
1

Copyright © 2002-2015 by Roger B. Dannenberg

INTRODUCTION TO
COMPUTER MUSIC
Roger B. Dannenberg
Professor of Computer Science Art, and Music

Copyright © 2002-2015 by Roger B. Dannenberg

INTRODUCTION

2 Introduction

2

Copyright © 2002-2015 by Roger B. Dannenberg

What’s In This Introduction?
• Why Computer Music?
• What is this course about?

• Computer Music Technology
• Making Music With Computers

• How is the course taught?

3 Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

Why Computer Music?
• No limits to the range of sounds you can explore.
• Precision:

• Microscopic changes to sounds
• Exactly reproducible, incremental changes

• Computation
• Decisions can be embedded at any level
• Detailed and complete performances can be

recomputed after high-level, abstract changes
• Blurring the lines between composer, performer,
and even the audience

Introduction 4

3

Copyright © 2002-2015 by Roger B. Dannenberg

What Is This Course About?
• Computer Music Technology

•  Theory
•  Digital audio, Digital signal processing
•  Software design, languages
•  Data structures and Representation

• Practice
•  Nyquist: a composition and sound synthesis language
•  Audacity: a digital audio editor

5 Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

What Is This Course About? (2)
• Making Music With Computers

•  Theory: listening and discussion
• Practice: composition assignments

6 Introduction

4

Copyright © 2002-2015 by Roger B. Dannenberg

Projects
• Schedule is on the web
• All projects are due 11:59pm on the shown due
date

• You have 3 grace days for the entire semester
(P1 through P6 only) - use them wisely.

• You can use at most 1 grace day for any one
assignment

• Many additional problems to be worked out as
you go through the on-line lectures.

7 Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

Communication
• Web Site – www.music.cs.cmu.edu/icm
• Online Instruction – www.music.cs.cmu.edu/atutor
• Syllabus is on Web Site
• Project info too
• Come to class (!)
• Discussion/Newsgroup/Bboard for class:

•  https://piazza.com/class/i4mwwndya5f6qj
• Projects handed in to Autolab (See instructions in
syllabus.)

8 Introduction

5

Copyright © 2002-2015 by Roger B. Dannenberg

Computing Hardware
• You must have access to a machine for
homework and projects (there is no class studio,
lab, or cluster):
• Mac, Windows, or Linux is OK
• No machine is too slow
•  5MB/minute/channel of audio
• Projects will be submitted via network to Autolab
 (if you have network problems, you can bring a
CD-R or flash drive to campus and upload to Autolab)

9 Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

Software
• Nyquist is a self-contained language for sound
synthesis and composition.

• Audacity is an audio editor.
• Both are open source and free.
• You may use other languages, editors, and tools

• … in addition to but not usually instead of Nyquist,
• Project descriptions will generally ask for certain things

to be done in Nyquist

10 Introduction

6

Copyright © 2002-2015 by Roger B. Dannenberg

Welcome to the Course
• Now is a good time to download Nyquist

•  http://www.cs.cmu.edu/~music/nyquist/

•  and Audacity
•  http://audacity.sourceforge.net/download/

•  Install them and get ready to make some music!

Introduction 11

Copyright © 2002-2015 by Roger B. Dannenberg

HOW DO COMPUTERS
MAKE SOUND?
Some fundamentals

Introduction 12

7

Copyright © 2002-2015 by Roger B. Dannenberg

How Do Computers Make Sound?
• What is sound?
• What does analog mean?
• Digital audio representation
• Analog-to-Digital conversion
• Digital-to-Analog conversion
• Synthesis example

13 Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

What Is Sound?
• Sound is a variation in pressure
• Pressure variations travel through air as
 waves

• Sound travels about 1000 feet/second
• Hz = Hertz = (cycles) per second
• We hear variations from about 20Hz to 20000Hz
• We hear amplitude variations over about 5 orders
of magnitude from threshold to pain

14 Introduction

8

Copyright © 2002-2015 by Roger B. Dannenberg

What does analog mean?

• Pressure variations (sound) can be expressed as:
• Mechanical displacement (microphone, speaker)
• Voltage variations
• Wiggles in vinyl record grooves
• Degree of magnetization on tape
• Optical density in film

• These representations are called analog
15 Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

Digital Audio Representation
• Measure an analog signal periodically:

16

Time

Introduction

9

Copyright © 2002-2015 by Roger B. Dannenberg

Digital Audio Representation
• Measure an analog signal periodically:

• Store the measurements as a sequence of
numbers

17 Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

Digital to Analog Conversion
• Use the sequence of numbers to control voltage
• Filter the voltage to produce a smooth signal

18 Introduction

10

Copyright © 2002-2015 by Roger B. Dannenberg

Synthesis Example

19

Phase

+

Frequency

Amplitude

x

To compute each sample:

tlen = 1024 // table length
sr = 44100.0 // sample rate

phase += freq * tlen / sr
// phase wraps around table:
phase = fmod(phase, tlen)
samp = table[floor(phase)]
output = samp * ampl

Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

NYQUIST, SAL, LISP
Getting started with Nyquist

11

Copyright © 2002-2015 by Roger B. Dannenberg

Nyquist, SAL, Lisp

21

From
 C

ytosue’s photostream
, Flickr.com

, Feb 24, 2007

graphical front end

command-line Lisp
 interpreter

SAL, an imperative
language

Linux, Mac OS X, or Win32

Copyright © 2002-2015 by Roger B. Dannenberg

Nyquist: Top-Down
• NyquistIDE written in Java (requires Java runtime)
•  interacts through sockets with SAL, written in XLISP
• XLISP is interpreted, written in C
• C is of course compiled to your native instruction set
• But there’s more:

•  XLISP is extended with signal processing primitives

•  Written as high-level specifications (see Nyquist Ref. Manual)
•  Translated by XLISP program (tran.lsp) into C

• And more ..
•  score data structures are interpreted by a built-in function

(timed-seq) that calls on the XLISP eval function.

22

Fr
om

 p
ev

z.
or

g/
pa

nc
ak

es
-u

sa
/,

6
Ja

n
20

08

Introduction

12

Copyright © 2002-2015 by Roger B. Dannenberg

Read-Eval-(Print) Loop
• You enter commands into SAL
• SAL reads the command and compiles it to
XLISP

• XLISP evaluates the compiled command
• This may or may not generate output

23 Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

Some Examples
• play pluck(c4)!

• play pluck(c4) ~ 3!

• load “pianosyn”!

• play piano-note(5, fs1, 100)!

• play osc(c4)!

• play osc(c4) * osc(d4)!

•  play noise() * env(0.05, 0.1, 0.5, 1, 0.5, 0.4)!

Introduction 24

13

Copyright © 2002-2015 by Roger B. Dannenberg

Some SAL Commands
• print expression - evaluate and expression
and print the result

• exec expression - evaluate expression but do
not print the result

• play expression - evaluate and expression
and play the result, which must be a SOUND

• set var = expression - set a variable

25 Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

CONSTANTS,
VARIABLES,
FUNCTIONS
More of the Nyquist (SAL) language

Introduction 26

14

Copyright © 2002-2015 by Roger B. Dannenberg

Constant and Variable Expressions
• Constants evaluate to themselves, e.g. 12 or "string"
• Symbols denote variables and evaluate to the variable’s

value (static scoping), e.g. x or volume or g4 or tempo

• Symbols can contain *, -, +, and many other characters
you might not expect. Lisp conventions:
•  *global-variable*

•  local-variable

• Not case sensitive!

27 Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

Applying Functions
• Don't forget to use set, exec, print, etc...
•  Infix operators mostly as you would expect

•  a + b

•  10 * (y + 3.14159)

• Built-in and user-defined functions
•  autonorm-off()

•  lfo(5.9)

•  string-left-trim(input, " ")

•  s-read("vn.wav", time-offset: 1.5, dur: 0.6)

28 Introduction

15

Copyright © 2002-2015 by Roger B. Dannenberg

USING SAL, DEFINING
FUNCTIONS
More on Nyquist and SAL

Introduction 29

Copyright © 2002-2015 by Roger B. Dannenberg

Using the SAL Interpreter
• We’ll do a lot of work on-line, but you need learn
how to use Nyquist and SAL on your local
machine.

• Nyquist installation and startup:
 http://www.cs.cmu.edu/~music/nyquist/

• Now, we’ll cover:
• Evaluating a SAL command
•  Finding the result of a SAL command evaluation
• Creating a SAL program file
•  Loading (executing) the SAL program file
• Saving your work

30 Introduction

16

Copyright © 2002-2015 by Roger B. Dannenberg

Evaluating a SAL Command

Introduction 31

Nyquist window

Type the SAL command here
and type the return key

Copyright © 2002-2015 by Roger B. Dannenberg

Finding the Result of a SAL Command

Introduction 32

Nyquist window

Command and result appear
here.

input window

output window

17

Copyright © 2002-2015 by Roger B. Dannenberg

Creating a SAL Program File

Introduction 33

Click on New File button...

… to create SAL
Program File window

Copyright © 2002-2015 by Roger B. Dannenberg

Creating a SAL Program File (2)

Introduction 34

Click on Save File button...

… enter name with
.sal extension …

… and click Save
button.

18

Copyright © 2002-2015 by Roger B. Dannenberg

Loading (Executing) the SAL File

Introduction 35

Edit the file...

… select File …

… select Load…

… results appear
in Output Window

Copyright © 2002-2015 by Roger B. Dannenberg

Saving Your Work
• The Load menu item

• Saves your file
•  Instructs Nyquist to load your file
• Nyquist then evaluates each command in the file

•  thus, file saving is automatic!
• There is also a File:Save menu item
• … and a File:Save As… menu item

Introduction 36

19

Copyright © 2002-2015 by Roger B. Dannenberg

Defining Functions in SAL

define function my-function(p, q)
 begin
 print "the value of p is", p
 display "furthermore", q
 return p + 12
 end

Call it:

SAL> print my-function(c4, "middle-C")

the value of p is 60
furthermore : Q = middle-C
72

37

Concept checklist:
•  define function
•  What does begin-end do?
•  What does print do?
•  What does display do?
•  Why is 72 printed?

Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

Keyword Parameters
• Keyword parameters are optional parameters that are

matched by keyword rather than by position
define function kwdemo(p, scale: 1, vibrato: nil)
 begin
 with s = pluck(p) * scale
 if vibrato then
 set s = s * (1 + lfo(6) * 0.1)
 return s
 end

play kwdemo(c4) ; uses default keyword parameter
 ; values

play kwdemo(ef4, vibrato: #t) ; turn on vibrato
play kwdemo(fs5, vibrato: #t, scale: 0.4) ; order
 ; doesn’t matter

38 Introduction

20

Copyright © 2002-2015 by Roger B. Dannenberg

Begin and With
begin
 with local-variable = 4,
 another-local ; default init to nil
 command1
 command2 ; any number of commands here
end

• Use begin-end any place you can use a statement
•  function body
•  multiple actions after then

•  with introduces local variables
•  Initialization is optional
•  Default initial value is nil (means both “false” and “empty list”)

39 Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

CONTROL
CONSTRUCTS
Conditionals, Loops, and More Fun
With Nyquist

Introduction 40

21

Copyright © 2002-2015 by Roger B. Dannenberg

If-Then-Else
if pitch > C4 then
 return flute(pitch)
else
 return tuba(pitch)

•  then and else are followed by single command
• Use begin-end to contain multiple commands
• Avoid if c1 then if c2 then s1 else s2

•  Which if does the else belong to?
•  Use begin-end to disambiguate

41

if velocity > 127 then
 set velocity = 127

Introduction

Copyright © 2002-2015 by Roger B. Dannenberg

Loop Command
•  Basic syntax is just loop commands end
•  Use with to declare local variables
•  for i from 0 below 10 - i = 0, 1, … 9
•  for elem in my-list - iterate over list elements
•  for v = init then update - flexible update
•  while expression - arbitrary stop condition
•  until expression - arbitrary stop condition
•  repeat n - iterate n times
•  finally return local-variable - executed once at end

•  Many options! See Ref. Manual. Next up: SAL examples…

42 Introduction

22

Copyright © 2002-2015 by Roger B. Dannenberg

Example
function pluck-chord(pitch, interval, n)
 begin
 with s = pluck(pitch)
 loop
 for i from 1 below n
 set s += pluck(pitch + interval * i)
 end
 return s
 end

play pluck-chord(c3, 5, 2)
play pluck-chord(d3, 7, 4) ~ 3
play pluck-chord(c2, 10, 7) ~ 8

43 Introduction

