
1/15/15	

1	

Copyright © 2002-2013 by Roger B. Dannenberg

UNIT GENERATOR
IMPLEMENTATION
What’s inside a Unit Generator and
how do we access it?

1 ICM Week 2

Copyright © 2002-2013 by Roger B. Dannenberg

Unit Generator Implementation
• Have to store the intermediate state
somewhere
•  e.g. the current phase and frequency of an

oscillator UG
•  therefore, Unit Generators are implemented as

objects in Nyquist
•  Objects are accessed implicitly to provide

samples – they are hidden from the user
• Many languages present (expose?) UG’s
as an explicit graph of objects.
•  A pass is made over the graph to propagate the

next sample (or block of samples) from input to
output

ICM Week 2 2

A

X Y

B

Z

1/15/15	

2	

Copyright © 2002-2013 by Roger B. Dannenberg

MAX MSP Example

ICM Week 2 3

Copyright © 2002-2013 by Roger B. Dannenberg

Sounds in Nyquist
•  In Nyquist, there’s no direct access to the Unit
Generators as objects

•  Instead, functions make and return objects called
SOUNDS

•  Instances of Unit Generator objects are contained
within sounds and called upon when samples are
needed

• We’ll learn more about SOUNDS later

ICM Week 2 4

1/15/15	

3	

Copyright © 2002-2013 by Roger B. Dannenberg

Playing a Sound
•  If you write play sound-expression

• A sound is returned
•  Internally, the sound has a graph of unit generators
•  To play the samples, the graph is traversed, generating

samples incrementally
•  The samples (in blocks of about 1000) are played in

“real time”
•  If you write set var = sound-expression, the
entire sound might be computed, saved, and
stored in memory

ICM Week 2 5

