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Abstract

As the high-capacity data storage devices (e.g. portable hard drives, and USB

flash drives) become available to everyone, musicians are able to record all of their

rehearsals and save them digitally. Given large amount of unlabeled and unorga-

nized rehearsal recordings, manually organizing them can be a huge task. Therefore,

managing music audio databases for practicing musicians automatically is a new and

interesting challenge.

This thesis describes a systematic investigation to provide useful capabilities to

musicians both in rehearsal and when practicing alone. The goal is to allow musicians

to automatically record, organize, and retrieve rehearsal (and other) audio to facilitate

review and practice (for example, playing along with difficult passages). In order to

accomplish this task, three separate problems should be solved:

• Given the original recordings, extract the music segments and get rid of the non-

music parts. A novel music classification system based on Eigenmusic and Ad-

aBoost classifier to separate rehearsal recordings into segments is proposed.

• Given the music segments from the previous step, the system should be able to

group the segments which belong to the same composition together. An unsu-

pervised clustering and alignment process to organize segments is introduced.

• Finally, an interactive user interface is required for musicians to easily access and

compare the previous rehearsals. The thesis provides a digital music display

interface that provides both graphical input and output in terms of conventional

music notation.

The thesis will address each of these 3 problems and provide an implementation

that works in practice. Some future work is also described.
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1 Introduction

Music Information Retrieval (MIR) promises new capabilities and new applications in

the domain of music. Consider the following scenario: you are a prestigious violinist and

your assistant records all of your rehearsals and saves them into a huge 5 TB portable hard

drive. Now you want to listen to all the rehearsals where you played the Tchaikovsky’s

D Major Violin Concerto with the orchestras to seek for further improvement. However,

what you are facing (assume the recordings are stereo with CD quality) is about 220 days

of audio. To make it worse, you did not play the entire concerto in some of the rehearsals,

and you still want to find these segments of the whole piece. Organizing it by yourself

will take forever. Therefore you would really like the computer to do this job for you

automatically. This problem is exactly what this thesis is going to solve.

To define the specification more formally, we need to build a system that processes a

personal music database composed of rehearsal recordings. Music is captured by contin-

uously recording a series of rehearsals, where the music is often played in fragments and

may be played by different subsets of the full ensemble. These recordings can become a

valuable resource for musicians, but accessing and organizing recordings by hand is time

consuming (as shown in the example above).

To make rehearsal recordings more useful, there are three main processing tasks that

can be automated (See Figure 1). The first is to separate the sound into music and non-

music segments. The music segments will consist of many repetitions of the same ma-

terial. Many if not most of the segments will be fragments of an entire composition. We

want to organize the segments, clustering them by composition, and aligning them to one

another (and possibly to other recordings of the music). Finally, we want to coordinate the

clustered and aligned music with an interface to allow convenient access. The thesis will

present a display for music notation that provides a two-way interface to the underlying

music database. The display can be used as input to select music (show me the recordings

made at this location in the score) and also as output to show the current location in the

score while music is played.

We see these capabilities as the foundation for an integrated system in which musi-
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Figure 1: System diagram for a musician’s personal audio database. Rehearsal record-
ings are automatically processed for simple search, analysis, and playback using a music
notation-based user interface.

cians can practice and compare their intonation, tempo, and phrasing to existing record-

ings or to rehearsal data from others. By performing alignment in real time, the display

could also turn pages automatically.

The organization of the rest of the thesis is as follows: In Section 2, related work will be

briefly presented. Section 3 provides a system overview for the implementation. Section 4

and 5 describe how to organize the segments (namely, segment the raw audio into music

and non-music and cluster the segments from the same composition together). Section

6 describes a two-way interface from music notation to the audio. The experiments and

results analysis are in Section 7. Many of the possible applications for the system are

presented in Section 8. The main contributions of the thesis are presented in Section 9.

Finally, the thesis concludes in Section 10 and future work is presented.

2 Related Work

The problem proposed by the thesis is new to the fields of music understanding, as there

is little previous work on rehearsal recordings segmentation and clustering. But much

work has been done on other scenarios.

For different scenarios, people extract different features. A lot of work dating back

to early days was focused on segmenting music and speech from broadcast streams, or
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videos. Saunders (1996) described a technique using zero-crossing rate (ZCR) and the

dominant frequency principle which is similar to spectral centroid, successful at discrim-

inating speech from music on broadcast FM radio. Lu and Hankinson (1998) turned to

work on automatically classifying audio into categories such as music, noise and speech.

They used silence ratio, spectral centroid, harmonicity and pitch as features, a rule-based

classification algorithm, and found out that silence ratio worked best among the three

features in the task of video classification. There was also work on background music

detection (Izumitani et al., 2008), that is, detecting music used in background of main

sounds, such as TV programs. Besides some classical features as mentioned above, Mel-

frequency cepstrum coefficients (MFCCs), which are widely used in speech recognition,

were tried and it turned out MFCCs help improve the performance.

Later, instead of exploring new features (which is hard), researchers turned to the

broad world of machine learning, specifically designing and adapting algorithms for the

tasks they were facing. One of the most widely used statistical methods is Bayesian In-

formation Criteria (BIC). Strictly speaking, BIC is not a statistical classifier, but a model

selection technique. Chen and Gopalakrishnan (1998) first used BIC in the task of acoustic

change detection and they reformulated this task as equivalent to model selection. Then

Zhou and Hansen (2000) adapted the idea of BIC in Chen and Gopalakrishnan (1998) for

unsupervised audio stream segmentation and clustering. The basic idea of this paper is

that given a sequence of audio frames, it is assumed that each point before a certain posi-

tion is drawn from a multivariate Gaussian which represents music, then the points after

that position are drawn from another multivariate Gaussian which represents non-music.

To find this boundary, BIC will treat this as a model selection problem, searching for the

optimal position.

Another widely used model is the Hidden Markov Model (HMM). Ajmera et al. (2003)

proposed a 2-state HMM (music and non-music) for segmentation, which makes very

intuitive sense given the mathematical property underlying HMM. Rhodes et al. (2006)

used HMM for music structure segmentation, and showed that this method can produce

accurately labelled segmentations for popular music.

Other approaches include neural networks (Bugatti et al., 2002), Bayesian networks
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(Pikrakis et al., 2008) and so on. In general, a lot of past work shows that a good combina-

tion of feature and model will produce the best results. However, the particular problem

of variations in the sound source seems to be largely ignored. In reality, sound is not

standardized in volume or bandwidth and may even contain different kinds of noise. In

these cases, more robust features and methods are needed. In this thesis, Eigenmusic,

similar to the famous Eigenface approach (Turk and Pentland, 1991), is used to capture

and refine information from the frequency domain, and AdaBoost (Freund and Schapire,

1995) is used as a powerful non-linear classifier. Based on the probabilistic interpretation

of AdaBoost, HMM is adopted to further smooth the results. Section 4 will talk about this

in detail.

There is no prior work on systems for organizing large scale collections of rehearsal

recordings. However, similar work in other fields is not difficult to find. The Informedia

Digital Video Library project (Wactlar et al., 1996) creates large online digital video libraries

featuring full-content and knowledge-based search and retrieval. In order to accomplish

this task, both audio and visual features are utilized.

3 System Overview

The thesis provides a systematic implementation for the proposed solution in Figure 1.

An overview of the whole system is introduced first in this section. It will serve as the sim-

plified description for all the components talked about in the following sections, where

more detailed implementation issues will be presented.

3.1 System Workflow

Defining a concise system architecture is the most important step for implementing a

working system. Figure 2 illustrates the detailed architecture based on the system di-

agram shown in Figure 1. It dynamically describes the flow of the data from the very

beginning, as the raw rehearsal recordings, to the last component, interactive music dis-

play. The three large boxes represent the three components (segmentation, clustering, and
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display) respectively.

Figure 2: The detailed structure for the whole implemented system. Boxes represent
processes (e.g. feature extraction, data acquisition), and ovals represent the data source,
some of which are the output from the previous step.

In this picture, boxes represent processes (e.g. large boxes as functional components,

and small boxes as data acquisition, feature extraction and processing). Ovals represent

the data sources, some of which are the output from the previous step, for example,

“Start/End Time Indices for Music Segments” oval from the segmentation is the input to

the clustering component.
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3.2 Components Description

Segmentation First of all, the rehearsal recordings are presented to the system as in the

top left of Figure 2. For the segmentation component, Eigenmusic features (Section 4.1)

are extracted first for every frame, then an AdaBoost classifier (Section 4.2) is used to

predict if the frame is music or non-music. Finally, HMM is used to further smooth the

results above the frame level (Section 4.3).

Here the term segment is used to represent a series of frames that are all determined by

the system as music and the adjacent frames are determined by the system as non-music

after the processing of the AdaBoost classifier and HMM smoothing. The length of one

segment should be greater or equal to 30 seconds. Note that the results from this part

are not actual audio files. Instead, only the start and end time indices of music segments

are saved, so that a significant amount of space is saved. For future access, the original

file can be read beginning with the sample corresponding to the start time instead of the

beginning of the audio file.

In this component, considering that the length of the rehearsal recordings can be ar-

bitrary, the spectrum of the recording audio, which is used to compute the Eigenmusic

features, may be too big to fit into the memory. Therefore, the processing here is de-

signed to be stream-based. Every time, only one frame of the recordings are read in to

compute the feature, then AdaBoost makes prediction for this particular frame. This de-

sign makes sure the running time for segmentation grows almost linearly with the length

of the recordings. As for the HMM smoothing step, only one number for each frame

is stored, thus the memory issue is no longer a concern1. More details can be found in

Section 4.4.

Clustering For the clustering component, there are two main tasks: cluster the seg-

ments according to the composition (Section 5.2), then align the segments within a cluster

together (Section 5.3). Two related features are extracted from the rehearsal recordings

(as the dashed line to the left shown): CENS (Chroma Energy distribution Normalized
1According to the long frame length used in Section 4, for 5 hours rehearsal recordings, only 14400 float

numbers are stored, which can easily fit into the memory for a modern computer.
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Statistics) for rough clustering and chroma vectors for accurate alignment (Section 5.1).

The term cluster is used here to represent a set of segments that (the system thinks)

belong to the same composition. There is no 100% accurate learning/clustering algo-

rithm, thus the system can make mistakes by either misclassifying non-music as music,

or grouping the segments from different compositions. To address this problem, a manual

correction mechanism is adopted in Section 5.4.

The output for this part is stored as the database, where for each segment, the nec-

essary information for future access is listed. Once the database is built, every time the

system starts, the information will be loaded into memory. The information is about 100

bytes per segment (more than 90% are used to store the name of the original recordings)

so it is reasonable to keep it all in main memory.

The nature of the clustering algorithm (Algorithm 1) indicates that even with a huge

amount of recordings already in the database, adding new ones is still efficient (linearly

grows with the number of existing clusters, see the derivation in Section 7.3).

After clustering, the segments within a cluster are still isolated without an explicit

connection. To make the display functionality as described below easier, these segments

in each cluster are aligned, so that the time information for one segment can be easily

converted to the time information for another segment within the same cluster. More

details can be found in Section 5.4.

Display The database constructed in the previous step enables the display interface to

access the recordings in a bi-directional (both as input and output) fashion. By manually

labeling the score and audio, the mapping between score and audio can be established

(as the “Beat Timing & Position Data” box indicates), as the foundation of the interactive

interface. For each cluster, only one segment is necessary to be labeled, as the alignment

step in the process above enables the time conversion between different segments within

one cluster. Two functions are illustrated in Figure 2:

• Query (display as input): The query can be done in two ways:

1. Given a score where the mappings with recordings have already been estab-

lished as well as a certain position on the score, the available segments which
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cover that position can be found.

2. Given a cluster (composition) from a recording audio file, the other record-

ings/segments within the same cluster can be found.

• Play Along (display as output): One of the most useful features of the system is that

a player can play along with the rehearsal recordings for a better practice experi-

ence. Consider a flute player practicing a duet. It would be very helpful to practice

with a recording of the other voice. As long as the mapping between the score and

audio is properly established for the recordings being played, the location of the

beat/measure can be indicated in the score in real-time. Furthermore, automatic

page turning can be achieved based on the score location and page information.

The three components interactively communicate with each other, and each of them

will be introduced in detail in the following sections, both in terms of the theoretical

foundation and the system implementation.

4 AdaBoost & HMM-based Segmentation

This section and the next section include a description of Xia et al. (2011). In this section,

a solution to the segmentation problem is presented. The input of this part of the system

is simply the set of raw audio recordings, and the output is a set of music segments.

Eigenmusic is first introduced as a robust feature. For music/non-music classification,

AdaBoost is used to give frame-level results, from which HMM is used to further smooth

them.

4.1 Eigenmusic Feature Extraction

The concept of Eigenmusic is derived from the well-known representation of images in

terms of Eigenfaces (Turk and Pentland, 1991). The process of generating Eigenmusic can

be performed in both the time and frequency domains, and in either case, simply refers

to the result of the application of Principal Component Analysis (PCA) to the audio data,
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though it is found that Eigenmusic in the frequency domain (Beyerbach and Nawab, 1991)

produces better results.

One could consider Eigenmusic as the eigenvectors of an empirical covariance ma-

trix associated with an array of music data. In the frequency domain, the array of music

data is structured as a spectrogram matrix, with columns as the time frames and rows

as a number of Fast Fourier Transform (FFT) bins. The array contains the spectral in-

formation of the audio in those time intervals. Expressing each frame of music data

in terms of Eigenmusic can be considered as projecting the data point in the original

high-dimensional space (in this case, the number of dimensions is the number of the FFT

bins, typically hundreds or thousands) to a low-dimensional Eigenmusic space, while

still keeping the statistically important information. On the other hand, when expressing

the frames of non-music data in terms of Eigenmusic, the coefficients for the projected

data point are generally expected to be outlying based on the fundamentally different

characteristics of music and non-music.

In this thesis, the recordings are first resampled to 16000 Hz. Then about 2.5 hours

of pure music in the training data collection is used to extract the Eigenmusic in the fre-

quency domain:

• Let X = [x
1

,x
2

, · · · ,x
N

] be a spectrogram matrix. Each x

i

represents the averaged

magnitude spectra among 5 FFT frames, each of which corresponds to 0.25 seconds

with no overlap. Thus each x

i

represents 1.25 seconds of audio.

• Compute the corresponding empirical covariance matrix C

x

= X ·XT, where X =

X� E[X] has 0 mean at each row.

• Eigenmusic V = [v
1

,v
2

, · · · ,v
M

] are the eigenvectors of the empirical covariance

matrix C

x

where M is the number of FFT bins. In practice, only the first 10 eigenvec-

tors are retained corresponding to 10 largest eigenvalues, as the remaining eigenval-

ues are too small to be taken into account. Therefore, Eigenmusic V = [v
1

,v
2

, · · · ,v
10

].

Given a new magnitude spectrum column vector x
new

, its Eigenmusic coefficients can

be represented by VT

x

new

which is a 10-dimensional vector.
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4.2 AdaBoost

AdaBoost (Freund and Schapire, 1995), short for Adaptive Boosting, is a meta-learning-

algorithm. Strictly speaking, AdaBoost itself is not a classifier. Instead, it consists of many

simple classifiers, and the prediction from AdaBoost is a weighted linear combination of

the results of the classifiers. It is adaptive in the sense that subsequent classifiers built

are tweaked in favor of those instances misclassified by previous classifiers2. Each sim-

ple classifier is individually considered as a weak classifier, in this case, a classifier on the

Eigenmusic coefficients ht(VT

x). The combined final classifier is considered to be a strong

classifier. In the training step, each weak classifier focuses on instances with the higher

weights, where the previous classifier failed. Then it will obtain a weight ↵t for this clas-

sifier, and update the weight of individual training data based on the performance, to

make misclassified instances gain more weights. In the prediction step, the strong classi-

fier is taken to be the sign of the weighted sum of weak classifier predictions:

H(x) = sign(
X

t

↵tht(VT

x)) (1)

By training a sequence of linear classifiers ht, each one of which is simply a decision

tree with depth 1, constructed by choosing an individual Eigenmusic dimension out of 10

and a root threshold that minimizes the weighted error, AdaBoost is able to accomplish

a non-linear decision surface in the 10-dimensional Eigenmusic space. More importantly,

the time complexity for training an AdaBoost grows linearly with the number of training

data, which exceeds some other non-linear classifiers, e.g. Support Vector Machine, and

naı̈ve implementation of k-Nearest Neighbor, in terms of scaling. The experimental result

for AdaBoost will be presented in Section 7.1.1.

4.3 HMM Smoothing for Segmentation

The AdaBoost prediction of music/non-music is made at the frame level. However, there

is some prior knowledge about the recordings that may help in the high-level decision
2
http://en.wikipedia.org/wiki/AdaBoost
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making procedure: Most of the segments should be music, and the length of the segments

should be much larger than that of frames, which means transitions from music to non-

music and vice versa are uncommon. In order to take such information into account,

in this section, a probabilistic interpretation of AdaBoost is discussed first. Then, based

on this interpretation, a Hidden Markov Model (HMM) is used to smooth the decision

boundary.

Figure 3: A two-state HMM (music and non-music) with all the transition probabilities.
The emission probabilities are omitted, as they are neither discrete nor Gaussian, which
makes visualization hard.

4.3.1 Probabilistic Interpretation

By taking into account the fact that state changes between music and non-music do not

occur rapidly, the rehearsal recordings can be modeled as a two-state (music and non-

music) HMM as shown in Figure 3. Formally, given an observation vector x, let St = y 2
Y = {�1, 1} represent its true label. Here, -1 stands for non-music and 1 stands for music.

And let W(x) represent the weighted sum of weak classifiers:

W(x) =
X

t

↵tht(VT

x) (2)

In Equation 1, the sign of W(x) is taken as the decision, but this approach could be

modified to compute the a posteriori probability for Y , given the weighted sum, which is

denoted as the function F :
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P (y = 1|W(x)) =F(W(x))

P (y = �1|W(x)) =1� F(W(x))
(3)

According to the discussion in Friedman et al. (2000), F(W(x)) could be a logistic

function:

F(W(x)) =
1

1 + exp(�2 ·W(x))
(4)

To verify this hypothesis, in Figure 4, the small circles show P (y = 1|W(x)) estimated

from training data sorted into bins according to W(x). The logistic function is shown as

the solid curve. It can be seen that the empirical data matches the theoretical probability

quite well.

−3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

w(x)

p
(y

=
1

|w
(x

))

logistic estimation

Figure 4: The logistic function estimation on training data.

It is worth noticing that the idea of linking AdaBoost with HMM is not new, but very

little work has implemented it in the field of speech and music (Schwenk, 1999; Dimi-

trakakis and Bengio, 2004). To the authors’ knowledge (Xia et al., 2011), this is the first

12



attempt of a probabilistic interpretation of AdaBoost when linked with HMM.

4.3.2 HMM Training and Smoothing

Even if pure AdaBoost could achieve very high accuracy, a very low error rate at the frame

level cannot guarantee a satisfying segmentation result at the piece level. For example,

suppose a relatively low 5% error rate is obtained at the frame level. If the segmentation

rule is to separate the target audio at every non-music frame, a 10 minute long pure music

piece would be cut into about 10(minutes)⇥60(seconds/minute) / 1.25(seconds/frame)⇥
5% + 1 = 25 segments in this case. This is obviously undesirable. Therefore, based on

typical characteristics of rehearsal audio data, it is assumed that: (1) music and non-music

frames cannot alternate frequently, and (2) short duration music and non-music intervals

are less likely than longer ones. By utilizing these assumptions in conjunction with the

HMM, low (but possibly deleterious) frame-level error rates can be further reduced. The

HMM observation corresponding to every frame x is a real number W(x), as in Equation

2, given by the AdaBoost classifier.

To smooth the results from AdaBoost using HMM, let S = [S0,S1, · · · ,ST ] be the state

sequence and let O = [O0,O1, · · · ,OT ] be the observation sequence. To estimate the

initial probabilities P (S0) and transition probabilities P (Si+1|Si), maximum likelihood

estimation (MLE) is used by simply counting the fractions of each possible transitions

{music,non-music} ! {music,non-music} over the different previous states. For emis-

sion probabilities P (Ot|St), according to Bayes rule:

P (Ot|St = 1) =
P (St = 1|Ot)P (Ot)

P (St = 1)
(5)

Here the emission probability for music is derived first. Ot is given by W(x
t

), and

P (Ot) is a constant. According to Equation 3, P (St = 1|Ot) = F(W(x
t

)). Therefore, the

emission probability for music can be further reduced to:

P (Ot|St = 1) = C F(W(x
t

))

P (St = 1)
(6)

C is the constant scalar multiplier. Similarly, the emission probability for non-music is:

13



P (Ot|St = �1) = C 1� F(W(x
t

))

P (St = �1)
(7)

A priori probabilities for both music and non-music are set to 0.5. Then the Viterbi

algorithm (Viterbi, 1967) can be applied to efficiently find the most likely state sequence for

a given observation sequence. The experimental result for HMM smoothing is presented

in Section 7.1.2.

The smoothing is visualized in Figure 5. The sequences of transitions between music

(white) and non-music (black) is illustrated. At each time point ti, there are 2 choices

for the state: music or non-music. There are 4 possible transitions from ti to ti+1: S1
i !

S1
i+1,S1

i ! S�1
i+1,S�1

i ! S1
i+1, and S�1

i ! S�1
i+1. For simplicity, here Sj

i = {Si = j}. Each

transition has a “cost value” assigned to it, which is computed from transition and emis-

sion probabilities. What the Viterbi algorithm does is simply to find the transition sequence

that is most likely. As in Figure 5, dashed lines represent all the possible transitions (one

out of four is covered by the solid line). The solid lines represent the path Viterbi algorithm

chooses. The segments can then be found by checking the labels for each time point.

Figure 5: A visualization for HMM smoothing.

4.4 Segmentation Implementation

Many of the implementation issues for this part of the system have been mentioned in

Section 3. More details will be provided here as they are important for an efficient work-

ing system.
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4.4.1 Eigenmusic & AdaBoost Implementation

The class diagram for Eigenmusic & AdaBoost sub-component is shown in Figure 6. First

of all, the notations in this diagram are explained.

Figure 6: The class diagram for Eigenmusic & AdaBoost sub-component.

Each rectangular box represents a class, thus in this part, it has Feature Extractor, Mu-

sic Noise Classifier, and AdaBoost classes. For each class box, the middle part represents

the class parameters (e.g. frame period and window size in class Feature Extractor), while

the bottom part represents the class methods (e.g. gen spectrum(), gen chroma vector(), and

gen CENS() in class Feature Extractor). For simplicity, only important class parameters

and methods are shown here.

The dashed line between class boxes represents dependency. In the case of the system,

class Music Noise Classifier will need to compute the Eigenmusic features for an audio

file so that they can be predicted as music/non-music by AdaBoost, thus it depends on

the class Feature Extractor where method get spectrum() computes the spectrum. The

spectrum can then be further processed to obtain the Eigenmusic features.
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The line with diamond at one end represents aggregation, where the diamond points

to the base. In the case of the system, the segmentation component will first use the Ad-

aBoost classifier to make a prediction on the frame level. Thus class Music Noise Classifier

has the object ada for class AdaBoost so that it has access to all the public functionalities

in class AdaBoost.

To segment the raw rehearsal recordings, a file name is passed as the parameter to

the method do music noise classify() in class Music Noise Classifier. Then the parameters

(frame period and window size) are passed as constants. As mentioned earlier in Section

3, the processing for this part of the system is stream-based. One frame of the audio (0.25

seconds) is read in every time and an FFT is computed. The spectrum is stored in an

array of spectra vectors. Then the spectrum is averaged over 5 frames (1.25 seconds).

The class AdaBoost is more generic, thus method do prediction() in class AdaBoost is not

aware of the type of the input data, as long as it fits the parameters for the classifier. The

predictions for all the long frames (with 1.25 seconds) are stored in a vector, which will

be used in the HMM smoothing part described below.

4.4.2 HMM Smoothing Implementation

The class diagram for the HMM smoothing sub-component is shown in Figure 7. Follow-

ing the notation introduced in Section 4.4.1, there is one object hmms of class HMM Smoother

in class Music Noise Classifier so that, similarly, it has the access to the smoothing method

in class HMM Smoother.

As in Section 4.4.1, the prediction results by the AdaBoost classifier are returned in a

vector, which is further passed to the method do smooth() here. The implementation is

pretty straightforward, following the Viterbi algorithm: construct a table of “cost value”

(Section 4.3.2) for 4 possible transitions at each time point and then find the path that

costs the least. The naı̈ve implementation is about 50 lines of C++ code.
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Figure 7: The class diagram for HMM smoothing sub-component.

5 Chroma-based Segments Clustering and Alignment

After the processes in Section 4, the raw recordings are segmented into short segments.

The next step is to cluster these segments by composition. A feature based on the widely

used chroma vectors will be presented first, then a novel unsupervised clustering algo-

rithm is proposed. Finally, the algorithm to align segments is presented.

5.1 CENS Feature Extraction

Chroma vectors (Bartsch and Wakefield, 2001) have been widely used as a robust har-

monic feature in all kinds of MIR tasks. The chroma vector represents the spectral energy

distribution in each of the 12 pitch classes (C, C#, D,· · · , A#, B), ignoring the specific oc-

tave, as shown in Figure 8. Such features strongly correlate to the harmonic progression

of the audio.

Considering the objective that the system should be robust to external factors (e.g.

audience cheering and applause for live performance recordings), the feature cannot be

too sensitive to minor variations. Therefore, as suggested by Müller et al. (2005), 2 post-

processing steps are taken to address the problem:

1. After obtaining the normalized energy distribution for the 12-dimensional chroma

vector �!v (as virtualized in Figure 8) with about a 200 ms Hamming window and

50% overlap, �!v is quantized by creating 4 buckets between 0 and 1, and assigning
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Figure 8: A visualization of the concept of chroma vectors.

values to each chroma component based on which bucket its value falls into. If the

chroma component vi � 0.4, the quantization value is assigned as 1. If 0.2  vi < 0.4,

the value is 0.75. If 0.1  vi < 0.2, the value is 0.5. If 0.05  vi < 0.1, the value is

0.25. 0 otherwise.

2. To calculate a longer-term summary, the sequence of quantized chroma vectors are

convolved with a Hann window with length 41. The hop-size of 10 vectors (1 sec-

ond) is used. After each convolution, downsample the result by a factor of 10 and

normalize it to have norm 1 for each 12 dimensional vector. Thus, one vector per

second is obtained, each of which spans roughly 4100 ms of audio.

These long-term feature vectors are described as CENS features (Chroma Energy dis-

tribution Normalized Statistics) (Müller et al., 2005). The length of the long-term window

and hop size in Step 2 can be changed to take global tempo differences into account. If

using the default settings with windowing over 41 consecutive short-term vectors and

summarizing with a 10-vector (1 second) hop-size, all the minor variations within 1 sec-

ond will be ignored, which is desirable.
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5.2 Segment Matching and Clustering

Segment matching happens in the following scenario. One segment (usually shorter)

will be compared with another segment (usually longer) to see if they are close enough

to be clustered together. The former one is refereed to as the “query segment”, while

the other is refereed to as the “template segment”. Since the CENS itself is robust to

minor variations, segment matching can be achieved by simply calculating the correlation

between the query segment Q = [q
1

,q
2

, · · · ,q
M

] and the subsequence (of length M) of

template segment T = [t
1

, t
2

, · · · , t
N

] (N > M). This correlation can be considered as

the distance between the 2 segments. Here, all the lower case q

i

and t

i

represent 12-

dimensional CENS vectors. Thus, Q and T are both sequences of CENS vectors over time.

As in Müller et al. (2005), the distance between query segment Q and the subsequence of

template segment T(i) = [t
i

, t
i+1

, · · · , t
i+M�1

] is:

dist(Q,T(i)) = 1� 1

M

MX

k=1

hq
k

, t
i+k�1

i (8)

Here hq
k

, t
i+k�1

i denotes the dot product between these 2 CENS vectors. All of the

distances for i = 1, 2, · · · , N �M +1 together can be considered a distance function � be-

tween query segment Q and each subsequence of template segment T(i). If the minimum

distance is less than a preset threshold �, then Q can be clustered with T.

However, considering that the ultimate goal is to build a database, where segments

are grouped by composition, one problem with this decision scheme is that, unlike a

traditional song retrieval system which has a large reference database in advance, this

system has no prior information about the rehearsal audio stream, but only a stream of

potentially unordered and unlabeled audio that needs to be clustered, i.e. there is no

predefined template T. To solve this problem, the database is constructed dynamically

following Algorithm 1. The inputs are all the music segments obtained from Section 4.

Here a critical assumption is made: the longer segment is most likely to be a whole

piece or at least the longest segment for this distinct piece, so it is reasonable to let it

represent a cluster. At every step of the iteration, a new segment S is taken out. It can

either be part of an existing piece in the database (in which case it will be clustered with
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Algorithm 1: buildDB
Take out the next segment S.

• If database D is empty, put S into D as the cluster centroid for cluster C1.

• Otherwise match S with the cluster centroid for every cluster Ci, where
i 2 {1, 2, · · · , N}, in D by calculating distance function �. Let Cmin be the cluster
where S and cluster centroid have the best match.

– If the distance function � between cluster centroid of Cmin and S has a
minimum less than �, cluster S with Cmin.

– Otherwise make S the cluster centroid of a new cluster CN+1 in D.

• Repeat the algorithm until all segments are clustered.

a matching segment) or it is a segment for a new piece which does not yet exist in the

database (in which case it will be made a new cluster).

For each cluster, the longest segment is kept as the cluster centroid. The remaining

segments are only compared with all the cluster centroids. If a segment S matches with

cluster Ci, and S is longer than the cluster centroid for cluster Ci, then S could simply

replace the original centroid for cluster Ci. During the process of clustering, since the

CENS for centroids are frequently used, the CENS for all centroids are saved in a local

file, and will be loaded every time new segments are added to the database.

The system also needs to take into account that the possibility that tempo differences

cause misalignment between sequences. Different versions of CENS features can be ob-

tained (for example, from 10% slower to 10% faster) for the same segment to represent the

possible tempos. This is achieved by adjusting the length of the long-term window and

the hop size as mentioned in Section 5.1. During matching, the version of the segment

with the lowest distance function minimum will be chosen.

5.2.1 Segment Length vs. Threshold Value

While time scaling compensates for global tempo differences, it does not account for lo-

cal variation within segments. It is worth noticing that the query segment may not be

used in full length, instead, only a subsequence can be used to calculate the distance. It
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will be interesting to consider the length of the subsequence of the query segment that

is used to correlate with the template segment in the database. Intuitively, longer seg-

ments will be more selective, reducing spurious matches. However, if the length is too

large, e.g. two segments both longer than 5 minutes, sequence misalignments due to

tempo variation will decrease the correlation and increase the distance. If longer subse-

quences lead to greater distance, one might compensate with larger threshold values (�).

However, larger � values may not prove strict enough to filter out noise, leading to clus-

tering errors. On the other hand, if only a small subsequence length is used, the threshold

values � should decrease accordingly. Two pairs of configurations will be compared in

Section 7.2.1: longer subsequence length with larger � and shorter subsequence length

with smaller �.

5.3 Segment Alignment

Hu et al. (2003) proposed a audio-to-MIDI alignment algorithm based on dynamic pro-

gramming. The chroma vectors for audio and MIDI are computed first, then a similarity

matrix is formed as shown in Figure 9, where the (i, j) element of the matrix is the Eu-

clidean distance between the i-th chroma vector of the MIDI and the j-th chroma vector

of the audio. Then a path starting from the bottom left, all the way to the upper right can

be searched via dynamic programming.

The basic idea can be adopted to perform segment-to-segment alignment as well. The

feature used here is chroma vector instead of CENS, mainly because CENS is too “rough”

for accurate alignment. Recall from Section 5.2, as part of the by-product of the clustering

process, a matching position between two segments can also be found. Therefore, starting

from this position, the similar alignment algorithm can be performed.

The only exception is that, unlike in audio-to-MIDI alignemnt in Hu et al. (2003) where

the start/end of the audio and MIDI are the same, here this matching position is the only

available information. There is no information on where the alignment begins or ends

in either the query or the template segment. Therefore, a two-directional search is per-

formed until the start/end of the query segment is reached. This process is illustrated in
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Figure 9: Similarity matrix for Beatles’ “I Will” from Hu et al. (2003).

Figure 10. Note that this figure is only for the purpose of illustration. The template seg-

ment has 300 frames, while the query template has 100 frames. As mentioned in Section

5.2.1, not all of the segment is used (the length of the subsequence being used is deter-

mined by experiments in Section 7.2.1), thus the matching position is represented by the

red dot, at about one fourth of the length of the query segment.

Figure 10: An illustration of template segment to query segment alignment. The matching
position is shown as the red dot.
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5.4 Segments Clustering and Alignment Implementation

The implementation issues for the clustering component are presented here. The imple-

mentation for segment alignment has not been finished yet, thus there is no description

for alignment sub-component.

5.4.1 CENS Implementation

The implementation of CENS is straightforward, simply following the steps described in

Müller et al. (2005). However, when computing the chroma vector, instead of filtering

the audio with a filter bank consisting of elliptic filters to get the energy distribution for

12 pitch classes bins, an efficient implementation used in Audacity3 is adopted to directly

obtain the energy distribution by mapping and counting on the frequency domain.

To obtain the CENS from chroma vectors, first a Hann window is convolved with the

chroma vector, then the results are downsampled to summarized the feature in a longer

period. One implementation issue here is that the convolution of two vectors can be

computed in O(n log n), by making use of the property of the convolution to first compute

the FFT for both, then do the inverse FFT on their product, instead of O(n2) as the naı̈ve

implementation. However, the implementation used in the proposed system is in O(n2),

as the length of Hann window is fairly small (41 for the default setting), so in fact the

algorithm runs in O(Cn), where C is the length of the Hann window. In practice, the

computation is quite fast.

5.4.2 Segment Matching and Clustering Implementation

The class diagram for segment matching and clustering sub-component is shown in Fig-

ure 11. This is one of the most important parts of the system as it relates to all the other

component classes.

Class Segment Cluster is the main class to accomplish the matching and clustering

task. From the class diagram, it can be observed that it is dependent on both class Fea-

ture Extractor and Music Noise Classifier. The dependency with class Feature Extractor
3
http://audacity.sourceforge.net/
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Figure 11: The class diagram for segment matching and clustering sub-component.

is intuitive as the clustering step first requires the computation of CENS features. It de-

pends on class Music Noise Classifier because segment clustering needs the segments

generated from the method do gen segments() in class Music Noise Classifier.

As mentioned in Section 3, the segments are not actually generated as audio files, in-

stead only the start and end time indices are saved. Other information saved in a segment

includes the original recording file name, the cluster ID (computed later) and the compo-

sition name. The composition name is optional, and needs to be provided by the user. If

the composition name is provided for a cluster, in which all segments are considered to

belong to the same composition, then search by composition name can be supported.

Following Algorithm 1, if the database has not been built, the first segment will be the

centroid of the cluster, with cluster ID 0. The segment information will also be written to

the text database file, with the format:

Recording filename Start time index End time index Cluster ID

The start/end time indices represent the time in terms of the long frame (1.25 seconds).

Every time a new segment is added to the databases, a new line of this format will be

written to this text database file. On the other hand, if an existing segment is added again,

as long as the system can detect it is a duplicated segment by comparing all the 5 fields

in the table above, it will be ignored. Also, as mentioned in Section 5.2, the CENS for
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cluster centroid is saved in a local file in a separate folder, with the file name containing

the cluster ID. There are 2 reasons that the CENS for each cluster centroid has a separate

file:

• Once the database is built, when the system starts again to add new segments into

the database, the system can obtain the number of existing clusters by counting the

number of files in this centroid CENS folder. At the same time, the system can load

all of these centroid CENS files for comparison.

• As mentioned in Section 5.2, the cluster centroid may be changed to a longer seg-

ment. If all the centroid CENS are stored in one file, it is difficult to only replace

part of the content programmatically, while it is only a few lines of code to replace

a separate file.

Each remaining segment will be added by comparing it to the cluster centroid for

each existing cluster. The distance determines if the segment should be added to one of

the existing clusters or a new cluster needs to be created.

While the system starts adding new segments, the database will be loaded into the

memory in the form of a table mapping from cluster ID to a list of segments within that

cluster, instead of a huge linear list with all the segments as they are organized in the

database file. This structure is much faster than the linear list in terms of search by cluster

ID. This table will be empty if the database has not been built. Once a new segment has

been processed to add to the database, the table is updated accordingly. Thus the table

reflects the incremental updates. And because of this, it is basically the same algorithm to

add a new segment to a database whether it has no recordings or 1000 hours of recordings

and 1000 clusters. Both cases simply add a new entry to the table which is already in the

memory, although the latter takes some more time to compare the segment with 1000

cluster centroids.

As the clustering may make mistakes, a manual correction mechanism is proposed

(not implemented yet). For a certain segment which should belong to cluster i but clus-

tered with cluster j, the user will first notice this when he or she tries to listen to the
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recordings for the composition which is represented by cluster j. If this segment is not

the cluster centroid for cluster j, there are 3 choices:

• A new line will be appended to the database files with the correct cluster ID i pro-

vided by the user. In this case, when the system tries to load the database into the

memory, it will first add the old line in the database where the segment belong to

cluster j, but later it will find this segment belongs to cluster i. Thus the previous

entry will be removed.

• In the database file, the old cluster ID j for the misclustered segment can be over-

written with the new one (i). This requires a search to find the file position of the

segment first.

• Since the database is loaded into memory as a mapping between cluster ID and a list

of segments within that cluster, the misclustered segment can simply be updated in

memory and then written to the database file.

The first choice can be efficient, as searching or rewriting the entire database file every

time a mistake is found can be time-consuming, especially when the database gets larger.

One could also use a more sophisticated data structure on disk to facilitate efficient up-

dates.

If the segment is the cluster centroid for cluster j, the situation becomes trickier as it

cannot be simply updated directly. Some of the information is related to the misclustered

cluster centroid, e.g. the local CENS centroid file. The first step is the same with the

situation above, assume the first if chosen, writing a new line to the database line. Since

the data structure storing the database in memory is a table which maps the cluster ID

to a list of segments, to find the second longest segment can be accomplished by doing a

linear search within the list corresponding to the cluster j. The length of a segment can

be computed by end time index minus start time index, both of which are stored as the

segment information in table above.
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6 Interactive Music Display

Ultimately, the purpose of the system is to integrate the rehearsal audio into a digital

music display and practice support system. The display system acts as bi-directional

interface: display as input and display as output. A implementation of this music display

is shown in Figure 12.

Figure 12: A labeled score.
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6.1 Display as Input

In order to use the display interface as input, a link is needed between display location

and audio location for at least one recording. As proposed in Liang et al. (2011), while

listening to a performance, the user can tap on music locations to establish a correspon-

dence between music audio and music notation. To integrate with the system in Section

4 and 5, it is enough to only tap the beat locations for the cluster centroid for each cluster,

as once the music has been annotated in this manner, audio-to-audio alignment within a

cluster can be accomplished automatically, as described in Section 5.3. The user can then

point to a music passage in order to call up a menu of matching audio sorted by date,

length, tempo, or other attributes.

6.1.1 Static vs. Dynamic Score

Even if the correspondence between music audio and music notation is established, there

is an important difference between scores and audio, as scores are more like a program

that must be “executed” before it can be played properly. Repeats and the “Dal Segno

(D.S.) al coda” are forms of looping behavior. First and second endings and the coda

are forms of conditional behavior based on the loop count. Taking the score in Figure 12

as an example, the repeat signs in the first and third system indicate that after reaching

the repeat sign in the third system for the first time, the performer should go back to the

repeat sign in the first system. There is also a 2rd repeat sign to indicate which measure

should be played after the second repeat. Thus, the score is a “static” representation of

music in the sense of static code, and an audio file is a “dynamic” representation of music

in the sense of dynamic or run-time program behavior. Because of this static property,

the mapping between audio location and score location is actually one-to many, which

increases the difficulty for an interactive music display interface. The proposed solution

in Liang et al. (2011) is that, given a static score (an image), the system first asks user to

manually label all the notation positions, e.g. vertical lines to separate systems, bar lines,

repeat signs, D.S. and so on (as shown in the left column of the UI in Figure 12). With

this position information, the system can convert the static score to the corresponding
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dynamic score by “unfolding” the repeats and computing a list of dynamic measures.

Thus, all the display functionality can be operated on the dynamic score where a one-to-

one mapping exists with music audio.

Manually labeling the score event positions is tedious. Some automatic mechanisms

based on Optical Character Recognition (OCR) have already been used in commercial

software. However, it is difficult to avoid mistakes during the recognition process. Fur-

thermore, for some non-traditional scores with the non-standard notations or hand-written

sketches (shown in Figure 13), the system presented in this thesis can still handle it, while

OCR-based mechanism cannot.

Figure 13: A labeled non-traditional score.
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6.2 Display as Output

After inputing the necessary information to the display system, the user can then practice

with the recording in order to work on tempo, phrasing, or intonation, or the user might

simply review a recent rehearsal, checking on known trouble spots. When playing the

segments, the interface can even indicate the currently playing position in the score, as the

beat information (score position) and the time information in the audio have been aligned.

One of the exciting elements of this interface is that useful audio can be made available

quickly through a natural, intuitive interface (music notation). It is easy to import scanned

images of notation into the system and create these interfaces.

As with the problem presented in Section 6.1.1, a static score display as output will

also exhibit the problem of a many-to-one mapping. By “unwrapping” the score into a

dynamic score in which the same static measure may occur multiple times, the mapping

from score to audio position becomes one-to-one and unambiguous.

Another problem is automatic page turning. Various schemes have been implemented

for “page turning” on a display screen of limited size. It is well known that musicians

read ahead, so it is essential to display the current music as well as several measures

in the future. The most common approach is to split the screen into top and bottom

halves. While the musician reads one half, the computer updates the other half to the next

system(s) of music. Other solutions include: scrolling up at a constant speed, scrolling up

by one system when it is finished, scrolling at a variable speed which is proportional to

the tempo, and scrolling an infinitely wide score horizontally. As implemented in Liang

et al. (2011), the screen is divided into thirds and always displays previous, current, and

next systems. For example, the initial display shows the first 3 systems as 1-2-3. When

the player advances to the third system, the display is updated to 4-2-3. Then when the

player continue to system 4, the display is updated to 4-5-3, etc.

6.3 Display Implementation

The display interface is implemented in Java. The Java Swing library provides a flexible

and portable graphics layer. The display interface was developed for another project
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named “Human Computer Music Performance (HCMP)” and described in Liang et al.

(2011). Currently the Java implementation is still in its early stage, where the dynamic and

static score conversion functionality has not been fully implemented. ZeroMQ4 is used as

a toolkit for communication between C/C++ and Java. Java Native Inteface (JNI) is often

used as a framework to enables Java to call, and to be called by, libraries written in C or

C++. However, in the case of this system, ZeroMQ is preferable to JNI because it allows

the music display system to present a language-independent interface, as messages are

passing via socket, which is supported by almost every language.

7 Experiments

In this section, the experimental results are presented, including: music/non-music clas-

sification results with AdaBoost, the result after HMM smoothing, and the clustering re-

sults based on Algorithm 1. Finally performance measurements are presented.

7.1 Music/Non-music classification

7.1.1 AdaBoost Evaluation

Data Collection and Representation The training data for AdaBoost is a collection of

about 5 hours rehearsal and performance recordings of Western music; while the testing

data is a collection of 2.5 hours of Chinese music. The distinct characteristics of Western

and Chinese music will increase the difficulty of the music/non-music classification task,

and show the robustness of the system presented here. Data collection can be described

as follows:

• For the music parts, each data collection contains different combinations of wind

instruments, string instruments, and singing voices.

• For the non-music parts, each data collection contains speech, silence, applause,

noise, etc.
4
http://www.zeromq.org/
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Both data collections are labeled as music or non-music at the long frame level (1.25 sec-

onds) as introduced in Section 4.1. From Section 4.1, it is also known that each long frame

is a point in the 10-dimensional Eigenmusic space. Therefore, the number of total long

frames for training data is 5(hours)⇥ 3600(seconds/hour)/1.25(seconds/frame) = 14400

and similarly, testing data has 7200 long frames.

Implementation and Evaluation The number of weak classifiers for AdaBoost is a pa-

rameter which can be adjusted for optimal performance. In the case of music/non-music

classification, 100 weak classifiers are trained to construct the final strong classifier. The

testing error rates for music and non-music are shown in Figure 14. The x-axis represents

the number of weak classifiers. It can be observed that after 40 weak classifiers are trained,

the error rates for both music and non-music converge. Therefore, for the computation

in the system, only the weighted sum for the first 40 weak classifiers are necessary, from

which significant computation can be saved.

The results were obtained in terms of the percentage of error at the frame level. Two

different statistics have been calculated: the percentage of true music identified as non-

music (false negative), shown as the solid line, and the percentage of true non-music

identified as music (false positive), shown as the dotted line. It can be seen that the pro-

posedsegment classifier in the Eigenmusic space is capable of achieving a relatively low

error rate (about 5.5%) on both music and non-music data, even when the testing data

comes from a completely different sound source from the training data.

As this task is new to the fields of MIR and Speech, there is no result from previous

work to compare with. However, taking the results from the task of music/non-music

classification for broadcast streaming audio using a Bayesian network (Pikrakis et al.,

2008) with approximately 96% overall accuracy as state-of-the-art, the result from Ad-

aBoost is comparable, and HMM smoothing will further improve the performance.

7.1.2 HMM Smoothing Evaluation

At the frame level, HMM smoothing reduced the error rate from about 5.5% to 1.8% on

music and to 2.2% on non-music, which is a significant improvement over the already
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Figure 14: The testing error of music and non-music.

high accuracy from AdaBoost.

However, the results on the frame level are not so important in the sense that the

only purpose of this step is to extract the music pieces/segments, not music frames.

Since the pieces/segments level evaluation has been largely ignored in previous work on

music/non-music classification, an evaluation method from speech segmentation com-

munity called Fuzzy Recall and Precision (Ziółko et al., 2007) is adopted. This method

pays more attention to insertion and deletion than boundary precision. A Fuzzy Preci-

sion of 89.5% and Fuzzy Recall of 97% are obtained. The high Fuzzy Recall reflects that

all true boundaries are well detected with only some imprecision around the boundaries.

The lower Fuzzy Precision reflects that about 10% of the detected boundaries are not true

ones. As mentioned later in Section 7.2.1 as well, this is more desirable than making sure

all the detected boundaries are correct, but missing true boundaries which distinguish 2

different compositions. In that case, an incorrectly long cluster centroid may be used in

the clustering process, where the ground truth actually belongs to 2 clusters.
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7.2 Music Segments Clustering

To find the optimal cluster performance, two parameters can be tuned as discussed in

Section 5.2.1: �, threshold value, which determines if the two segments are close enough

to be clustered together, and t, the length of the subsequence of the segments.

7.2.1 Experimental Evaluation

Hours of rehearsal recordings as test data are used, with styles that include classical, rock,

and jazz. Live performance recordings, which are typically even longer, are also used. To

evaluate the clustering results, F-measure is used as discussed in Manning et al. (2008):

P =
TP

TP + FP
, R =

TP

TP + FN

F� =
(�2 + 1)PR

�2P + R

(9)

Here, P (precision) and R (recall) are determined by 4 different variables: TP (true

positive) which corresponds to assigning two similar segments to the same cluster, TN

(true negative) corresponding to assigning two dissimilar segments to the different clus-

ters, FP (false positive) corresponding to assigning two dissimilar segments to the same

cluster, and FN (false negative) which corresponds to assigning two similar segments to

different clusters. � is the tuning parameter used to adjust the emphasis on precision or

recall. In the case of this thesis, it is more important to avoid clustering segments from

different pieces into one cluster than it is to avoid oversegmenting by creating too many

clusters. The latter case is more easily rectified manually. Thus, it would be more prefer-

able to penalize more on false positives, which leads to a choice of � < 1. Here, � = 0.9 is

used.

Considering the possible noise near the beginning and the end of the recordings, the

middle t seconds are chosen if the length of the full segment is greater than t seconds.

As seen in Figure 15, for subsequence longer than 3 minutes, the relatively larger � =

0.25 outperforms others, while for shorter subsequence length around 20 seconds to 60

seconds, the smaller � = 0.15 has the best performance with 0.95 F-measure value. It

is also shown that if � is set too large (0.35), the performance drops drastically. Overall,
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shorter subsequence length and smaller � gives better results than longer subsequence

length and larger �. Finally, since calculating correlation has O(n2) complexity, shorter

subsequence lengths can also save significant computation. Thus, the system described

in this thesis uses a segment length t = 40 seconds and � = 0.15.

It is hard to compare the cluster results presented here with some other algorithms.

First of all, these results are on the training data set, and there is no independent evalu-

ation on a test set, which might reveal some overfitting of parameters t and �. Second,

there is no previous work on this task to serve as a baseline. K-means clustering, as one of

the most classic clustering algorithm, was tested but did not work as well as the algorithm

here because of the non-uniform segment length and unknown number of clusters.
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Figure 15: Experimental results with different segments of length t and matching thresh-
old �.
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7.3 Performance Measurement

One of the most important factors for a working system is how fast it could accomplish

the task. In this section, the performance measurement in terms of running time is pre-

sented for the segmentation and clustering components, which are expected to be the

most computationally intensive. Here, all the running time measurements provided are

from the experiment with a 5-minute-long rehearsal recording and 9 existing segments

of a total length of about 1260 seconds (21 minutes) in the database with 5 clusters. The

total length of all the cluster centroids is about 820 seconds (less than 14 minutes). The

time complexity in big-O notation is provided as well so that the running time for input

of arbitrary length can be estimated.

Music and Non-music Segmentation The running time for different sub-components

of the segmentation is shown in the table below (all the time are in seconds):

Total Resample FFTs AdaBoost + HMM

10.961 8.789 1.818 0.354

From the table, it can be observed that most of the running time is spent on resam-

pling the audio to 16000 Hz. Here the resample is done using the libsamplerate toolkit5.

Therefore, part of the future work is to implement a more efficient resampling function.

To represent the running time in big-O notation, the length of one rehearsal recording is

denoted as O(n) to represent different quantities in every step, i.e. the number of samples

during resampling, the number of frames while computing the FFTs, and the number of

longer frames (averaging among 5 FFT frames) during AdaBoost prediction and HMM

smoothing. Note that all the constants are in upper case, and all the variables are in lower

case.

The implementation for libsamplerate is unknown. But in general, resampling runs

in O(Cn), where during downsampling (which is the common case) C is the length of

the low-pass filter to prevent aliasing. For FFTs, using the classic algorithm, the time

is O(nL logL) where L is the length of the FFT frames. The AdaBoost prediction can
5
http://www.mega-nerd.com/SRC/
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be done in O(Tn) as it only computes the weighted sum of the prediction for T weak

classifiers (T = 40, as observed in Section 7.1.1). The same applies to Viterbi algorithm,

the running time is in O(Sn), where S is the number of the states (in the case of the

system S = 2). Therefore, the total time complexity of the segmentation component is

O((C + L logL+ T + S)n), which grows linearly with the length of the input audio.

Segment Matching and Clustering The clustering takes 1.401 seconds to finish all 3 of

the segments in the rehearsal recordings.The length of the 3 segments are 66 seconds, 43

seconds and 81 seconds, respectively. The running time for each of the 3 segments are

shown below, which is decomposed into 2 separate running time: time to compute the

CENS and the time to finish matching and clustering.

Segment 1 Segment 2 Segment 3

Compute CENS 0.298 0.301 0.304

Match & Cluster 0.022 0.019 0.023

In terms of the running time in big-O notation, the time used to compute the CENS of

query segment should be O(n), as it is based on the FFTs. However, based on the experi-

ment in Section 7.2.1, the length of CENS is fixed (the default setting is D = 40), thus the

time in most cases is O(1), and O(n) only if a new cluster is created with this segment, in

that case the CENS for the full length is computed and saved as a local file. The amortized

analysis can be used to analyze the general time complexity  (n). However, even with-

out mathematical derivation, it is guaranteed that  (n) must satisfy  (n)  O(n) which

is enough for the large-scale rehearsal recordings. Assume the length for each cluster

centroid is mi, the time to perform matching and clustering is in O(D
Pk

i=1 mi), where k

is the number of existing clusters. D appears here to represent the time spend on each

distance computation. Note that
Pk

i=1 mi is the total length of all the cluster centroids.

The total time spent on the clustering component is O( (n) + D
Pk

i=1 mi), which grows

linearly with the number of the clusters and the length of each cluster centroid.

The streaming nature of the segmentation component and the incremental updates for

clustering enables the system work with large-scale rehearsal recordings. As presented in
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Section 5.4, it is almost equivalent to add a new segment to a database with no recordings

and with 1000 hours recordings and 1000 clusters. To form the running time complexity

for the whole system given a new rehearsal recording with length O(n), the time on seg-

mentation component is O((C+L logL+T +S)n) which can be simplified as O(Cn), then

assume N segments are generated. Since only one rehearsal recording is processed, it is

reasonable to assume this is from one rehearsal which should be at most a few hours, thus

N should be in the order of 10 or 100. In the process of the clustering component, for each

segment, the time complexity is O( (n)+D
Pk

j=1 mj). Thus, the total time for N segments

is
PN

i=1 O( (n) + D
Pk

j=1 mj). Adding the running time for 2 components together, the

total time for processing the rehearsal recording of length O(n) into the database, where

N segments are generated and k clusters already exist, is:

O(Cn+
NX

i=1

( (n) +D
kX

j=1

mj))

= O(Cn+N (n) +DN
kX

j=1

mj)

From the total time complexity, given a rehearsal recording, O(Cn+N (n)) is a linear

form of the length O(n) of the recording. As the number of existing clusters k increases,

O(DN
Pk

j=1 mj) grows linearly. Therefore, system runs linearly with the length of the

recording and the number of existing clusters, which guarantees the system could still

work with large-scale rehearsal recordings.

For example, consider a database with 1000 hours of recordings (about 0.6 TB of CD

quality audio). Assuming music is rehearsed 10 times on average, there are about 100

hours of segments as cluster centroids. From the clustering measurements, it can be esti-

mated that each new segment will take about 0.3 second to compute CENS features and

about 9.5 seconds for the match and cluster step. Thus, it takes much less time to update

the database than it takes to record the rehearsal in the first place.
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8 Applications

Aside from the basic usage of the system which organizes the rehearsal recordings and

provides an interface for the user to play along for practice, there are many possible ap-

plications based on the system presented in this thesis. Some of them are introduced

here:

Download Labeling One of the most tedious parts for the system is that the users have

to manually label the score event position. However, if there is a score with correct man-

ual labeling, all the users can download both the score and the labeling for convenience.

This score and labeling could be provided by the music publisher as part of a purchased

music download.

Combination with Music Minus One Music Minus One6 is a company that provides

music recordings with one of the instruments omitted. Music Minus One recordings are

designed as a practice aid, but it is sometimes difficult to find a starting location when

the musician wants to play a particular passage. The score display interface presented in

Section 6 would allow the musician to simply point to a starting location and the system

would automatically start the Music Minus One recording at the right place. In fact, users

would not need any special support from Music Minus One to enhance their practice

experience. They could simply load Music Minus One recordings into their system, scan

their personal scores, and manually annotate the score with timing information.

Search by Attribute In cases where there are many recordings of a given piece of mu-

sic, it might be interesting to search by different musical properties. What was the slowest

performance of this piece? What was the fastest? How has the tempo changed over time?

The automated audio alignment computation makes it easy to compare tempos in dif-

ferent recordings. Using fairly simple audio feature extraction, one could also search for

the brightest or darkest performance. With more advanced techniques such as emotion

classification, one could search for the happiest or saddest version of a song.
6
http://musicminusone.com/

39

http://musicminusone.com/


Musicological Study While this system is inspired by the need for practice tools, it

could also be used with professional recordings. One could load a library of classical

recordings and have them clustered by piece. Then one could have instant access to, say,

the oboe cadenza in Beethoven’s Fifth Symphony. Of all the recordings, who played the

cadenza the fastest or the slowest? How to the cadenzas compare? The audio alignment

and music notation interface make it easy to locate the audio.

More Practice Tools When practicing a difficult passage, repetition is essential. It would

be simple to automatically cycle through a difficult passage many times while the musi-

cian plays along. The music notation interface would provide a natural place to indicate

exactly what to repeat. (The MakeMusic, Inc. (2011) system supports repetition, but the

user must manually enter measure numbers to create a repeat.) In addition to repetition,

practicing at different tempos (especially slow ones in the beginning) is an established

way to develop virtuosity. Audio time stretching could be used to play audio from pro-

fessional CDs, Music Minus One recordings, or rehearsal recordings at any desired tempo.

In addition to audio playback, the rehearsal system could listen to the musician and esti-

mate pitch to assist with intonation, record performances to allow the musician to listen

critically to a practice performance, or even compare details of articulation, rhythm, and

vibrato to recordings of a teacher, for example.

9 Previous work and Contributions

The work in this thesis is based on the joint work between Guangyu Xia, Roger B. Dan-

nenberg, and Mark J. Harvilla (Liang et al., 2011; Xia et al., 2011), thus it is not starting

from scratch. The original work was done as the course project of Machine Learning

for Signal Processing7 (11-755), resulting in prototypes of two of the three components

(segmentation and clustering). Guangyu Xia worked on the AdaBoost and HMM ap-

proach for segmentation and provided an implementation in MATLAB, and I worked on

the segment matching and clustering and proposed the unsupervised database building
7
http://mlsp.cs.cmu.edu/courses/fall2010/
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algorithm, also in MATLAB. We tested these 2 components separately without any inte-

gration. Finally a music display system was implemented jointly by Roger B. Dannenberg

and Guangyu Xia. The score display interface was reimplemented in Java by Zeyu Jin and

forms the basis for music display in this thesis.

Besides my original contribution on the music segment clustering component, the

work in this thesis provides an integrated implementation for the whole system, which

is overviewed in Section 3. The original prototypes (in MATLAB) did not address many

practical issues. For example, in the prototypes, we saved all data as a .mat file in the

MATLAB workspace. However, designing an appropriate relational database-like table

(Section 5.4) is one of the most important foundations for the integrated software. Also,

the MATLAB prototypes were not interactive or connected to a graphical user interface

and score display. However, the connection between display interface and recordings

processing backend can be essential for a usable, working system (Section 6.3).

10 Conclusion and Future Work

In this thesis, a system for automated management of a personal audio database for prac-

ticing musicians is presented. The system takes the recordings as input, segments them

into musically meaningful parts, and then organizes them through unsupervised cluster-

ing and alignment. A score display interface based on common music notation allows

the user to quickly retrieve music audio for practice or review. This work integrates a

music/non-music classifier, HMM-based music segmentation, an unsupervised cluster-

ing algorithm for music audio organization, and a notation-based interface that takes ad-

vantage of audio-to-audio alignment. Experiments show that both the segmentation and

clustering components can achieve comparable results with the state-of-the-art, though it

is not easy to find a counterpart in the previous work. A working implementation has be

written in C++/Java.

Some of the sub-components are not fully implemented (e.g. segment alignment and

the static and dynamic score conversion in display interface). Most of the testing has been

done in Mac OS X. Although C++ and Java are cross-platform, there will still be minor
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issues which need to be addressed in order to make the software work on Windows and

Linux. This software is new and there is not much experience with it. In the future, it

could be tested by practicing musicians. This experience will lead to recommendations

for new functions and improvements in the interface.
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