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Analog to Digital Conversion 
Digital to Analog Conversion 

010110 
010100 
011000 
011011 
000111 

D to A A to D 
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Approach 
• Intuition 
• Frequency Domain (Fourier Transform) 
• Sampling Theory 
• Practical Results 
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The World is Analog 
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Continuous or Discrete? 
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Discrete Amplitude (Y axis) 
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Discrete Time (X axis) 



2/20/15	
  

5	
  

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 3 9 

Digitizing a continuous function  
(or signal) 
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? 
Questions 
• What sample rate should we use?  
Why does it matter? 

• How many bits per sample should we 
use? Why does it matter? 

• Interpolation: How can we interpolate 
samples to recover the sampled signal? 

• What’s the effect of rounding to the nearest 
integer sample value? 

• How do we convert analog to/from digital? 
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Introduction to the Spectrum 
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Introduction to the Spectrum (2) 



2/20/15	
  

7	
  

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 3 13 

Phase 
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Frequency 
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Amplitude 
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Sinusoidal Partials 

Amplitude A 

Frequency ω 

Phase φ	



A ⋅sin(ωt +φ)
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Fourier Transform 
• Our goal is to transform a function-of-time 
representation of a signal to a function-of-
frequency representation 

• Express the time function as an (infinite) sum of 
sinusoids.  

• Express the infinite sum as a function from 
frequency to amplitude 

•  I.e. for each frequency, what is the amplitude of 
the sinusoid of that frequency within this infinite 
sum? 

ICM Week 3 17 
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Fourier Transform: Cartesian Coordinates 

R(ω) = f (t)cosωt dt
−∞

∞

∫

X(ω) = − f (t)sinωt dt
−∞

∞

∫

Real part: 

Imaginary part: 
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What About Phase? 
• Remember at each frequency, we said there is 
one sinusoidal component:  
• A is amplitude 
• ω is frequency 
•  φ is phase 

• The Fourier analysis computes two amplitudes: 
• R(ω) and X(ω)	


•   Trig identities tell us there is no conflict: 

ICM Week 3 19 

A = R2 + X 2 φ = arctan(X / R)

A ⋅sin(ωt +φ)

A(ω) = R2 (ω)+ X 2 (ω) φ(ω) = arctan(X(ω) / R(ω))
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From Cartesian to Complex 
• R  is “real” or cosine part 
• X is “imaginary” or sine part 
• Use   

ICM Week 3 20 

F(ω) = R(ω)+ j ⋅X(ω)
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Fourier Transform (Complex Form) 
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F(ω) = f (t)e− jωt dt
−∞

∞

∫

R(ω) = f (t)cosωt dt
−∞

∞

∫

j ⋅X(ω) = − j f (t)sinωt dt
−∞

∞

∫
+ 

= 
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Orthogonal Basis Functions 

N 

E 

S 

W 

Horizontal and vertical axes are 
independent or orthogonal in 
the 2-dimensional plane, 
sinusoids are orthogonal in the 
infinite-dimensional space of 
continuous signals.  
 
Just as every point in the plane 
is a unique linear combination 
of the unit E and N vectors, 
every signal is a unique linear 
combination of sinusoids. 
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The Frequency Domain 

Graphic!
Equalizer!

Spectral!
Analyzer 
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The Frequency Domain (2) 

100-200 
hz 

200-400 
hz 

400-800 
hz 

800-1.6k 
hz 

1.6-3.2k 
hz 

Spectrum 

? 

? 
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The Amplitude Spectrum 

Amplitude 

Frequency 440hz 
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Amplitude Spectrum of a “Real” Signal 
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Representations 
• (Real, Imaginary) or (Amplitude, Phase)? 

• Power ~ Amplitude2 

• We generally cannot hear phase 
• Measure a stationary signal after Δt: Amplitude 

spectrum is unchanged, but phase changes by  
• Given (amplitude, phase) 

•  It’s hard to plot both 
• Usually, we ignore the phase 

ICM Week 3 27 

Δt ⋅ω

Copyright © 2002-2013 by Roger B. Dannenberg 

Time vs Frequency 
• What happens to time when you transform to the 
frequency domain? 

• Note that time is “integrated out” 
• NO TIME REMAINS 
• The Fourier Transform of a signal is not a function 
of time !!!!! 

• (Later, we’ll look at short-time transforms – e.g. 
what you see on a time-varying spectral display – 
which are time varying.) 
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F(ω) = f (t)e− jωt dt
−∞

∞

∫
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PERFECT SAMPLING 
From continuous signals to discrete samples and back 
again 

ICM Week 3 29 
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Sampling – Time Domain 
• What happens when you sample a signal? 
•  In time domain, multiplication by a pulse train: 

ICM Week 3 30 

✕ 

= 

time 

time 

time 
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Sampling – Frequency Domain 
• What happens when you sample a signal? 
•  In frequency domain, the spectrum is copied and 
shifted (!) 

• BEFORE: 

• AFTER: 

ICM Week 3 31 

Frequency 

Frequency 
Sample 

Rate 
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An Aside 
• Why copied and shifted? 
• We’re glossing over some details … 
• Multiplication in the time domain is equivalent to 
convolution in the frequency domain. 

• The transform of a pulse train is a pulse train(!) 
• Convolution with a pulse train copies and shifts 
the spectrum. 

• See text for more detail. 
• Take linear systems for derivation and proof. 

ICM Week 3 32 
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Aliasing: Time Domain View 

Are there other aliases? 

At 16kHz SR, 
Sine tones at: 
  1000 Hz 
  3010 Hz 
  5020 Hz 
  7030 Hz 
  9040 Hz 
11060 Hz 
13070 Hz 
15080 Hz 

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 3 34 

Aliasing: Frequency Domain View 

Amplitude 

Frequency 

Before Sampling 
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Frequency Domain View (2) 

Amplitude 

Frequency 

After Sampling 

Sample 
Rate 
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A Signal With Higher Frequency 
Components 

Amplitude 

Frequency 

Before Sampling 
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A Signal With Higher Frequency 
Components 

Amplitude 

Frequency 

After Sampling 

Sample 
Rate 

Foldover at Nyquist Frequency 
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Bandwidth 
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What sample rate should we use? 
Why does it matter? 



2/20/15	
  

20	
  

Copyright © 2002-2013 by Roger B. Dannenberg 

Bandwidth 

ICM Week 3 39 
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Sampling Without Aliasing 

S/H A/D 

Prefilter 
Sample 

and 
Hold 

Analog 
to 

Digital 

Prefilter removes all frequencies above 1/2 sampling rate 
(the Nyquist Frequency) 

How do we convert analog to/from 
digital? 
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Sampling Without Aliasing 

S/H A/D 

Prefilter 
Sample 

and 
Hold 

Analog 
to 

Digital 

Prefilter removes all frequencies above 1/2 sampling rate 
(the Nyquist Frequency) 
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Conversion to Analog 

Reconstruction 
Filter 

S/H 

Sample 
and 
Hold 

D/A 

Digital 
to 

Analog 

Reconstruction filter removes all frequencies above 1/2 
sampling rate (the Nyquist Frequency) 
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What Does a Sample “Mean”? 
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What Does a Sample “Mean”? (2) 

sinc(x) = sin(x)
x

Note: The time axis (x) is scaled so that the zeros 
of sinc(x) fall exactly on the times of other samples.  
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What Does a Sample “Mean”? (3) 

Copyright © 2002-2013 by Roger B. Dannenberg 

Why sinc function? 
• An impulse has infinite bandwidth. 
•  If you perfectly cut the bandwidth down to half the 
sample rate (the Nyquist frequency), you get a 
sinc function! 

• When you reconstruct the signal, replacing 
impulses with sinc functions, you get the entire 
continuous band limited signal. 

• Samples uniquely determined by signal,  
signal uniquely determined by samples. 

• Bijective (for Klaus ) 
• AMAZING. 

ICM Week 3 46 
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Interpolation/Reconstruction 
• Convolve with a sinc function 
•  In other words, form the superposition of sinc 
functions shifted by the sample times and scaled 
by the sample values. 

• Requires infinite lookahead and infinite 
computation! 

• But sinc decays as 1/time, so good 
approximations are expensive but at least 
possible. 

ICM Week 3 47 

How can we interpolate samples to 
recover the sampled signal? 
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Interpolation/Reconstruction 
• Convolve with a sinc function 
•  In other words, form the superposition of sinc 
functions shifted by the sample times and scaled 
by the sample values. 

• Requires infinite lookahead and infinite 
computation! 

• But sinc decays as 1/time, so good 
approximations are expensive but at least 
possible. 

ICM Week 3 48 
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IMPERFECT SAMPLING 
What is the impact of errors and rounding? 

ICM Week 3 49 
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How to Describe Noise 
• Since absolute levels rarely exist, 
measure RATIO of Signal to Noise. 

• Since signal level is variable, 
measure MAXIMUM Signal to Noise. 

• Units: dB = decibel 
10dB = ×10 power 
20dB = ×100 power = ×10 amplitude 
  6dB = ×2 amplitude 
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Quantization Noise 

Signal"
"

Quantization  
Error"

To simplify analysis, assume quantization error is uniformly 
randomly distributed in [-0.5, +0.5]!

Copyright © 2002-2013 by Roger B. Dannenberg 

Quantization Examples 

ICM Week 3 52 

Sine Tone Cello 

16-bit 

8-bit 

4-bit 

2-bit 
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Quantization Noise, M bits/sample 
• Rounding effects can be approximated by adding 
white noise (uniform random samples) of 
maximum amplitude of ½ least significant bit. 

ICM Week 3 53 

SNR(dB) = 6.02M + 1.76 
(about 6dB/bit) 

What’s the effect of rounding to the 
nearest integer sample value? 
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Quantization Noise, M bits/sample 
• Rounding effects can be approximated by adding 
white noise (uniform random samples) of 
maximum amplitude of ½ least significant bit. 

ICM Week 3 54 

SNR(dB) = 6.02M + 1.76 
(about 6dB/bit) 
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Noise 

How many bits per sample should 
we use? Why does it matter? 
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Noise 
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Can Discrete Samples Really  
Capture a Continuous Signal? 

• Band-limited signal  no lost frequencies! 
• To the extent you can do  
perfect sampling  no noise! 

DISCRETE SAMPLES CAN 
CAPTURE A CONTINUOUS 

BAND-LIMITED SIGNAL 
WITHOUT LOSS 

Copyright © 2002-2013 by Roger B. Dannenberg 

Summary 
• Theoretical result: discrete samples can capture 
all information in a band-limited signal! 

• Practical result 1: sampling limits bandwidth to 1/2 
sampling rate (the Nyquist frequency) 

• Practical result 2: sampling adds quantization 
noise; SNR is about 6dB per bit 

• What’s a decibel? 

ICM Week 3 58 
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DITHER AND OVERSAMPLING 
Additional techniques for practical digital audio 

ICM Week 3 59 
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Dither 
• Sometimes rounding error is correlated to signal. 
• Add analog noise prior to quantization to 
decorrelate rounding. 

• Typically, noise has peak-to-peak amplitude of 
one quantization step. 
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Heavily Quantized, Undithered Sinusoid 
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Sinusoid With Dithering 

No dither Dither 



2/20/15	
  

32	
  

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 3 63 

Oversampling 
• Reconstruction filters are hard to build with 
analog components 

•  Idea: digitally reconstruct signal at high sample 
rate 

• Result: simpler to build analog filter 
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Oversampling (2) 

Amplitude 

Freq. 

Nyquist Rate"Nyquist Rate"
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THE FREQUENCY DOMAIN 
An alternative to waveforms (the time domain) 

ICM Week 3 65 
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The Frequency Domain 
• Examples of Simple Spectra 
• Fourier Transform vs Short-Term Fourier 
Transform 

• DFT – Discrete Fourier Transform 
• FFT – Fast Fourier Transform 
• Windowing 

ICM Week 3 66 
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Formal Definition 

ICM Week 3 67 

R(ω) = f (t)cosωt dt
−∞

∞

∫

X(ω) = − f (t)sinωt dt
−∞

∞

∫

F(ω) = f (t)e− jωt dt
−∞

∞

∫
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Simple Spectra Examples 
• Sinusoid 

• Noise 

• Tone with  
harmonics 

ICM Week 3 68 
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More Examples 
• Narrow Band 
Noise 

•  Impulse 

ICM Week 3 69 

Copyright © 2002-2013 by Roger B. Dannenberg 

Negative Frequencies 
• Recall that FT is defined for negative as well as positive 

frequencies. What does this mean? 
•  cos(ωt) = cos(-ωt), sin(ωt) = -sin(-ωt) 
•  For FT of real signals,  

•  Imaginary part has odd symmetry: X(ω) = -X(- ω) 
•  The real part has even symmetry: R(ω) = R(- ω) 

•  Therefore, the negative frequencies contain redundant 
information. That’s why we’ve mostly ignored them. 

ICM Week 3 70 
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Fourier Transform vs Short-Term 
Transform 
•  In practice, we can’t do an infinite integral, so do 
a finite integral: the short term FT (STFT) 

•  In general, the interesting properties of true FT 
hold for STFT, but with annoying artifacts 

ICM Week 3 71 

F(ω) = f (t)e− jωt dt
a

b

∫

Copyright © 2002-2013 by Roger B. Dannenberg 

Discrete Fourier Transform 
• Since we work with samples rather than 
continuous data, 

• We need a discrete version of FT: DFT 
• DFT is essentially just like FT, except band limited 
and computable 

•  I’m glossing over many derivations, proofs, and 
details here. 

ICM Week 3 72 
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Fast Fourier Transform 
• Replacing integral with a sum, you would think 
computing R(ω) would be an O(n2) problem 
 

•  Interestingly, there is an O(n log n) algorithm, the 
Fast Fourier Transform, or FFT 
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Fk = fne
− j2πkn/N

n=a

b

∑
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Windowing 
• Typically, you can reduce the artifacts of the 
STFT by windowing: 

• Different windows optimize different criteria: 
Hamming, Hanning, Blackman, etc. 

ICM Week 3 74 
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More Examples Using Audacity 

ICM Week 3 75 
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AMPLITUDE MODULATION 
Synthesis techniques based on signal multiplication 

ICM Week 3 76 
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Amplitude Modulation 
• Amplitude modulation is simply multiplication 
(MULT in Nyquist) 

• Amplitude modulation (multiplication) in the time 
domain corresponds to convolution in the spectral 
domain (!) 

• For each sinusoid in the modulator, the 
modulated signal is shifted up and down by the 
frequency of the sinusoid. 

ICM Week 3 77 

Copyright © 2002-2013 by Roger B. Dannenberg 

AM specta 
• Assuming the modulated signal is a sinusoid: 

• Otherwise: 

ICM Week 3 78 

Carrier: 880Hz 

Modulation Frequency: 220Hz 
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Ring Modulation  
• Ring Modulation is named after the “ring 
modulator,” an analog approach to signal 
multiplication. 

• See code_3.htm for AM examples 
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Constant Offset 
• What is the difference between: 
lfo(6) 

• And 
2 + lfo(6) 

• ? 

ICM Week 3 80 
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Summary 
• Dithering sometimes used to avoid quantization 
artifacts 

• Oversampling is standard technique to move 
(some) filtering to the digital domain 

• Amplitude Modulation by a sinusoid shifts the 
spectrum up and down by the frequency of the 
modulator 

ICM Week 3 81 


