the force exerted on them in x and y.
Nodes are initially placed in a circle with radius R around the origin of this two-dimensional space.
We model a spring connecting each pair of clients in our simulation, whose rest length is proportional
to the sum of the clients’ transmission times. Force in x and y exerted on each node by the springs
is calculated iteratively and nodes are displaced accordingly. MAX_ITERATIONS = 1000 iterations of
this process are carried out; during testing, a wide range of configurations safely converged within this
number of iterations. To prevent divergence, forces are only calculated when the distance between
nodes is greater than or equal to 1 unit of physical distance [92]. To prevent an initial configuration
where the distance between any two nodes is less than one distance unit, we scale up the transmission
times associated with each node by some scalar value P such that all transmission times are greater
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Figure 20: A diagram illustrating the state changes on the client and server side. Black arrows denote
possible transitions between states, red arrows indicate the preconditions for moving between states
associated with the other states shown in the diagram.

than 1. We also calculate the radius of the circle R = 1/(2 x sin(n/N), where N is the number of
nodes, such that all nodes are separated by at least one distance unit in the initial configuration. After
MAX_ITERATIONS, a configuration of nodes whose relative distances are relatively proportional to the
sum of their transmission times scaled by P can be safely assumed to have been reached, at least to
some approximation. Note that positions are restricted to the plane, so in general, it is impossible to
find positions such that all pairwise distances match the pairwise transmission times.

Each point is then quantized to a grid in random order by rounding their positions, in window
coordinates, to that of the nearest grid coordinate, such that each node is separated by small integer
numbers of grid squares. A square bounding box for the avatars is calculated and the final configuration
of nodes is set against a square grid with dimension GRID_DIM by GRID_DIM. In the implementation,
GRID_DIM = 16. The grid size is intentionally limited because, like in physical ensembles, larger groups
make coordination and situational visibility more difficult. Additionally, informal tests with users with
a range of familiarity with computer-based music software and video games indicated that this size was
optimal for exploration and operation. Larger grids necessitated smaller icons, which made it difficult
for composers to point and click. Smaller grids made exploration feel limited. This choice also has
musical significance; a propagating or traversing hit on one side of the grid moves across it in four
measures.

Given a conflict between two grid positions, all points at a distance n = 1 from the nearest point are
examined for conflicts. If an intermediate configuration of positions prevents any users from fulfilling
their responsibilities, e.g. a composer surrounded by other composers, the issue is resolved by relocating
the affected node to the closest (in Manhattan distance) open coordinate.

Grid coordinates are referenced using positive integers, with (0,0) being the top left corner. Node
positions in grid coordinates are stored as gc_x and gc_y in each client’s ConnectionInfo object.
Avatars’ grid coordinates are broadcast to all clients.

At the end of this process, rough estimates of network delay have been converted to temporal
distance within the music produced by the ensemble. A visualization of the ensemble that conveys
these distances intuitively has also been generated and broadcast to clients. After this process is
complete, validated clients are presented with the interactive grid containing their own avatars and
other task-specific visual artifacts.
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5.4.2 Hidden Delay: Distorting Distances on Grid

It is important for other users to perceive each other’s timing sensibilities, especially how promptly
and accurately performers respond to composer drum hits. Users can be made aware of how well other
participants are meeting their assigned tasks. However, messages need time to propagate through the
system, thus requiring at least MAX_NET_DELAY between when a drum is played and when it can be
scheduled to appear on other clients.

As explained and justified previously in section 3.2, we introduce a hidden delay H = xB to hide
transmission delay. H is measured in time units unless otherwise noted, x is an integer, and B is the
duration of one beat at the ensemble tempo. This is expressed visually by lengthening the composer-
performer distance as seen by composers and the performer-listener distance as seen by performers,
relative to the distances displayed in other clients. Composer and performer drum hits appear above
their avatars. They are initially large and move slowly; as they traverse or propagate, they shrink and
accelerate, reaching a constant speed of one grid unit per beat when one unit away from the avatar of
the client that played it Composer clients “see” their own drum hits move one grid square away from
their avatar over the course of 2x + 1 beats. Performer clients “see” their own drum hits move one
grid square away from their avatar over the course of x + 1 beats. This movement emulates that of an
object viewed from above as it rolls down a slope.

Thus, a composer’s drum hit message has = beats to be broadcast, whose response drums have
a further x beats to be broadcast, such that all musically upstream and downstream users perceive
each other’s propagating and traversing hits in the same way on the grid (with performers being x
beats ahead). Performers see a shorter path, so they play earlier than composers “expect”, such that
their drum hit messages can be assumed to have been successfully delivered to both listeners and
performers before they need to be displayed. Thus, if performers are closely following composers’
instructional drums, the timeliness of their responses are visible on the grid as a propagating hit
appearing immediately after a composer’s traversing hit reaches them. The relative simultaneity of
traversing hits reaching composers and propagating hits leaving composers indicate the timing accuracy
of the latter. At the same time, the GUI is immediately responsive to user input, so users can interact
continuously with the GUI even while H is well above 100 ms. Users are given the impression that
they are playing “live”, and an arbitrary latency can be accommodated.

Given a different method of displaying drum hits, H could be rounded up to the nearest B whenever
necessary; in this case,  would be recalculated every time the tempo is changed. Thus, the duration of
the acceleration process in beats for drum hit visuals would also have to change, which would require
the visuals to change position suddenly or move backward. This is addressed by setting fixed values
for x and the maximum tempo, ensuring that z beats always last longer than 2.1 seconds at the
ensemble’s highest possible tempo. In the implementation, x = 4 is hard-coded; the maximum tempo
is then 114 = 60 * /2.1 = 114.28

Alternatively, the maximum tempo could be set slightly higher. While tolerating late arrivals
without significantly disrupting performance is not an explicit goal of the system, it is a favorable trait
of networked music systems. As mentioned in Section 5.6.1, drum hit messages that arrive before their
downstream play time can still appear in a manner that does not disrupt play. Setting the maximum
tempo slightly higher and increasing the likelihood of messages arriving late could show that this goal
has been achieved.

Allowing a higher tempo could also allow for a faster rate of musical joint action. Although users
can interact continuously and constantly with a locally rendered representation of the ensemble via
the grid, there is always a 2.1-second delay (minimum) between a client’s drum hit and when it is
displayed in other clients.

I decided not to implement this, as the grid was implemented to prevent interactions from feeling
sequential rather than continuous, and while 2.1 seconds is still a conservative estimate, data frame
transmission time has no theoretical upper limit. Like GRID_.DIM = 16, z = 4 is chosen in part due to
its musical significance, as it fits evenly into measures. © = 2 would restrict play to low tempos, while
x = 8 would require high speeds to avoid long delays.

The server maintains the maximum tempo in a variable MAX_TEMPQO. The minimum tempo MIN_TEMPO
= 40 is hard-coded; it is considered the minimum tempo at which subdivision interonset intervals exist
or change meaningfully [93].
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5.4.3 Limiting Drum Hits Sent Per Second, Number of Connected Clients

Batching drum hit messages for group transmission could reduce network congestion during sessions.
Transmitting a data frame in larger and fewer packets lowers the total overhead from processing each
packet. I did not implement this to avoid overemphasizing grouped messages; individual hits that
arrive late have less of an effect on play than delayed batches. Instead, a timer is implemented on
the client to limit the frequency of drum hit messages. The minimum interval between drum hit
messages was set to 20 ms, considered the shortest rhythmically meaningful interonset interval. This
also prevents the grid from becoming cluttered further, as closely timed hits are indistinguishable. I
also found during tests of the application that if drum hits were not limited, sending hits as quickly
as possible slowed down the client application and disrupted the progression of the local clock.

Bandwidth limitations must be considered when determining how many clients can connect. Given
that GRID_DIM = 16 and 256 (x,y) grid coordinates exist, we allow 256 client connections at once; the
server also prevents more than 256 clients from joining the same session. This is reasonable given
bandwidth expectations. Drum hit messages, which are roughly four bytes each, are expected to make
up most of the network traffic during a session. Drum hit messages can be sent every 20 milliseconds,
so 200 bytes could be transmitted by each client per second. Given that 256 clients total could join the
ensemble, each client would need to accommodate 256 * 200 Bps = 409.6 kbps of bandwidth. Likewise,
the server would need 256 * 256 * 200 Bps = 104.8 Mbps of bandwidth. So far, I have used an Google
Cloud e2-micro instance to host the server, which have 1 Gbps ingress bandwidth and 7 Gbps egress
bandwidth (as described in Section 5.3.1), which are well above the estimated maximum bandwidth
necessary for the system.

While system supports up to 256 clients, it works best with fewer connections, as free spaces on
the grid are necessary for musical activity to take place: Without any free spaces, connections cannot
be drawn, listeners cannot be moved, and the entire user interface becomes overly cluttered such that
individual user activity becomes difficult to monitor. Thus, most sessions are expected to involve tens
of clients, maximum.

5.5 General Ul Components

After a configuration of avatars has been generated, validated clients are presented with the grid
and avatars, as a “chat” for non-musical communication, a window with the current tempo, volume
sliders for different drum sources, an indicator of whether the ensemble is started or stopped, and a
metronome. Clickable Ul elements implement a contains() method that indicates whether or not a
user’s mouse is inside the element.

5.5.1 Grid

Clients implement a class Grid with the grid functionality described in previous sections, including
nodes and composer-performer connections. Functions draw_to_grid_coord and grid_to_draw_coord
convert between grid and window coordinates, where (0, 0) is the top left grid coordinate. From here,
“player” refers to the user whose vantage point is being used to describe the application.

x and y refer to horizontal and vertical grid coordinates.

5.5.2 Nodes / Avatars

Clients are represented with simple circular avatars, or nodes, on the grid. Nodes are colored corre-
sponding to their class; composers are red, performers are blue, listeners are green. All nodes are also
numbered with their client’s ID. Clients display their own nodes as black. Nodes are initialized with
their corresponding player’s ID, which is used to reference corresponding fields in the UserInfoTable
to avoid replicating state. The composer and listener clients implement classes ComposerNode and
ListenerNode, which, respectively, provide appropriate responsiveness and functionality to players of
said type. A class FakeNode is implemented to represent non-player clients, as well as performers,
which are not responsive on the grid.
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Figure 21: The complete UI for a session that includes two composers (IDs 0, 4), two performers (IDs
2, 3), and three listeners (IDs 1, 5, 6), seen from the perspective of listener 5. The grid, chat box, beat
lights, tempo wheel, and volume sliders are all shown. Traversing hits are moving from composer 4 to
performer 2, and propagating hits are propagating outward from performers 2 and 3.
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grid or chat box, when the ensemble has started.
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Figure 23: The composer UI, not including the
grid or chat box, when the ensemble has started.

Tempo:

100

. _ 00000000
‘olume controls:

Mine . Volume controls:

Others L 4 Others L

Beat L Beat 4

Figure 25: The listener UI, not including the grid
or chat box, when the ensemble has started.

All clients display a box with the current ensemble tempo in beats per second. In the composer UI, this
element is responsive and can be clicked and dragged to adjust the tempo. Tempo change messages are
sent with the beat b at which a composer initiated the change and the value of Tempo_Epoch monitored



by the composer. The server confirms that the Tempo_Epoch sent by the client and maintained by the
server are equal and broadcasts a message scheduling a tempo change to take place at beat b+t, where
t in beat units is greater than MAX_NET DELAY.

Between the reception and action time of a tempo change message, the tempo box Ul element
is made unresponsive and the number is changed to the upcoming tempo. This prevents conflicting
tempo change messages from being transmitted. The initial tempo is set to 78 bpm, which is halfway
through the available tempo range.

5.5.4 Stop / Start

We introduce stopped and started to refer to how the tempo and session state are expressed to users.
The ensemble is started when the current beat is increasing with time and stopped when it is not.

When the grid is first displayed, all client interfaces reflect that the ensemble is stopped. Performers
and listeners see a green triangle or red square indicating that the ensemble is started or stopped. The
composer client interface displays an interactive element with both symbols, either of which can be
clicked to send the corresponding message to the server. Tempo can be changed before a session is
started. Stop/start messages are sent with the beat b at which a composer initiated the change and the
value of Tempo_Epoch monitored by the composer. As with the tempo wheel, the server checks that
the Tempo_Epoch sent by the client is the same as the one on the server. If so, the server broadcasts a
message to all clients scheduling a tempo change to take place x beats in the future, where x is set such
that the duration of z beats is greater than MAX_NET_DELAY. The stop message handler implemented
on the server initiates the process of generating MIDI files from logs.

5.5.5 Mixer

All clients implement gain sliders corresponding to the groups of drums it can “hear”: Composer
clients play back their own drums, performers play back their own drums and instructional drums
from connected composers, and listeners play back drums from all performers. All clients also present
a metronome that “ticks” once per beat. Users can click and drag these sliders left or right to turn
the volume of each type of drum up or down.

5.5.6 Metronome / Beat Lights

All clients display a horizontal arrangement of eight “beat lights”, circles that “blink” on and off to
indicate the eighth note in a bar corresponding to the current beat. The beat lights blink in sync with
a metronome playing a kick drum, helping users gauge if their playing is on beat. The metronome and
beat lights are inactive when the ensemble is stopped.

5.5.7 Chat Window

All users have access to a chat window, text entry field, and “send” button, with which messages can
be sent between clients during play. Chats are displayed with the sender’s username next to the sent
message. Users are shown the chat window at all times, but can only send messages after their client
is validated during setup. Clicking the text entry box enables typing, such that key presses do not
trigger drum hits. (The process by which key presses trigger drum hits is described further in sections
5.6.2 and 5.7.1.) When the send button is pressed, the message is sent to the server and broadcast to
clients. Key presses resume triggering drum hits until the text field is clicked again. The server also
sends role-specific instructions to clients via the chat box during setup.

5.5.8 Interruption Window

After play has been stopped, the interruption window covers the grid to express that normal play
is no longer possible. It is used to display messages about why the ensemble has stopped (a client
has disconnected or a composer has stopped the ensemble) and the status of the MIDI files being
generated by the server. When the MIDI file generation process is complete, download buttons for
each file appear in the window, as shown in Figure 26.
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Figure 26: MIDI files shown as available for download after a composer has stopped a session.

5.6 Composer Functionality and UI
5.6.1 Composer-Performer Connections

Composers can draw lines between themselves and performers by pressing the mouse over their own
node on the grid, dragging to draw a path along grid lines, and releasing the mouse over a performer
node to complete a path. The path length determines the drum delay between the composer and
performer. These paths cannot intersect with themselves, other paths, or other nodes on the screen.
When a composer clicks a connection it has drawn, it is deleted.

This functionality is implemented via two different classes, DrawingConnection and DrawnConnection,
representing connections that are in the process of being drawn and connections that have been drawn,
respectively. All clients also implement a class DrawnConnectionDisplay to show connections that
cannot be clicked on, for if the start point of the connection is not the client itself. All three classes
are implemented as lists of DrawingConnectionJoint objects, which contain the endpoints of lines
that make up connections. This class also implements a subclass TraversingHit that monitors the
beat at which a drum was played by a composer and displays a circle at the appropriate point on
the connection. A list of TraversingHits is maintained and culled as traversing hits reach their
destination.

Additionally, the client implementation is such that only the beat at which a drum was played, or
the beat at which a beat is scheduled to be played back, is needed to display a traversing hit. The
drum index does not affect how the hit is displayed.

Drum hits are displayed based on their play time, such that if they arrive late, they appear part of
the way through their path and continue their normal visual progression from that point. Thus, play
is not significantly disrupted if drum hit messages occasionally arrive late.

DrawingConnections consist of mutable lists of DrawingConnectionJoints. When a user draws
a path that intersects itself, the DrawingConnectionJoint list within the DrawingConnectionJoint is
sliced so that the first intersection point becomes the final joint in the list. When a DrawingConnectionJoint
is released over a performer FakeNode, the node grows slightly, indicating that the connection can be
ended. When the composer releases their mouse, the composer generates a DrawnConnection locally
using the joint list, and which is transmitted to the server. The cooldown period of MAX_NET_DELAY
begins in the composer’s client, during which the newly drawn connection appears “greyed out”, can-
not be deleted, and does not display traversing hits. If the server rejects the connection, the inactive
connection disappears, potentially before the cooldown period is complete. If there is no conflict be-
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tween the new connection and any existing visual artifacts, the joint list is broadcast to all clients and
scheduled to appear at least MAX_NET_DELAY after being transmitted by the composer, such that it is
displayed by all clients simultaneously.

Other clients generate a DrawnConnectionDisplay, which cannot be clicked, but displays traversing
hits. Clients also implement classes Al11DrawnConnections and Al1DrawnConnectionsDisplay, which
maintain all connections present.

5.6.2 Playing and Displaying Instructional Drums

Composers play drums by pressing the keys on the left and right side of their keyboard. Composers
have access to two drum sounds. A different drum is played depending on which side of the user’s
keyboard the pressed key is on, as indicated by key_positions.js. Composer drum hit messages
sent to the server consist of the beats at which the drums were played, their drum indices, and the
composer ID. All clients implement a method play_drum(drum_index) for playing back drum sounds
corresponding to drum hits. Functionality for displaying traversing hits and for audio playback are
decoupled on the client.

The composer drum hit message transmitted to listeners, composers, and non-connected performers
consists of the sender ID and beat at which the drum was played. Connected performers also receive
the drum index of the performer drum hit, as well as the drum delay between itself and the performer
that played the hit, so that the appropriate sound can be played back at the appropriate beat.

Drum hits are drawn based on their playback time, or the time at which they are intended to reach
downstream clients. Messages received after the estimated hidden delay but before their corresponding
action is scheduled to be executed (passive playback or active response) appear part of the way through
their path. If a composer’s drum hit is received late, a corresponding traversing hit appears part of
the way through a connection. If a performer’s drum hit is received late, a corresponding propagating
hit appears further outward from their avatar.

5.6.3 Routing and Caching on Server

Clients can calculate drum delays and schedule drums accurately with grid coordinate information con-
tained in the UserInfoTable, as well as the lengths of the DrawnConnection and DrawnConnectionDisplay
objects maintained in the grid.

However, we expect drum hit messages to be sent far more often than drum delay or connection
change messages. Because the positions of avatars on the grid are consistent across clients (aside from
listener positions during cooldown periods), all clients calculate the same drum delays corresponding to
drum hits. Thus, to ease the load on clients, the server caches information about drum delays between
clients in a field of their associated ConnectionInfo object called DownstreamUsersDistancesMap,
which maps downstream users’ IDs (connected performers for composers, all listeners for performers)
to their corresponding drum delays.

To prevent position conflicts between grid elements, the server also oversees which grid coordinates
are occupied and rejects actions that would cause conflicts between visual artifacts. The server imple-
ments a mapping occupiedCoordsBijections of positive integers (keys, representing client IDs) to
sets of positive integers (values) that encapsulate the x and y grid coordinates of said client’s avatars
(and additionally, if it is a composer, integers that encapsulate the grid coordinates of any connections
between itself and performers). When a new connection is drawn, the server checks to see that no grid
coordinates occupied by the new connection (besides the start and end points) are already contained
in any of the values in occupiedCoordsBijections. If there is no conflict, integers that encapsulate
the x and y grid coordinates occupied by the new connection are added to the value the composer’s ID
is mapped to. When a connection is deleted, the integers representing the connection are deleted from
the value. occupiedCoordsBijections and all downstreamUserDistancesMaps are updated every
time a new connection is drawn or deleted, or a listener is moved.

5.7 Performer Functionality and Ul
5.7.1 Following and Playing Drums

Performers only interact passively with the grid, their avatars are represented with FakeNodes on all
clients. Within the composer client, however, performer nodes to which said composer is not already

37



connected grow slightly when hovered over with the mouse, indicating potential for connections.

Performers have access to the same two drum sounds as composers. Performers play along with
connected composers’ instructional drums. While the movement of traversing hits from composers to
performers could be used as a scrolling score, user feedback has indicated that this is impractical. The
size of traversing hits, their changes in direction along drawn connections, and the amount of other
information being communicated to the user via the grid make it difficult to follow as one would a
scrolling score. The performer client implements a secondary “Scrolling View” which can be shown
and exited via a button below the mixer in the UI (Figure 24). At the time of the test session, the
scrolling view consisted of circles representing instructional drums traveling from left to right, along
invisible horizontal lanes representing separate composers, through vertical lines representing single
drum delays, as seen in Figure 27. This was meant to encourage users operating performer clients
to play drums as they perceived them intersecting with the rightmost vertical line. The number of
drum delays displayed in the scrolling view was equal to the shortest drawn connection ending at
the performer avatar; it changed as connections were drawn and deleted. Feedback from my thesis
committee after the test session indicated that this scrolling score was illegible, so its design was
modified. The new version is shown in 28. Rhombuses representing drum hits scroll upward as the
two rhombuses at the top of the Ul element flash with the metronome, indicating that left or right
drum hits should be played when the rhombuses overlap.

o © O O O O O O

Figure 27: The scrolling view, as it was implemented during the test session.

Figure 28: The scrolling view in the current implementation, based on test session feedback.
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Performer drum hit messages consist of the performer’s ID, the beat at which the drum hit was
played, and the drum index. Functionality for displaying propagating hits and for audio playback are
decoupled. As with composer drum hits, only the beat at which a drum was played is needed to display
a propagating hit, as the drum index does not affect how the hit is displayed. Thus, the performer hit
message returned to composer and performer clients only consists of the sender IDs and beat at which
it was played. Listeners receive the drum indices of performer drum hits, as well as the drum delays
between itself and the performer that played the hit, so that the appropriate sounds can be played
back at the appropriate beats.

5.7.2 Displaying Propagating Hits

Clients display performer drums on the grid as rotated squares that propagate outward from the per-
former’s node at a rate of one grid unit per beat (with the exception of performers’ own drums, thanks to
the distance distortion process described in Section 5.4.2). Clients implement a class PropagatingHit
containing the beat at which a drum was played by a performer and implements functionality for dis-
playing a rotated square at the appropriate location. A class A11PropagatingHits maintains, displays,
and culls PropagatingHits as they propagate out of the grid over time.

5.8 Listener Functionality and Ul

Listeners do not play drum hits. They are the endpoint of the “life cycle” of a beat and “hear”
drums based on their position in relation to performers. Listeners can change their position on the
grid throughout a composition by clicking and dragging themselves to a non-occupied grid coordinate.
When the player’s mouse is released, the new listener location and the beat at which it was moved
by is sent to the server, where its validity is checked and cached as described in Section 5.6.3. The
server notifies all clients of the listener’s new position and the end beat for the cooldown time. All
clients update the new listener’s position in their UserInfoTable, and display the listener node (either
a FakeNode or ListenerNode on the grid at at the new coordinate, colored in gray. To express the
cooldown time, at beat b, an arc with length 2w % (b — bg)/(4 * B) (where B is the duration of one
beat) is drawn over the listener node, giving the impression of a countdown to the end of the cooldown
time. Traversing hits that intersect with a listener during its cooldown time are not played back in
the listener client or recorded by the server. At beat b > by + (4 * B), the moved listener’s node is
displayed normally.

5.9 Logging and MIDI File Reconstruction
5.9.1 Computational Artifacts Utilized

Different records of the composition are generated based on when drums are perceived by listeners at
different locations on the grid. During performances, the application continuously logs information
that can be used to generate accurate listener perspectives of the sessions, including tempo changes
and drum hit times / indices / corresponding performer IDs.

We choose to generate records in the form of MIDI files [94]. Most digital audio workstations are
compatible with MIDI files and implement functionality for interacting with MIDI files via a “piano
roll”. MIDI files can contain information about tempo changes and time signatures, as well as the
pitch and velocity (0-127) of notes played at different times, and by what instruments (represented by
separate “tracks”).

MIDI files are delivered after a session is complete and do not have to be generated in real time.
Information logging for MIDI file generation is decoupled from the file generation process.

We anticipated difficulty with transmitting binary files to clients from the server, due to variations
in browser permissions between clients, or difficulty transmitting files larger than the average O2lite
message. The process of converting logs to MIDI files is implemented such that the conversion process
could be carried out easily on the client, but the current prototype and testing have involved generating
and transmitting MIDI files on the server.

We chose to use Python to convert composition logs to MIDI. Python provides access to a range
of libraries for tasks like processing data and generating MIDI files, which can be easily installed
via package managers like pip. Python’s MIDIUtil library implements functionality for writing notes
and tempo changes to specific tracks in MIDI files at specific times, following a time-beat mapping
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convention similar to the one explained in section 5.2.3. This plus its general ease of use made it a
good candidate for a tool to use to generate MIDI files. While Java contains packages for generating
MIDI files, installing Python packages in a new virtual environment (or on top of a user’s base Python
installation) is simpler than compiling a Java application.

5.9.2 Information Logged

The server implements a class RecordedComposition that logs pertinent information as it is routed as
strings. It reserves space for 10,000 strings, which it exports to a CSV when filled, clears the space, and
prepares to write to a new CSV when the application has either stopped or the RecordedComposition
again runs out of space.

Recall that the beat at which a drum is heard by a listener is the beat it was played by a performer,
plus the drum delay between performer and listener. Recall that drum delays between clients and their
downstream clients are cached in the former’s associated DownstreamUsersDistancesMap object. If a
performer plays a drum hit at beat b, we can determine the time all listeners hear it using the per-
former’s DownstreamUsersDistancesMap. Recall that a performer’s DownstreamUsersDistancesMap
is updated every time a listener is moved. Thus, the server logs performers’ DownstreamUsersDistancesMaps
in its RecordedComposition every time they are changed (as shown in Table 2, Row 3). When a drum
hit message is received, the server logs it in its RecordedComposition as shown in 2, Row 1. This
data is utilized to reconstruct individualized logs of when each drum beat is heard by each listener.

Also recall that when a listener is moved, the drum hits it would have heard during its cooldown
time are silenced, and all performers’ DownstreamUsersDistancesMaps are updated. Thus, when a
listener is moved, the server logs its cooldown time in its RecordedComposition as shown in 2, Row
2. This data is utilized to process the logs of when each drum hit is heard by each listener; drum hits
that fall within the given range of beats are muted.

Other data logged by the server in the RecordedComposition are tempo changes (in the format
indicated in 2, Row 4) and the configuration of clients and their IDs (2, Row 5).

RecordedComposition implements functionality for writing logged strings to CSV files in a direc-
tory logs. The first CSV file is named log0.csv, and the numerical identifier is increased every time
a new CSV is generated.

Table 1: Information logged and converted to MIDI

Event Parameters
composition start start beat
composition stop stop beat, start beat
tempo change new tempo, beat at which tempo change takes place
drum hit beat at which drum was hit, which drum was played
listener position change beat at which position change takes effect,
new drum delay between moved listener and each performer

5.9.3 Reconstructing MIDI Files

A Python script python/generatemidis.py reads in all log CSV files and concatenates them into a
ragged two-dimensional array. The script implements a class ListenerMIDI containing functionality
for preprocessing information related to its associated listener and converting this information into a
MIDI file using the MIDIUtil library.

The first row of the data has the string ID U, and is used to generate maps between IDs and client
types. A ListenerMIDI object is preconfigured for each listener given in this row. The script iterates
over the data and constructs individualized logs of when each drum beat is heard by each listener, when
tempo changes occur, and when the listener is muted ListenerMIDI. When the script finishes iterating,
each ListenerMIDI contains a record of the listener’s sonic perspective of the session, including tempo
changes and which drums were played by which performers.

The MIDIUtil library is then used to write this information to a MIDI file. In the ELBS application,
only the timing and drum index are significant, so we input default values for MIDI fields other than
the beat played whenever it is feasible. Drum indices 0 and 1 are differentiated with pitch C3 and
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C#3. All notes written to MIDI have velocity 127. Each performer is assigned a different track
in the generated MIDI files, which are labeled with their IDs. The MIDI files are generated in the
same directory as the script. The naming convention for MIDI files is 1istener<ID>.mid, where <ID>

corresponds to the listener’s ID.

Table 2: Information logged to reconstruct MIDI files

Event String ID Information Logged
Performer drum hit H drum hit beat (b), performer ID (ID),
drum index (di)

Listener position changed L listener ID (ID), cooldown start beat (s_b),

cooldown end beat (e_b)
Distances between performer and each listener P performer ID, [listener IDs|, [drum delay in
(changed or defined) beats between performer and each listener]

Tempo change T beat of tempo change, new tempo
Client types U [composer IDs], [performer IDs],

[listener IDs|

The RecordedComposition is continuously updated by the server during its lifetime. When a com-
poser stops the session, or when a client disconnects from the session, all data in the RecordedComposition
is written to CSV. The server invokes generatemidis.py and notifies clients that MIDI files are ready
to be downloaded. Clients display MIDI file names next to download buttons, which send HTTP

POST requests for the file.

6 Test Session

A test session of the ELBS application was carried out by the two members of my thesis committee
and myself. Participants convened in a Zoom meeting, where they were presented with a slideshow
introducing the project. The application was set up on a Google Cloud virtual machine, and a link
to join the session was distributed, along with a password to join the ensemble. Three rounds of play

were carried out with the system.

The first was a “free for all” to gauge the clarity of the instructions that appeared in the chat
windows. Each user managed one client’s responsibilities with a single open tab. While users were
playing drums, no further instructions were given via Zoom. After the session ended, confusions were
addressed and clarified. In the second round of play, all users switched roles.

In the third round, two users managed two clients’ responsibilities with two open tabs. Roles
were allocated based on the ease of use of the application at the time of the application; due to
the test users’ difficulty interpreting instructional drums as performers, only one performer was used.
One participant controlled a performer and a listener, another controlled two listeners, and another
controlled a composer. We did not play in a configuration with multiple performers connected to the
same composer, which could have resulted in multiple interpretations of the same pattern, which would
have been interesting to hear and incorporate into a composition.

Data was logged in all three rounds to be used as the starting point for the composition presented

at the final defense.

Suggestions from the test session that were implemented before the final defense included making
clients’ nodes more identifiable on the grid, making the performer’s scrolling view easier to display and
interpret, clarifying the instructions given during setup, and allowing users to choose which MIDI files
to download, rather than downloading them automatically.

The MIDI and CSV files are available here: https://bit.ly/4bzZF{fW

7 Completed Composition

The piece is available here: https://bit.1ly/4bzZGR2
After reviewing the MIDI files from the test session, I decided to base my composition off of
the third small test. The performer first played regular eighth notes along with the conductor or
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metronome, then fell nearly silent, then played more chaotically, almost like they were smashing their
keys in frustration. This cycle continued throughout the performance. From here I refer to the three
listeners involved in the session as listeners 0, 4 and 5, as given by their IDs in elbs_test3.csv

I chose to voice the MIDI using a marimba sample library from the New Steinway Kontakt library
by 8dio. This mallet sound was percussive but could be pitched around to make the piece more
compelling. To make sure the parts of the piece that came from the test session were identifiable, I
did not add any more overtly rhythmic elements. I generated atmospheric sounds to accompany the
marimba using the plugins Synplant by Sonic Charge and the Soundmagic Spectral Suite, as well as
the standalone application Argeiphontes Lyre by Akira Rabelais.

The complete piece elaborates on one cycle of playing eighth notes, then near-silence, then key-
smashing. The first section of the piece (0:00 - 0:44) uses MIDI from Listeners 4 and 5. In this section,
I edited the pitch of each MIDI note to evoke a call and response taking place. These listeners were 5
and 9 grid units away from each other, so they heard the same thing staggered by four beats. At 0:26
a bass drum accompanies Listener 4, playing the same notes. The second section of the piece (0:44 -
1:03) begins as the mallets fade out and only background sounds are present. The third section (1:03
- 2:08) begins as the mallets fade back in, become more chaotic up to 1:40, then recede as the piece
ends. I edited the pitch of each MIDI note to play a clear chord progression, contrasting with the
chaotic nature of the drumming.

When a listener was moved and only two other listeners registered MIDI during the cooldown
period, I quantized some of the mallets to 16th notes to give the impression of order temporarily rising
from chaos. From 1:12 to 1:18, and from 1:47 to 1:52, Listener 5 is muted after being moved, and I
quantized Listener 0’s MIDI to 16th notes From 1:03 to 1:08, and from 1:26 to 1:31, Listener 0 is also
muted after being moved, and I quantized Listeners 0 and 4’s MIDI. The MIDI velocity of the mallet
instrument was slightly randomized, and its notes were altered.

The only additional edits I made to the MIDI were slightly randomizing the velocity of the mallet
instruments and changing their pitch.

8 Related Work

This section goes into more detail about existing systems for simultaneous in-time collaborative music
creation that accommodate remotely located participants. We describe one realistic NMP system and
several non-realistic NMP systems.

8.1 Eternal Music

Eternal Music, a 2002 non-realistic NMP project by Chris Brown [95], allows up to four players at
a time to modify the parameters of eight modulated sine wave oscillators, generating a drone [51].
The application implements a hub-and-spoke network topology. The server utilized is TransJam, a
Java server designed to route traffic for Eternal Music and a few other applications [96]. The client
application is available to download as an executable JAR file. Latency or bandwidth requirements
are not given, but are likely low due to client-side audio synthesis and transmission of control data
only.

Upon opening the application, users are asked to enter a username, log in, and enter a “room”,
or a virtual space in which a subset of users connected to the system can interact. As in ELBS,
simple, colored, circular avatars’ positions within the space affect the music produced. Each oscillator
is depicted as a colored dot in a 2D space, and its position determines the oscillator’s parameters.

Players drag and drop dots within this virtual space; when another player drops an oscillator, the
dot appears to change position abruptly. The number of players accommodated by the system is not
bounded, but the number of avatars present in the space is. The size of the dots compared to the
space allows ample exploration without feeling restrictive. However, this means that it’s not possible to
attribute the movement of any one dot to any one user, which is useful for coordination and enjoyment
of the performance experience. Users can join as passive listeners, functioning as an audience without
a separate designation [95, 97].

This tool reduces the dimensions of salience to texture to mask latency. The music produced is not
rhythmic and precise synchronization is not required to maintain coherence. The tool is theoretically
capable of being used to create complex music, there is a strong precedent for music made with similar
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timbral limitations. Situational visibility is afforded by the clear relationship between player actions,
dot positions, and oscillator qualities. Users always see a visual representation of the ensemble’s
music and can base their decisions on other participants’ actions. Users are imparted with a clear
understanding of how different dot positions affect oscillator parameters. Situational visibility could
be enhanced by alerting users before another user moves a dot, as the change in position is abrupt, or
by attributing dot movements to specific users.

8.2 NINJAM

NINJAM is open source software designed to enable remotely located instrumentalists to play together.
It can be used as a standalone application or integrated with REAPER, a digital audio workstation,
via the ReNINJAM plugin. NINJAM accommodates latency by delaying the playback of performance
information such that participants play along with audio delayed by exactly one measure, which is
far greater than their estimated transmission delay of one interval. Users play continuously while
“intervals” of audio the length of one measure are recorded. When an interval is complete, it is
compressed to OGG Vorbis, transmitted to the server, broadcast to all other participants, and played
synchronously. Users receive separate streams, enabling individual mixing and remixing after a session
has concluded.

NINJAM implements a hub-and-spoke network topology. A guide to assist users in configuring a
custom server is available to download on the NINJAM homepage. The server itself is implemented in
C and C++. The primary requirement for utilizing the server is the outbound bandwidth of the host
machine. NINJAM'’s developers provide bandwidth suggestions based on the number of connected
users. For a session with four users, they suggest 768kbps outbound bandwidth and 240kbps inbound
bandwidth. Given that these requirements are met, the minimum expected latency associated with
the recording, compression, transmission and reception of one interval of audio is approximately 65
milliseconds. This is much shorter than one measure. REAPER itself is the preferred NINJAM client.

NINJAM supports tempos between 20 and 240 beats per minute, as well as a “beats per interval”
(BPI) between 2 and 1024. These values are maintained on the server. The maximum number of
users allowed is also maintained on the server. Users can distinguish individual contributions through
separate audio streams, a qualitative visual representation of the ensemble is not provided. [98]

While the playing paradigm presented by NINJAM is unconventional, it is debatable whether or not
it constitutes realistic or non-realistic NMP. NINJAM is unique in that it aims to facilitate conventional
instrumental performance, albeit unconventionally; the application prioritizes successful transmission
of audio before playback over real-time streaming, ensuring stability at the cost of immediacy. This
effectively slows the rate of joint interaction down such that it resembles turn-taking rather than
continuous listening and observing [48]. The convention of an interval / measure is ingrained in the
application. They exist not only to coordinate the ensemble, but to establish when and how audio is
transmitted after it is produced.

8.3 JackTrip / Virtual Studio

JackTrip is a popular system that supports bidirectional audio streaming with any number of channels.
JackTrip utilizes Jack, a sound server API that provides real-time low-latency connections for audio
and MIDI data between applications. [99] JackTrip can be utilized on its own by installing JACK,
utilizing an associated GUI program to run it, then running JackTrip itself from the command line.
[100].

JackTrip has been incorporated into other networked performances [101], but the product that
receives the most emphasis on the JackTrip site is JackTrip Virtual Studio, a realistic NMP system that
streams audio and video between instrumentalists participating in “sessions”. Virtual Studio utilizes
a hub-and-spoke topology. Users can rent access to virtual machines that host JackTrip servers, or
“cloud audio studios”, whose audio quality and bandwidth requirements vary by pay tier. The lowest
tier requires 300-500 kbps inbound and outbound bandwidth.

The developers cite the quality of one’s Internet connection, audio interface, and gear as factors
that can affect latency. Screenshots found in the documentation indicate that Virtual Studio can
achieve latency on the order of milliseconds.

While the potential applications of JackTrip itself are not limited to emulating real-time perfor-
mance, the aim of Virtual Studio is to create “the sense of proximity that sparks real creativity, the
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experience of being together in the same room” [59], which refers broadly to well-established qualities
of liveness and performance, discussed in depth in Section 2.3.

Virtual Studio facilitates musical activity between users with traditional acoustic instruments/
Low-latency video connections serve users equally as performers and audience members; they provide
visual feedback that assists musical coordination, and they are an additional means for evaluating each
other’s skill.

8.4 Global Net Orchestra (GNO)

The Global Net Orchestra (GNO) is a networked performance tool designed to accommodate remotely
located participants. GNO implements a “hub-and-spoke” network topology, in which all communica-
tion between network endpoints is facilitated by a server, to which all clients are connected. Players
locate the server by accessing a custom domain through a web browser. Before a performance, GNO
users upload audio samples to this website, where they are integrated with the standalone GNO client
application. The application is then made available to download.

GNO employs a “follower-leader” musical dynamic between conductor and performer user classes.
The performer UI consists of a scrolling score for keyboard, a chat box, and mix controls. Performers
follow the scrolling score as it is generated by conductors and displayed. Their keyboard input is
transmitted to the server as control data (MIDI note / velocity pairs) to minimize bandwidth usage.
The server broadcasts this data to clients and the performance is reconstructed and played back locally.

Conductors communicate with performers through a chat box and occasional spoken “talk-back”
instructions. Conductors require a certain level of situational visibility to make informed decisions,
but other users require less information about the state of the ensemble.

Most messages are transmitted using a custom best-effort protocol based on UDP. Data whose loss
could significantly interrupt performance, such as message start times, are sent using ZeroMQ, which
is based on TCP. Given B bytes of overhead for each message transmitted every U seconds and P
connected players, P B/U incoming bandwidth and P * (B P)/U outgoing bandwidth are required.
Performers only transmit local state information to the server, so upload bandwidth is much smaller.

GNO uses multiple musical strategies to address latency issues. The scrolling score is transmitted
best-effort, without latency compensation. Dimensions of salience are reduced by encouraging more
gestural, less exact responses to scrolling scores. Expressive shapes are displayed in the performer Ul
to guide different styles of playing. Thus, dynamics and “texture” can be prioritized over rhythmic or
melodic synchronization.

Additionally, GNO delays entire musical cycles to ensure beat alignment despite latency, similar
to the approach outlined in [60]. This does not purposefully result in bi-located patterns, the result is
more “semi-synchronous” as described by [50].

GNO is motivated by a desire to explore the constraints associated with remote networked musical
performance that suggest new musical directions, and to allow the audience to appreciate the over-
coming of obstacles [47]. Both motivations could be thought of as extension of Di Scipio’s concept of
performance as something that emerges from a self-observing network of users with the system / “site”.
The latter goal reflects Carlson’s idea that virtuosity, or some degree of ability to overcome obstacles,
is fundamental for performance. Additionally, the digital instrument presented closely resembles a
conventional instrument known for its high virtuosity standards (piano / keyboard).

8.5 Endlesss

Endlesss [sic] is a non-realistic NMP system that began operation in 2020 [102]. It is a loop-based music
making platform with a DAW-like interface that allows users to create loops given a set of tools agreed
upon by a set of performers, send the loops to other users in the same session, and collaboratively build
up a composition made up of combinations of loops in real time. Users can create loop-based music
that exhibits characteristics of popular electronic music genres, such as synthesizer and drum machine
sounds. Users can switch between playing patterns, experimenting with combinations of submitted
patterns, and submitting combinations to move the piece forward. The pattern-based method for
contributing compositional elements meant that users did not have to play notes in real time to
contribute to a collective result.

Endlesss can be used for both composition support and performance. While playing, an evolving
piece of music composed of the sequences that have been created is gradually generated. At the end of

44



a session, audio stems can be downloaded, but not MIDI. This makes it difficult for material produced
during jam sessions to be repurposed by musicians who are interested in networked performance but
whose personal taste may not lean towards the timbres available via the application.

The Endlesss client is available to download as a standalone application or an iPhone app. No
server setup is required for users.

Endlesss was discontinued in June 2024, and is no longer available for use.

8.6 Global Drum Circle (GDC)

Since May 2022, I have been working with Professor Roger Dannenberg on a distributed web-based
music system, which we have been calling the Global Drum Circle Project (GDC). The goal of this
application is to enable drum circle-like musical performances across the Internet in quasi-real time by
delaying all users’ contributions by an estimated worst-case end-to-end latency. Sections 5.1.1, 5.1.2,
5.2, and 5.5.3 through 5.5.7 refer to implementation details that are unchanged or only slightly adapted
from GDC.

As in ELBS, the client application is browser-based. Each user is expected to operate a single
client, the application does not prevent them from opening and operating multiple clients in different
browser tabs.

The upper bound for end-to-end communication set in GDC is MAX_NET DELAY = 3.0 seconds. This
estimate was based on the estimated transmission time of = 1kB of data. To aid in coordinating users
in the ensemble, the application implements the between time and “beats” according to an established
tempo, as well as functionality for scheduling events to occur at future beats.

As in GNO, instructions for playing in GDC are delivered by one class of clients to another.
“Players” play along to drums played by “Conductors”, which have been precisely delayed by eight
beats / one measure. Conductors are upstream from players; players are downstream from conductors.

During GDC performances, musical interaction takes place via the following series of steps: A
Conductor plays a drum at beat b, and a drum hit message containing b is transmitted to the server.
The server calculates the beat at which the action associated with this message (playing a drum sound)
takes place, b + 8, and broadcasts a drum hit message with this value to all clients. Upon receiving
the message, players schedule drum playback to take place at this time. Because the duration of eight
beats is greater than or equal to MAX_NET_DELAY, it can be safely assumed that all players have received
and scheduled the drum hit message before its execution time.

8.6.1 User Interfaces and Play

The GDC UI consists of a chat box, volume sliders, beat lights / metronome, tempo slider, and start /
stop indicator. The elements were slightly modified and incorporated into the ELBS application; the
other UI elements discussed in this section are unique to GDC.

All users can choose from a selection of drums to play from the “My Drums” section, shown in
Figure 29. As in ELBS, users play different drums by pressing keys on the left or right side of their
keyboard.

To encourage the performance of more complex and coherent music with the system, musical games
called “modes” were incorporated into the system. Modes consist of a looping series of “steps” lasting
eight beats. Mode steps consist of the written instructions delivered to conductors and players, and
whether or not their output is muted to maintain coherency. For example, a “Follow the Leader” mode
coordinates and maintains a call-and-response drumming pattern between conductors and players.
Modes are scheduled to start at the first measure occurring MAX_NET_DELAY after they are triggered.

Instructions for each step of a mode are displayed onscreen. Mode and tempo changes are scheduled
and executed via the same process as drum hits, by which it is ensured that performance information
is delivered to all users before it is put into practice. One of the modes currently implemented is
a variation of call and response, where a Player plays along with drums played by a conductor as
specified in the mode instructions.

During a GDC session, times at which drum hits, users entering and leaving, etc. are logged in a
dedicated class. A ”Save” button allows conductors to export session data to a CSV file for possible
reconstruction.

On the bottom half of the interface, a continuously updated score displays users’ drum hits quan-
tized to eighth notes as filled squares on a single row of a grid. A histogram next to the score shows the
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Figure 29: The conductor interface, in “Free Play” mode.
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Figure 30: The player interface, in “Free Play” mode.

distribution of differences of drum hits and their nearest beat; this allows users to assess each other’s
timing, but the identity of each user whose activity is reflected in the histogram is not specified in the
histogram itself.

In GDC, the convention of a “measure” is less ingrained in the application’s implementation than
in NINJAM or Endlesss. Measures exist to coordinate the ensemble and are enacted via modes and
beat lights, but control information corresponding to individual musical actions is transmitted as it is
produced.

9 Conclusions and Future Work

Asynchronous or “out of time” musical collaboration via file sharing is commonplace. However, there
are very few compelling systems for quasi-real time collaboration, other than emulations of being
present in the same physical space in real time, an experience that is not possible to replicate perfectly
due to communication latency. Some degree of latency is inevitable in networked systems, and is usually
considered a problem whose effects on emulating real-time communication should be mitigated. Less
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explored is the idea of embracing latency as a feature of a networked application, and developing
composition and performance techniques that incorporate delay. This report documents the design,
implementation and testing of a prototype experimental latency-based system (ELBS) for networked
musical performance, which creatively incorporates an otherwise disruptive amount of latency as a
feature of performance and an opportunity for novel musical experiences.

I reviewed existing networked performance tools, as well as works in other fields that were guided
by design principles I found compelling or constraints I thought were worth considering. Research on
performance theory also informed the system’s design, and helped me narrow down the scope of what
I considered related work. I first addressed what was required to facilitate musical performance in gen-
eral, then adapted the methods by which those requirements were satisfied in traditional performance
to a setting with certain technical restrictions. The methods by which limitations were addressed were
motivated by their novelty.

To show that the prototype is functional and nominally operable, I held a test session with my
thesis committee in which we carried out three short performances using the system. In between this
test and my final defense, I used the record of the third session as the basis for a piece of music,
created asynchronously. I also made some changes to the application itself, incorporating feedback
given at the test session, the thesis proposal, and several other informal test sessions with groups of
electronic musicians. The version of the prototype described in this report incorporates this feedback.
It is operable and ready for further testing, which would constitute valuable future work.

While latency is a common concern with networked quasi-real time performance systems, there exist
relatively few existing quasi-real time performance systems that acknowledge and incorporate it into
their design. Similarly, while joint action and situational visibility are often considered in installations
and co-located electronic music performances, it has been acknowledged that little research has been
carried out that applies these ideas to the design of NMP tools [30]. During my literature review, I
was surprised by how few networked tools allowed users to refine material produced during a session,
and how few tools embraced artists’ desire for some degree of instability in their work [77].

One of the goals of this project was to “sonify and artfully represent latency”. In retrospect, the
degree to which latency was “incorporated” into the design is debatable. The process described for
estimating latency between users in 5.3.3 is crude and not thorough. A future implementation of this
prototype might seek to estimate round trip time by averaging more measurements spread out over a
longer period of time [1, Chapter 9.14], or using an adaptive algorithm like TCP’s [1, Chapter 13.16,
13.17].

Future research could focus on exploring the idea of prioritized integrative attention further. If
prioritizing one’s own responsibilities (following upstream users) were further emphasized in the imple-
mentation over awareness of others’ (indirectly related users) actions, it could justify altering distance
distortions in 5.4.2 to allow visual representations of non-essential contributions to arrive late. This
could make the application more interesting to use or completely inoperable. It would be novel to
decrease the added latency to a point at which play would become challenging, but not impossible. A
survey of amateur electronic music producers, conducted as research for the development of a machine
learning-assisted tool to generate rhythmic patterns, discovered a preference for tools that work within
stylistic constraints and “allowed accidents or unexpected results when pushed beyond their declared
limits” [76]. Loosening certain constraints such that the inherent instability of a remote connection
could creep further into the work produced could prove interesting for consumers.

Future work that is necessary, even given a fundamentally unchanged version of the system, is
improving the graphics and general user experience. While the p5js library was ideal for prototyping,
a more immersive user experience could be facilitated given a graphics library with deeper functionality,
such as WebGL [103], which can render more complex visualizations, such as particle systems, more
effectively.

The worst-case transmission time is only rarely required to transmit a data frame. Assuming
MAX_NET_DELAY cannot be reduced, joint action could take place faster if certain control information
were permitted to arrive late. For example, in the ELBS prototype, propagating and traversing hits
are displayed several beats before they need to be played back. Users display drum hits based on
their play time, such that drum hit messages that arrive late appear part of the way through their
path and continue their normal visual progression from that point. Play is not significantly disrupted
if drum hit messages occasionally arrive late. There is precedent in prior work ([61], 8.4) for using
a UDP-based protocol to transmit data whose late arrival will not significantly interrupt play, and a
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TCP-based protocol to transmit vital information. An acceptable-case transmission time can then be
established for less vital data. This time is both interaction-specific and application-specific. A general
design principle that follows is that as the acceptable-case transmission-action time for an interaction is
lowered, the impact of occasional delays on musical coherence and user experience should also decrease.

Another worthwhile change to the system would be to implement all user classes in the same
client. The ELBS prototype allows one user to open multiple clients in different tabs, whose clocks are
synchronized independently from one another. Temporary synchronization issues in individual clients
can cause noticeable timing discrepancies between tabs. If multiple roles could be accessed from the
same client, not only would the clock synchronization procedure only need to be carried out once, but
temporary issues with the local time would be less noticeable.

One of the goals of this project was to represent all users’ musical activity, regardless of its relevance
to rudimentary musical responsibility. Musical information from all users is displayed in equal detail.
A common complaint during testing was the fact that the grid felt cluttered, even when less than
ten clients were connected. This could be addressed in future versions of the prototype by adjusting
how activity is visualized. For example, musical information from clients not directly upstream or
downstream from any given client could be rendered in less detail, or in a less distracting manner,
in the latter. Clients could see detailed visuals relating to other users in their chain of responsibility,
while accuracy histograms like the one implemented in GDC (as described in Section 8.6.1) could be
displayed above other avatars. All musical activity would still be represented, but to different extents
based on its relevance to rudimentary musical responsibility. Alternatively, clients could zoom into
specific sections of the grid to better focus on tasks involving certain clients. The full ensemble would
remain visible and all musical activity would be displayed, but users could concentrate on selected
sections. Both of these strategies could make scaling the system up more viable, but require major
changes to the prototype’s music and display systems.

In conclusion, this work set out to explore new organizing principles for collaborative, non-realistic
and displaced networked musical performance. To offset the well-documented and significant effects of
communication delay and visual and auditory isolation on musical ensembles, I implemented, tested
and extended several existing but underutilized strategies for improving musical coordination, com-
plexity, and user experience. I shifted clients’ time systems to hide transmission delay and create the
illusion of immediate interaction with the ensemble. I represented delayed musical input as visual arti-
facts moving along paths on a grid-quantized display, thus encouraging rhythmic coherence, enforcing
the beat alignment of overlapping contributions, and sonifying network latency. I developed a play-
ing paradigm that introduced cascades of rudimentary musical responsibility and created bi-located
rhythmic patterns, allowing players to combine basic actions to produce sophisticated music. To make
the prototype more marketable and to encourage wide use, I implemented the transmission delay-
disguising mechanism to operate in a range of “non-ideal” scenarios. I also implemented functionality
for generating and distributing flexible records of the performance after its completion, which could be
incorporated into compositions developed out of time. I hope that this work inspires others to consider
how musical agency can be distributed in performing ensembles to explore novel social dynamics and
create complex music, and how latency can be treated as an enabling constraint rather than a problem
to be eliminated.
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