

Representing continuous signals with discrete numbers

Roger B. Dannenberg
Professor of Computer Science, Art, and Music
Carnegie Mellon University

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

From analog to digital (and back) ICM Week 3 Copyright © 2002-2013 by Roger B. Dannenberg

Analog to Digital Conversion Digital to Analog Conversion

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

3

Approach

- Intuition
- Frequency Domain (Fourier Transform)
- Sampling Theory
- Practical Results

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Digitizing a continuous function (or signal)

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Questions

- What sample rate should we use?Why does it matter?
- How many bits per sample should we use? Why does it matter?
- Interpolation: How can we interpolate samples to recover the sampled signal?
- What's the effect of rounding to the nearest integer sample value?
- · How do we convert analog to/from digital?

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Amplitude

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Sinusoidal Partials

 $A \cdot \sin(\omega t + \phi)$

Amplitude A

Frequency ω

Phase ϕ

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

16

Fourier Transform

- Our goal is to transform a function-of-time representation of a signal to a function-offrequency representation
- Express the time function as an (infinite) sum of sinusoids.
- Express the infinite sum as a function from frequency to amplitude
- I.e. for each frequency, what is the amplitude of the sinusoid of that frequency within this infinite sum?

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

17

Fourier Transform: Cartesian Coordinates

Real part:

$$R(\omega) = \int_{-\infty}^{\infty} f(t) \cos \omega t \, dt$$

Imaginary part:

$$X(\omega) = -\int_{-\infty}^{\infty} f(t) \sin \omega t \, dt$$

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

What About Phase?

- Remember at each frequency, we said there is one sinusoidal component: $A \cdot \sin(\omega t + \phi)$
 - A is amplitude
 - ω is frequency
 - ϕ is phase
- The Fourier analysis computes two amplitudes:
 - $R(\omega)$ and $X(\omega)$
 - · Trig identities tell us there is no conflict:

$$A = \sqrt{R^2 + X^2} \qquad \phi = \arctan(X/R)$$

$$A(\omega) = \sqrt{R^2(\omega) + X^2(\omega)} \qquad \phi(\omega) = \arctan(X(\omega)/R(\omega))$$

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

40

From Cartesian to Complex

- R is "real" or cosine part
- X is "imaginary" or sine part

• Use
$$F(\omega) = R(\omega) + j \cdot X(\omega)$$

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Fourier Transform (Complex Form)

$$R(\omega) = \int_{-\infty}^{\infty} f(t) \cos \omega t \, dt$$

$$+ \int_{-\infty}^{\infty} f(t) \sin \omega t \, dt$$

$$= \int_{-\infty}^{\infty} f(t) \sin \omega t \, dt$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

21

Orthogonal Basis Functions

Horizontal and vertical axes are independent or orthogonal in the 2-dimensional plane, sinusoids are orthogonal in the infinite-dimensional space of continuous signals.

Just as every point in the plane is a *unique linear* combination of the unit E and N vectors, every signal is a *unique linear* combination of sinusoids.

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Representations

- (Real, Imaginary) or (Amplitude, Phase)?
 - Power ~ Amplitude²
 - We generally cannot hear phase
 - Measure a stationary signal after Δt: Amplitude spectrum is unchanged, but phase changes by $\Delta t \cdot \omega$
- Given (amplitude, phase)
 - · It's hard to plot both
 - Usually, we ignore the phase

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Time vs Frequency
$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

- What happens to time when you transform to the frequency domain?
- Note that time is "integrated out"
- NO TIME REMAINS
- The Fourier Transform of a signal is not a function of time !!!!!
- (Later, we'll look at *short-time transforms* e.g. what you see on a time-varying spectral display which are time varying.)

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

PERFECT SAMPLING

From continuous signals to discrete samples and back again

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

29

Sampling - Time Domain

- · What happens when you sample a signal?
- In time domain, multiplication by a pulse train:

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Sampling - Frequency Domain

- · What happens when you sample a signal?
- In frequency domain, the spectrum is copied and shifted (!)

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

31

An Aside

- · Why copied and shifted?
- · We're glossing over some details ...
- Multiplication in the time domain is equivalent to convolution in the frequency domain.
- The transform of a pulse train is a pulse train(!)
- Convolution with a pulse train copies and shifts the spectrum.
- · See text for more detail.
- Take linear systems for derivation and proof.

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Bandwidth

The frequency range (bandwidth) is determined by the sample rate!

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Sampling Without Aliasing

How do we **convert** analog to/from digital?

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Why sinc function?

- · An impulse has infinite bandwidth.
- If you perfectly cut the bandwidth down to half the sample rate (the Nyquist frequency), you get a sinc function!
- When you reconstruct the signal, replacing impulses with sinc functions, you get the entire continuous band limited signal.
- Samples uniquely determined by signal, signal uniquely determined by samples.
- Bijective (for Klaus ☺)
- AMAZING.

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Interpolation/Reconstruction

How can we interpolate samples to recover the sampled signal?

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

47

Interpolation/Reconstruction

- · Convolve with a sinc function
- In other words, form the superposition of sinc functions shifted by the sample times and scaled by the sample values.
- Requires infinite lookahead and infinite computation!
- But sinc decays as 1/time, so good approximations are expensive but at least possible.

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

IMPERFECT SAMPLING

What is the impact of errors and rounding?

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

49

How to Describe Noise

- Since absolute levels rarely exist, measure RATIO of Signal to Noise.
- Since signal level is variable, measure MAXIMUM Signal to Noise.
- Units: dB = decibel
 10dB = ×10 power
 20dB = ×100 power = ×10 amplitude
 6dB = ×2 amplitude

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Quantization Noise, M bits/sample

What's the effect of **rounding** to the nearest integer sample value?

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Quantization Noise, M bits/sample

• Rounding effects can be approximated by adding white noise (uniform random samples) of maximum amplitude of ½ least significant bit.

SNR(dB) = 6.02M + 1.76 (about 6dB/bit)

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Can Discrete Samples Really Capture a Continuous Signal?

DISCRETE SAMPLES CAN CAPTURE A CONTINUOUS BAND-LIMITED SIGNAL WITHOUT LOSS

- Band-limited signal → no lost frequencies!
- To the extent you can do perfect sampling → no noise!

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

57

Summary

- Theoretical result: discrete samples can capture all information in a band-limited signal!
- Practical result 1: sampling limits bandwidth to 1/2 sampling rate (the Nyquist frequency)
- Practical result 2: sampling adds quantization noise; SNR is about 6dB per bit
- · What's a decibel?

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

DITHER AND OVERSAMPLING

Additional techniques for practical digital audio

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

59

Dither

- Sometimes rounding error is correlated to signal.
- Add analog noise prior to quantization to decorrelate rounding.
- Typically, noise has peak-to-peak amplitude of one quantization step.

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Oversampling

- Reconstruction filters are hard to build with analog components
- Idea: digitally reconstruct signal at high sample rate
- Result: simpler to build analog filter

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

THE FREQUENCY DOMAIN

An alternative to waveforms (the time domain)

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

65

The Frequency Domain

- Examples of Simple Spectra
- Fourier Transform vs Short-Term Fourier Transform
- DFT Discrete Fourier Transform
- FFT Fast Fourier Transform
- Windowing

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Formal Definition

$$R(\omega) = \int_{-\infty}^{\infty} f(t) \cos \omega t \, dt$$

$$X(\omega) = -\int_{-\infty}^{\infty} f(t) \sin \omega t \, dt$$

$$R(\omega) = \int_{-\infty}^{\infty} f(t) \cos \omega t \, dt$$

$$X(\omega) = -\int_{-\infty}^{\infty} f(t) \sin \omega t \, dt$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} \, dt$$

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

67

Simple Spectra Examples

Sinusoid

Noise

 Tone with harmonics

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

More Examples • Narrow Band Noise • Impulse

Copyright © 2002-2013 by Roger B. Dannenberg

Negative Frequencies

- Recall that FT is defined for negative as well as positive frequencies. What does this mean?
- $cos(\omega t) = cos(-\omega t)$, $sin(\omega t) = -sin(-\omega t)$
- For FT of real signals,
 - Imaginary part has odd symmetry: $X(\omega) = -X(-\omega)$
 - The real part has even symmetry: $R(\omega) = R(-\omega)$
- Therefore, the negative frequencies contain redundant information. That's why we've mostly ignored them.

ICM Week 3

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Fourier Transform vs Short-Term Transform

 In practice, we can't do an infinite integral, so do a finite integral: the short term FT (STFT)

$$F(\omega) = \int_{a}^{b} f(t)e^{-j\omega t} dt$$

 In general, the interesting properties of true FT hold for STFT, but with annoying artifacts

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

74

Discrete Fourier Transform

- Since we work with samples rather than continuous data,
- We need a discrete version of FT: DFT
- DFT is essentially just like FT, except band limited and computable
- I'm glossing over many derivations, proofs, and details here.

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Fast Fourier Transform

• Replacing integral with a sum, you would think computing $R(\omega)$ would be an $O(n^2)$ problem

$$F_k = \sum_{n=a}^{b} f_n e^{-j2\pi kn/N}$$

 Interestingly, there is an O(n log n) algorithm, the Fast Fourier Transform, or FFT

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

73

Windowing

 Typically, you can reduce the artifacts of the STFT by windowing:

• Different windows optimize different criteria: Hamming, Hanning, Blackman, etc.

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Amplitude Modulation

- Amplitude modulation is simply multiplication (MULT in Nyquist)
- Amplitude modulation (multiplication) in the time domain corresponds to convolution in the spectral domain (!)
- For each sinusoid in the modulator, the modulated signal is shifted up and down by the frequency of the sinusoid.

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

77

AM specta

Assuming the modulated signal is a sinusoid:

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Ring Modulation

- Ring Modulation is named after the "ring modulator," an analog approach to signal multiplication.
- See code_3.htm for AM examples

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

79

Constant Offset

- What is the difference between: lfo(6)
- And

2 + Ifo(6)

• ?

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg

Summary

- Dithering sometimes used to avoid quantization artifacts
- Oversampling is standard technique to move (some) filtering to the digital domain
- Amplitude Modulation by a sinusoid shifts the spectrum up and down by the frequency of the modulator

ICM Week 3

Copyright © 2002-2013 by Roger B. Dannenberg