
2/20/15	

1	

Copyright © 2002-2013 by Roger B. Dannenberg

UNIT GENERATORS
Building blocks for sound synthesis

1 ICM Week 2

Copyright © 2002-2013 by Roger B. Dannenberg

Overview for the Week
• What’s a Unit Generator?
• What are some unit generators in Nyquist?
• Unit Generator Implementation
• Functional Programming
• Wavetable Synthesis
• Scores in Nyquist
• Score Manipulation

2 ICM Week 2

2/20/15	

2	

Copyright © 2002-2013 by Roger B. Dannenberg

What Is a Unit Generator?
•  In the 50’s Max Mathews
conceived of sound synthesis by
software using networks of
modules: “Unit Generators”

• UGs are “primitives” in a sound
synthesis system

• They perform sound generation
and sound processing

ICM Week 2 3

Copyright © 2002-2013 by Roger B. Dannenberg

Unit Generator examples

ICM Week 2 4

Amp Freq

Output

Oscillator

X

Multiplier Envelope

A D S R

2/20/15	

3	

Copyright © 2002-2013 by Roger B. Dannenberg

Combining Unit Generators

ICM Week 2 5

Amp Freq

X

A D S R

Copyright © 2002-2013 by Roger B. Dannenberg

Unit Generators in Nyquist

ICM Week 2 6

• Unit Generators are Functions on sounds

A

X Y

B

Z 

B(A(X, Y), Z)

2/20/15	

4	

Copyright © 2002-2013 by Roger B. Dannenberg

Some Basic Unit Generators
• osc(c4)
• pwl(0.03, 1, 0.8, 1, 1)
• osc(c4) * pwl(0.03, 1, 0.8, 1, 1)
• osc(c4) * osc(g4)

ICM Week 2 7

Copyright © 2002-2013 by Roger B. Dannenberg

Evaluation
• Normally, SAL expressions evaluate their
parameters, then apply the function: f(a, b)

• What about sounds?
•  To avoid storing huge values in memory,
• Nyquist uses lazy evaluation
• Samples are computed only when they are needed
• Nyquist Sounds contain either samples or the potential

to deliver samples, or some combination

ICM Week 2 8

2/20/15	

5	

Copyright © 2002-2013 by Roger B. Dannenberg

UNIT GENERATOR
IMPLEMENTATION
What’s inside a Unit Generator and
how do we access it?

9 ICM Week 2

Copyright © 2002-2013 by Roger B. Dannenberg

Unit Generator Implementation
• Have to store the intermediate state
somewhere
•  e.g. the current phase and frequency of an

oscillator UG
•  therefore, Unit Generators are implemented as

objects in Nyquist
•  Objects are accessed implicitly to provide

samples – they are hidden from the user
• Many languages present (expose?) UG’s
as an explicit graph of objects.
•  A pass is made over the graph to propagate the

next sample (or block of samples) from input to
output

ICM Week 2 10

A

X Y

B

Z

2/20/15	

6	

Copyright © 2002-2013 by Roger B. Dannenberg

MAX MSP Example

ICM Week 2 11

Copyright © 2002-2013 by Roger B. Dannenberg

Sounds in Nyquist
•  In Nyquist, there’s no direct access to the Unit
Generators as objects

•  Instead, functions make and return objects called
SOUNDS

•  Instances of Unit Generator objects are contained
within sounds and called upon when samples are
needed

• We’ll learn more about SOUNDS later

ICM Week 2 12

2/20/15	

7	

Copyright © 2002-2013 by Roger B. Dannenberg

Playing a Sound
•  If you write play sound-expression

• A sound is returned
•  Internally, the sound has a graph of unit generators
•  To play the samples, the graph is traversed, generating

samples incrementally
•  The samples (in blocks of about 1000) are played in

“real time”
•  If you write set var = sound-expression, the
entire sound might be computed, saved, and
stored in memory

ICM Week 2 13

Copyright © 2002-2013 by Roger B. Dannenberg

FUNCTIONAL
PROGRAMMING IN
NYQUIST
Programs are expressions!

14 ICM Week 2

2/20/15	

8	

Copyright © 2002-2013 by Roger B. Dannenberg

Functional Programming
• Program in terms of functions and values
• NOT	
 VARIABLES
• Compose functions: f(g(x), h(x)) to get complex
behaviors

• DO	
 NOT	
 MAKE	
 MANY	
 STEPS	
 AND	
 STATE	
 CHANGES	

TO	
 GET	
 COMPLEX	
 BEHAVIORS

ICM Week 2 15

Copyright © 2002-2013 by Roger B. Dannenberg

A Very Stateful Program
variable sum
function init(x) sum = x
function addx(x) sum += x
function multx(x) sum *= x
function mysound()
 begin
 exec init(hzosc(440.0))
 loop for i from 2 to 10
 exec addx(hzosc(440.0 * i) * rrandom()))
 end
 exec multx(env(0.05, 0.2, 0.5, 1, 0.5, 0.2))
 end
exec mysound()
play sum

ICM Week 2 16

2/20/15	

9	

Copyright © 2002-2013 by Roger B. Dannenberg

A Functional Program
function rand-harm(hz) return hzosc(hz) * rrandom()

function harmonics(hz, n)
 begin
 if n = 1 then
 return rand-harm(hz)
 else
 return rand-harm(hz * n) + harmonics(hz, n - 1)
 end

function mysound()
 return harmonics(440.0, 10) *
 env(0.05, 0.2, 0.5, 1, 0.5, 0.2)

play mysound()

ICM Week 2 17

Copyright © 2002-2013 by Roger B. Dannenberg

Mostly Functional, Local Variables
function harmonics(hz, n)
 begin
 with snd = hzosc(hz * n) * rrandom()
 if n > 1 then
 set snd += harmonics(hz, n - 1)
 return snd
 end

function mysound()
 return harmonics(440.0, 10) *
 env(0.05, 0.2, 0.5, 1, 0.5, 0.2)

play mysound()

ICM Week 2 18

2/20/15	

10	

Copyright © 2002-2013 by Roger B. Dannenberg

A Better Functional Program
function harmonics(hz, n)
 return simrep(i, n,
 hzosc(hz * (i + 1)) * rrandom())

function mysound()
 return harmonics(440.0, 10) *
 env(0.05, 0.2, 0.5, 1, 0.5, 0.2)

play mysound()

ICM Week 2 19

Copyright © 2002-2013 by Roger B. Dannenberg

ELIMINATING GLOBAL
VARIABLES
Use expressions and functions instead!

20 ICM Week 2

2/20/15	

11	

Copyright © 2002-2013 by Roger B. Dannenberg

Keeping Samples out of Memory
• Never assign sounds to global variables:

•  set gv = osc(c4) ;; BAD

•  Instead,
function gv()
return osc(c4) ;; GOOD

• Then, to access: use gv(), not gv

ICM Week 2 21

Copyright © 2002-2013 by Roger B. Dannenberg

WAVETABLE
SYNTHESIS
A basic synthesis technique

22 ICM Week 2

2/20/15	

12	

Copyright © 2002-2013 by Roger B. Dannenberg

Building Waveforms
• This is presented more or less as a “formula”:

define variable *table* =
 sim(0.5 * build-harmonic(1.0, 2048),
 0.25 * build-harmonic(2.0, 2048),
 0.125 * build-harmonic(3.0, 2048),
 0.062 * build-harmonic(4.0, 2048))
set *table* = list(*table*, hz-to-step(1), #t)

ICM Week 2 23

Copyright © 2002-2013 by Roger B. Dannenberg

Using Waveforms
• *table* is a global – if you set it, OSC will use it:

•  set *table* = …
•  play osc(c4)

• Or, set another global and pass it to OSC
•  set *mytable* = …
•  play osc(c4, 1.0, *mytable*)

ICM Week 2 24

2/20/15	

13	

Copyright © 2002-2013 by Roger B. Dannenberg

Piece-wise Linear Functions: PWL
• Common for control functions.
• By default, produces low, control sample rate.
• pwl(t1, v1, t2, v2, …, tn)

ICM Week 2 25

(t1,v1)

(t2,v2)

(t3,v3)

(tn,0) (0,0)

Copyright © 2002-2013 by Roger B. Dannenberg

Variants of PWL
• pwlv(v0, t1, v1, t2, v2, …, tn, vn)

•  for non-zero starting and ending points
• pwe(t1, v1, t2, l2, …, tn)

•  exponential interpolation, vi > 0
• pwlr(i1, v1, i2, v2, …, in)

•  relative intervals rather than absolute times
• See manual for more variants & combinations

ICM Week 2 26

2/20/15	

14	

Copyright © 2002-2013 by Roger B. Dannenberg

Basic Wavetable Synthesis
• Build a wavetable with the harmonics you want
• Use an oscillator (osc) to generate a tone with
these harmonics

• Multiply by an envelope (e.g. pwl) to control the
amplitude contour.

• Advantages: simple, efficient, direct control
• Disadvantages: spectrum (strength of harmonics)
does not change with pitch or time as in most
acoustic instruments.

ICM Week 2 27

Copyright © 2002-2013 by Roger B. Dannenberg

SCORES
INTRODUCTION
Scores describe sound events
organized in time

28 ICM Week 2

2/20/15	

15	

Copyright © 2002-2013 by Roger B. Dannenberg

Terminology – Pitch
•  Musical scales are built from two-sizes of intervals: whole steps and

half steps
•  Whole step = 2 half steps
•  “flats” lower by half step, “sharps” raise by half step
•  In Nyquist documentation, “step” means half-step

•  step-to-hz, hz-to-step, (osc step)

•  Middle C (ISO C4) arbitrarily represented by 60
•  c4 = 60, cs4 = 61, cf4 = 59,
•  b3 = 59, bs3 = 60

•  Steps are logarithms of frequency
•  frequency doubles every 12 steps
•  frequency doubling (or halving) is called an interval of an “octave”

ICM Week 2 29

Copyright © 2002-2013 by Roger B. Dannenberg

Terminology – Harmonics, etc.
•  Imagine a periodic function of time
• We hear that as a tone with pitch
•  The repetition rate (1/period) is the “fundamental

frequency”
(other frequencies are usually present and are called overtones,
partials, or harmonics)

• Any continuous function can be decomposed into a sum
of sinusoids. (a finite sum for digital audio)

• Periodic functions can be decomposed into sinusoids with
frequencies that are integer multiples of the fundamental
frequency (these are called harmonics)

ICM Week 2 30

2/20/15	

16	

Copyright © 2002-2013 by Roger B. Dannenberg

Terminology – Sound Events
•  Traditional music has
“notes”:
•  Pitch
•  Time
•  Duration
•  Loudness (aka Dynamics)
•  Timbre (= instrument and

other qualities)

• New music has
“sound events”:
•  May be unpitched
•  Time
•  Duration
•  Loudness (aka Dynamics)
•  Potentially many evolving

qualities

ICM Week 2 31

Copyright © 2002-2013 by Roger B. Dannenberg

LISTS
Scores are made of lists, so let’s learn
about lists.

32 ICM Week 2

2/20/15	

17	

Copyright © 2002-2013 by Roger B. Dannenberg

Lists in Nyquist
• Standard singly-linked list
• Dynamic typing

•  arbitrary nesting,
•  you can make any binary tree structure

ICM Week 2 33

nil

c a b

a-list

Copyright © 2002-2013 by Roger B. Dannenberg

Notation
•  In SAL: {a b c}
• These are literals

• No evaluation
•  a, b, and c are symbols, not variables

• To construct list from variables:
•  list(a, b, c)

ICM Week 2 34

2/20/15	

18	

Copyright © 2002-2013 by Roger B. Dannenberg

Literals, Variables, Quoting, Cons
set a = 1, b = 2,
 c = 3

print {a b c}

{a b c}

print list(a, b, c)

{1 2 3}

print list(1, 2, 3)

{1 2 3}

print list(quote(a),
 quote(b),
 quote(c))

{a b c}

print list(a, {b})

{1 {b}}

print cons(a, {b})

{1 b}

ICM Week 2 35

Copyright © 2002-2013 by Roger B. Dannenberg

SCORES
How to make a score

36 ICM Week 2

2/20/15	

19	

Copyright © 2002-2013 by Roger B. Dannenberg

Scores
{ sound-event
 sound-event
 sound-event
 sound-event
 … }

ICM Week 2 37

{ time duration sound }

{ instrument attribute: value
 attribute: value
 attrbute: value
 … }

Copyright © 2002-2013 by Roger B. Dannenberg

Score Example

{{0.0 1.0 {note pitch: 60 vel: 100}}
 {1.0 1.0 {note pitch: 62 vel: 110}}
 {2.0 1.0 {note pitch: 64 vel: 120}}}

ICM Week 2 38

2/20/15	

20	

Copyright © 2002-2013 by Roger B. Dannenberg

Score with score-begin-end
Pseudo-Event
• Can a score be a sound event?
•  If so, when does it start? How long is it?

{{0 0 {score-begin-end 0 5}}
 {0.0 1.0 {note pitch: 60 vel: 100}}
 {1.0 1.0 {note pitch: 62 vel: 110}}
 {2.0 1.0 {note pitch: 64 vel: 120}}}

ICM Week 2 39

Copyright © 2002-2013 by Roger B. Dannenberg

Instruments
• An “instrument” is a SAL (or XLISP) function
• How do we get from
 {note pitch: 60 vel: 100}
to a function call?

• STEP 1: List representation of function calls
• STEP 2: Keyword parameters

ICM Week 2 40

2/20/15	

21	

Copyright © 2002-2013 by Roger B. Dannenberg

List Representation of Function Calls
(Lisp Syntax)
• A function call in Lisp is represented by:

•  Function symbol followed by …
• … parameter expressions

 (pluck ef4 3.0)!

• Expression can be
• Number: evaluates to self
• Symbol: evaluated as a variable
•  List: nested function call!

ICM Week 2 41

Copyright © 2002-2013 by Roger B. Dannenberg

Keyword Parameters
function note(pitch: 60, vel: 100)
 begin
 return pluck(pitch) * vel * 0.01
 end

• Now, we can call it:
 play note(pitch: 72)

 play note(vel: 50, pitch: g3) ~ 2

ICM Week 2 42

2/20/15	

22	

Copyright © 2002-2013 by Roger B. Dannenberg

Putting It Together: Lisp Syntax +
Keyword Parameters
• Example of an expression from a score:
 {note pitch: 48 vel: 95}!

• Equivalent to this SAL function call:
 note(pitch: 48, vel: 95)!

• Whole sound event might look like:
 {3.0 1.5 {note pitch: 48 vel: 95}}!

• Equivalent to this SAL expression:
 (note(pitch: 48, vel: 95) ~ 1.5) @ 3.0!

!

ICM Week 2 43

Copyright © 2002-2013 by Roger B. Dannenberg

CHORDS
A short-hand notation for scores

44 ICM Week 2

2/20/15	

23	

Copyright © 2002-2013 by Roger B. Dannenberg

Why Keyword Parameters?
Why Lisp?
• Scores are data

• Score manipulation: transpose, stretch, select, …
• Score generation: algorithmic composition, …

• Scores are programs
• Well-defined semantics
• Extensible through attributes and function definition

ICM Week 2 45

Copyright © 2002-2013 by Roger B. Dannenberg

Special Case: Chords!

• Example of an event from a score:
 {3.0 0.7 {note pitch: {48 55 64} vel: 95}}!

•  Lists of pitches are “expanded” to individual events, i.e.
chords

• Equivalent to these events:
 {3.0 0.7 {note pitch: 48 vel: 95}}!

 {3.0 0.7 {note pitch: 55 vel: 95}}!

 {3.0 0.7 {note pitch: 64 vel: 95}}!

• Note that timing and all non-pitch parameters are duplicated
for each note in the chord. (This only works for pitch:)

ICM Week 2 46

2/20/15	

24	

Copyright © 2002-2013 by Roger B. Dannenberg

Scores Rendering
• play timed-seq(my-score)!

• Use timed-seq to turn a score into a SOUND
•  Further processing, e.g. reverb, is possible!

• exec score-play(my-score)!
• Simple function to play a score
• Does not return a SOUND value!

ICM Week 2 47

Copyright © 2002-2013 by Roger B. Dannenberg

SCORE PROCESSING
Lots of functions to manipulate scores

48 ICM Week 2

2/20/15	

25	

Copyright © 2002-2013 by Roger B. Dannenberg

Score Processing Functions
•  score-shift
•  score-transpose
•  score-sustain
•  score-voice
•  score-merge
•  score-append
•  score-select
•  score-filter-length
•  score-stretch-to-length

•  score-filter-overlap
•  score-adjacent-events
•  score-sort
•  score-repeat
•  score-index-of
•  score-last-index-of
•  score-randomize-start
•  score-read-smf
•  score-write-smf

ICM Week 2 49

Copyright © 2002-2013 by Roger B. Dannenberg

score-sort
• Score events must be sorted in order of increasing start

times
exec score-play(score-sort(
 {{0.0 0.5 {plucked-string pitch: 67 vel: 90 cutoff: 4000}}	
 {0.5 0.5 {plucked-string pitch: 69 vel: 95 cutoff: 5000}}	
 {1.0 0.5 {plucked-string pitch: 71 vel: 100 cutoff: 6000}}	
 {1.5 0.5 {plucked-string pitch: 72 vel: 105 cutoff: 7000}}	
 {2.0 0.5 {plucked-string pitch: 71 vel: 100 cutoff: 6000}}	
 {2.5 0.5 {plucked-string pitch: 69 vel: 95 cutoff: 5000}}	
 {3.0 1.0 {plucked-string pitch: 67 vel: 90 cutoff: 4000}}	
 {0.0 1.0 {note pitch: 59 vel: 100}}	
 {1.0 1.0 {note pitch: 55 vel: 100}}	
 {2.0 1.0 {note pitch: 55 vel: 100}}	
 {3.0 1.0 {note pitch: 59 vel: 100}}}))	

ICM Week 2 50

2/20/15	

26	

Copyright © 2002-2013 by Roger B. Dannenberg

score-shift
• add 3 seconds to all start times
 print score-shift(my-score, 3.0) !
•  insert 3s rest at time 10
 print score-shift(my-score, 3.0,  
 from-time: 10)

ICM Week 2 51

Copyright © 2002-2013 by Roger B. Dannenberg

score-transpose
• Transpose pitch up one octave:
print score-transpose(my-score, keyword(pitch), 12)!

•  Increase cutoff freq. by 1000:
print score-transpose(my-score, keyword(cutoff),!

 1000)!

• Wrong:
print score-transpose(my-score, pitch:, 12)!

print score-transpose(my-score, quote(pitch:), 12)!

!

•  OK: print score-transpose(my-score, :pitch, 12)!

ICM Week 2 52

2/20/15	

27	

Copyright © 2002-2013 by Roger B. Dannenberg

score-sustain
•  Increase durations by 25% in the time interval
from 1 to 3 seconds

 print score-sustain(my-score, 1.25, !

 from-time: 1, to-time: 3)!

ICM Week 2 53

Copyright © 2002-2013 by Roger B. Dannenberg

score-voice
• Turn plucked-string into note and note into
plucked-string

!

 print score-voice(my-score, !

 {{note plucked-string}!

 {plucked-string note}})!

	

ICM Week 2 54

2/20/15	

28	

Copyright © 2002-2013 by Roger B. Dannenberg

score-merge
• Double every note an octave higher
 print score-merge(my-score, !

 score-transpose(my-score,  
 keyword(pitch), 12))!

• Make my-score with 2 echoes
 print score-merge(my-score,!

 score-shift(my-score, 0.1),!

 score-shift(my-score, 0.2))!

ICM Week 2 55

Copyright © 2002-2013 by Roger B. Dannenberg

score-append
• Play my-score as is, then transposed up 1 step,
then up another step

 print score-append(my-score,!

 score-transpose(my-score, !

 keyword(pitch), 2),!
 score-transpose(my-score, !

 keyword(pitch), 4))!

ICM Week 2 56

2/20/15	

29	

Copyright © 2002-2013 by Roger B. Dannenberg

score-select
• A predicate that returns true when pitch is less than 70
define function not-very-high(time, dur, expr)!
 return expr-get-attr(expr, keyword(pitch), 100) < 70!

!

• Select all notes with pitch < 70 and time >= 2!
print score-select(my-score, quote(not-very-high), !
 from-time: 2)

ICM Week 2 57

Copyright © 2002-2013 by Roger B. Dannenberg

score-filter-length,
score-stretch-to-length
•  score-filter-length: remove any note that ends after some

time.
•  Result will not extend beyond 2.4s:
 !

 print score-filter-length(my-score, 2.4)!

•  score-stretch-to-length: adjust score to have a given
length.

•  Last event in score will end at 5s:
 !

 print score-stretch-to-length(my-score, 5.0)!

ICM Week 2 58

2/20/15	

30	

Copyright © 2002-2013 by Roger B. Dannenberg

score-filter-overlap
• Reduce score to a monophonic texture

• No overlapping notes/events
• Removes any event with a start time less than the

previous event’s end time

print score-filter-overlap(my-score)!

ICM Week 2 59

Copyright © 2002-2013 by Roger B. Dannenberg

score-apply
•  Transform each event using a function
define function add-accents(time, dur, expr)!
 begin!
 ; if the pitch: attrib. of the expr is greater than 70 …!
 ; … then modify expr to have :accent 100!
 if expr-get-attr(expr, keyword(pitch), 70) > 70 then!
 set expr = expr-set-attr(expr, keyword(accent), 100)!
 ; whether or not expr was changed, form a new note !
 ; by combining time, dur, and expr into a list!
 return list(time, dur, expr)!
 end!
!

; now apply the function to a score!
print score-apply(my-score, quote(add-accents))

ICM Week 2 60

2/20/15	

31	

Copyright © 2002-2013 by Roger B. Dannenberg

score-adjacent-events
; a predicate that returns true when pitch is less than 72!
define function not-very-high(expression)!
 return expr-get-attr(expression, :pitch, 100) < 72!
!
; a function of 3 notes – extend duration of current!
; note to the starting time of the next note!
define function adjust-durations(prev, cur, next)!
 begin!
 if not-very-high(event-expression(cur)) & next then!
 return event-set-dur(cur, event-time(next) – !
 event-time(cur))!
 else return cur!
 end!
!
exec score-play(score-adjacent-events(my-score,  
 quote(adjust-durations)))!

ICM Week 2 61

Copyright © 2002-2013 by Roger B. Dannenberg

Composition: Some Guidelines

• Vocabulary
• Rhythm
• Melody
• Harmony
•  Timbre
•  Texture

• Organization
• Structures
• Elaboration
• Ornamentation
• Contrasting elements
• Gestures

ICM Week 2 62

2/20/15	

32	

Copyright © 2002-2013 by Roger B. Dannenberg

Gesture Example
• Consider this “gesture”:

• So, organization (structure) transcends vocabulary (the
space of variation)

ICM Week 2 63

• Rhythm: Increasing tempo
• Melody: Upward melodic contour
• Harmony: Increasing dissonance
•  Timbre: Progression toward
“thinner” sound

•  Texture: Shorter, lighter, busier

Copyright © 2002-2013 by Roger B. Dannenberg

Putting This Into Practice
•  Find an interesting manipulation
• Create a manipulated sound
• Consider repeating it: repetition builds suspense and

tension (Xenakis)
•  Intensify or vary the manipulation.
•  Introduce something new before things get too obvious.
• Variation and development also build tension. Returning

to earlier material brings closure.

ICM Week 2 64

