SAMPLING THEORY

Representing continuous signals with
discrete numbers

Roger B. Dannenberg
Professor of Computer Science, Art, and Music
Carnegie Mellon University

ICM Week 3 Copyright © 2002-2013 by Roger B. Dannenberg

From analog to digital
(and back)
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Analog to Digital Conversion -

Digital to Analog Conversion
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Approach

« Intuition

- Frequency Domain (Fourier Transform)
- Sampling Theory

- Practical Results

ICM Week 3 Copyright © 2002-2013 by Roger B. Dannenberg

2/20/15



The World is Analog
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Continuous or Discrete?
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Discrete Amplitude (Y axis)
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Discrete Time (X axis)
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Digitizing a continuous function - Il E!

(or signal)

M
4
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Questions ' N

-What sample rate should we use?
Why does it matter?

-How many bits per sample should we
use? Why does it matter?

- Interpolation: How can we interpolate
samples to recover the sampled signal?

- What's the effect of rounding to the nearest
integer sample value?

- How do we convert analog to/from digital?
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Introduction to the Spectrum . “ﬂ
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Introduction to the Spectrum (2) » “ﬂ

+ ...... ANANANANARANANAW IWAWAWAWE!
+ — e B v s e e Y S W A
J
— (Y
— \ | A
ICM Week 3 Copyright © 2002-2013 by Roger B. Dannenberg 12




Phase ~ I '
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Amplitude
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Sinusoidal Partials

A-sin(wt + @)

Amplitude A
Frequency (1)

Phase ¢
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Fourier Transform

- Our goal is to fransform a function-of-time
representation of a signal to a function-of-
frequency representation

- Express the time function as an (infinite) sum of
sinusoids.

- Express the infinite sum as a function from
frequency to amplitude

- |l.e. for each frequency, what is the amplitude of
the sinusoid of that frequency within this infinite
sum?
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Fourier Transform: Cartesian Coordinates

Real part: o

R(w) = f f(t)coswrdt

Imaginary part:

X(w) = —j f(t)sinwt dt
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What About Phase? |

- Remember at each frequency, we said there is
one sinusoidal component: A -sin(wft + @)
- Ais amplitude
- wis frequency
- ¢is phase
- The Fourier analysis computes two amplitudes:
- R(w) and X(w)
- Trig identities tell us there is no conflict:

A=+R*+X? ¢ = arctan(X / R)

A) =R @)+ X (@) ¢(w)=arctan(X(w)/ R(w))
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From Cartesian to Complex |

- R is “real” or cosine part
- X is “imaginary” or sine part

‘Use  F(w)=Rw)+j X()
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Fourier Transform (Complex Form)

R(w) = }f(t)coswtdt
+ - [ee]
j X(@)==j [ f0)sinwrds

F(w)= j f(t)e ™ dt
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Orthogonal Basis Functions |

Horizontal and vertical axes are
v N independent or orthogonal in
the 2-dimensional plane,
sinusoids are orthogonal in the
infinite-dimensional space of
W < >E continuous signals.

Just as every point in the plane
is a unique linear combination
i of the unit E and N vectors,

S every signal is a unique linear
combination of sinusoids.
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The Frequency Domain
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The Frequency Domain (2)
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The Amplitude Spectrum \

Amplitude A

, |
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Frequency 440hz
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Amplitude Spectrum of a “Real” Signal Y
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Representations |

- (Real, Imaginary) or (Amplitude, Phase)?
- Power ~ Amplitude?
- We generally cannot hear phase

- Measure a stationary signal after At: Amplitude
spectrum is unchanged, but phase changes by Ar-w

- Given (amplitude, phase)
- I's hard to plot both
- Usually, we ignore the phase
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Time vs Frequency F@)= [ f@e* dr

- What happens to time when you transform to the
frequency domain?

- Note that time is “integrated out”
-NO TIME REMAINS

- The Fourier Transform of a signal is not a function

- (Later, we'll look at short-time transforms — e.g.
what you see on a time-varying spectral display —
which are time varying.)
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PERFECT SAMPLING

From continuous signals to discrete samples and back
again
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Sampling — Time Domain W

- What happens when you sample a signal?
- In time domain, multiplication by a pulse train:

time
time

_ A AN LB A,
time
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Sampling — Frequency Domain

- What happens when you sample a signal?
- In frequency domain, the spectrum is copied and

shifted (!)
- BEFORE: WWV\
Sample
Rate
-AF TER J;
Freqtzency
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An Aside

- Why copied and shifted?
- We're glossing over some details ...

- Multiplication in the time domain is equivalent to
convolution in the frequency domain.

- The transform of a pulse train is a pulse train(!)

- Convolution with a pulse train copies and shifts
the spectrum.

- See text for more detail.
- Take linear systems for derivation and proof.
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Aliasing: Time Domain View

AT

Are there other aliases?
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At 16kHz SR,
Sine tones at:
1000 Hz
3010 Hz
5020 Hz
7030 Hz
9040 Hz
11060 Hz
13070 Hz
15080 Hz
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Aliasing: Frequency Domain View

| Before Sampling

Amplitude A

&
<€

.

Frequency
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Frequency Domain View (2)

|After Sampling

Amplitude A

Py, o o o o1

Frequency |
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A Signal With Higher Frequency 4 W'
Components

| Before Sampling

Amplitude A

< AAVALYY

Frequency

v
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A Signal With Higher Frequency 4 ™
Components

| After Sampling

Amplitude A

Frequency s :
ample
Rate

v

Foldover at Nyquist Frequency
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Bandwidth

What sample rate should we use?

Why does it matter?

ICM Week 3 Copyright © 2002-2013 by Roger B. Dannenberg 38

19



Bandwidth » ‘N
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Sampling Without Aliasing

How do we convert analog to/from

digital?
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Sampling Without Aliasing |

W

E—— — S/H A/D —
Sample Analog
Prefilter and to
Hold Digital

Prefilter removes all frequencies above 1/2 sampling rate

(the Nyquist Frequency)
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Conversion to Analog

— DIA SH [—— -_—
Digital Sample
to and Reconstruction
Analog Hold Filter

Reconstruction filter removes all frequencies above 1/2
sampling rate (the Nyquist Frequency)
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What Does a Sample “Mean”?

A
v

A
—
v

A
v
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What Does a Sample “Mean”? (5)

A
v

Note: The time axis (x) is scaled so that the zeros
of sinc(x) fall exactly on the times of other samples.
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What Does a Sample “Mean”? (g‘)

ICM Week 3

_ 4] ,
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Why sinc function?

\\.

- An impulse has infinite bandwidth.

- If you perfectly cut the bandwidth down to half the
sample rate (the Nyquist frequency), you get a
sinc function!

- When you reconstruct the signal, replacing
impulses with sinc functions, you get the entire
continuous band limited signal.

- Samples uniquely determined by signal,
signal uniquely determined by samples.

- Bijective (for Klaus ©)
- AMAZING.

ICM Week 3
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Interpolation/Reconstruction

How can we interpolate samples to

recover the sampled signal?
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Interpolation/Reconstruction

- Convolve with a sinc function

- In other words, form the superposition of sinc
functions shifted by the sample times and scaled
by the sample values.

- Requires infinite lookahead and infinite
computation!

- But sinc decays as 1/time, so good
approximations are expensive but at least
possible.
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IMPERFECT SAMPLING

What is the impact of errors and rounding?

ICM Week 3 Copyright © 2002-2013 by Roger B. Dannenberg

49

How to Describe Noise

- Since absolute levels rarely exist,
measure RATIO of Signal to Noise.

- Since signal level is variable,
measure MAXIMUM Signal to Noise.
- Units: dB = decibel
10dB = x10 power

20dB = x100 power = x10 amplitude
6dB = x2 amplitude
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Quantization Noise

Signal X /(

1 g
SN e

Quantization

Error
To simplify analysis, assume quantization error is uniformly
randomly distributed in [-0.5, +0.5]
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Quantization Examples

| SineTone | Celo _
16-bit Q
8-bit 6)
4-bit 6)
2-bit
o ek 5 Copyright © 2002-2013 by Roger B. Dannenberg 52
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Quantization Noise, M bits/samp%‘“

What's the effect of rounding to the

nearest integer sample value?
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Quantization Noise, M bits/samp%‘“

- Rounding effects can be approximated by adding J
white noise (uniform random samples) of
maximum amplitude of 2 least significant bit.

SNR(dB) = 6.02M + 1.76
(about 6dB/bit)
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Noise

How many bits per sample should
we use? Why does it matter?
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Noise .
-
-
The signal-10-noise
-
tio is determine
the hits per sample!
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Can Discrete Samples Really
Capture a Continuous Signal?

DISCRETE SAMPLES CAN
CAPTURE A CONTINUOUS

BAND-LIMITED SIGNAL
WITHOUT LOSS

N
N

- Band-limited signal ® no lost frequencies!

- To the extent you can do
perfect sampling ® no noise!
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Summary

N
N

- Theoretical result: discrete samples can capture

all information in a band-limited signal!

- Practical result 1: sampling limits bandwidth to 1/2

sampling rate (the Nyquist frequency)

- Practical result 2: sampling adds quantization

noise; SNR is about 6dB per bit
-What’ s a decibel?
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DITHER AND OVERSAMPLING

Additional techniques for practical digital audio
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N
Dither "

- Sometimes rounding error is correlated to signal.

- Add analog noise prior to quantization to
decorrelate rounding.

- Typically, noise has peak-to-peak amplitude of
one quantization step.
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Heavily Quantized, Undithered Sinus

ICM Week 3
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Sinusoid With Dithering

No dither &

ICM Week 3

Dither &
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W N
Oversampling ’

- Reconstruction filters are hard to build with
analog components

- Idea: digitally reconstruct signal at high sample
rate

- Result: simpler to build analog filter
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Oversampling (2)

Nyquist Rate Nyquist Rate

: Amplitude

A
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THE FREQUENCY DOMAIN

An alternative to waveforms (the time domain)
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The Frequency Domain

- Examples of Simple Spectra

» Fourier Transform vs Short-Term Fourier
Transform

- DFT — Discrete Fourier Transform
- FFT — Fast Fourier Transform
- Windowing
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Formal Definition A\ N

R(w) = j f(t)coswrdt

X(w) = —j f(t)sinwt dt

F(w)= j f(t)e ™ dt
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Simple Spectra Examples A N
- Sinusoid |

6 6

- Noise
- Tone with |
harmonics [ ] t 1
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More Examples

- Narrow Band ~ ~
Noise /\ @
- Impulse @
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Negative Frequencies

- Recall that FT is defined for negative as well as positive
frequencies. What does this mean?

- cos(wt) = cos(-wt), sin(wt) = -sin(-wt)

- For FT of real signals,
- Imaginary part has odd symmetry: X(w) = -X(- w)
- The real part has even symmetry: R(w) = R(- w)

- Therefore, the negative frequencies contain redundant
information. That’ s why we’ve mostly ignored them.
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Fourier Transform vs Short-Term
Transform

V‘\!\‘
\'\ '§

- In practice, we can’ t do an infinite integral, so do

a finite integral: the short term FT (STFT)

F(w)= f f(H)e ™ dt

- In general, the interesting properties of true FT

hold for STFT, but with annoying artifacts

ICM Week 3 Copyright © 2002-2013 by Roger B. Dannenberg
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Discrete Fourier Transform

- Since we work with samples rather than
continuous data,

- We need a discrete version of FT: DFT

l N
N

- DFT is essentially just like FT, except band limited

and computable

- I’'m glossing over many derivations, proofs, and

details here.
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Fast Fourier Transform .

- Replacing integral with a sum, you would think
computing R(w) would be an O(n?) problem

b
_ —j2mkn/N
Fo= Qe
n=a

- Interestingly, there is an O(n log n) algorithm, the
Fast Fourier Transform, or FFT
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Windowing

- Typically, you can reduce the artifacts of the
STFT by windowing:

N\ =

- Different windows optimize different criteria:
Hamming, Hanning, Blackman, etc.
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More Examples Using Audacity »

CEX

[Spectran =] [z
[Heering widow =1 [ ouency

L1
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AMPLITUDE MODULATION

Synthesis techniques based on signal multiplication
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Amplitude Modulation )

- Amplitude modulation is simply multiplication
(MULT in Nyquist)

- Amplitude modulation (multiplication) in the time
domain corresponds to convolution in the spectral
domain (!)

- For each sinusoid in the modulator, the

modulated signal is shifted up and down by the
frequency of the sinusoid.
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AM specta '

- Assuming the modulated signal is a sinusoid:

| L

- Otherwise: Modulation Frequency: 220Hz ‘

Carrier: 880Hz |
~
| ©
7\ J\
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Ring Modulation

- Ring Modulation is named after the “ring
modulator,” an analog approach to signal
multiplication.

- See code_3.htm for AM examples
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Constant Offset

- What is the difference between:
Ifo(6)

- And
2 + [fo(6)

- ?
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Summary |

- Dithering sometimes used to avoid quantization
artifacts

- Oversampling is standard technique to move
(some) filtering to the digital domain

- Amplitude Modulation by a sinusoid shifts the
spectrum up and down by the frequency of the
modulator
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