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Analog to Digital Conversion 
Digital to Analog Conversion 
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D to A A to D 
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Approach 
• Intuition 
• Frequency Domain (Fourier Transform) 
• Sampling Theory 
• Practical Results 



1/15/15	
  

3	
  

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 3 5 

The World is Analog 
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Continuous or Discrete? 
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Discrete Amplitude (Y axis) 
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Discrete Time (X axis) 
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Digitizing a continuous function  
(or signal) 
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? 
Questions 
• What sample rate should we use?  
Why does it matter? 

• How many bits per sample should we 
use? Why does it matter? 

• Interpolation: How can we interpolate 
samples to recover the sampled signal? 

• What’s the effect of rounding to the nearest 
integer sample value? 

• How do we convert analog to/from digital? 
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Introduction to the Spectrum 
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Introduction to the Spectrum (2) 
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Phase 
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Frequency 
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Amplitude 
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Sinusoidal Partials 

Amplitude A 

Frequency ω 

Phase φ	



A ⋅sin(ωt +φ)
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Fourier Transform 
• Our goal is to transform a function-of-time 
representation of a signal to a function-of-
frequency representation 

• Express the time function as an (infinite) sum of 
sinusoids.  

• Express the infinite sum as a function from 
frequency to amplitude 

•  I.e. for each frequency, what is the amplitude of 
the sinusoid of that frequency within this infinite 
sum? 
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Fourier Transform: Cartesian Coordinates 

R(ω) = f (t)cosωt dt
−∞

∞

∫

X(ω) = − f (t)sinωt dt
−∞

∞

∫

Real part: 

Imaginary part: 
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What About Phase? 
• Remember at each frequency, we said there is 
one sinusoidal component:  
• A is amplitude 
• ω is frequency 
•  φ is phase 

• The Fourier analysis computes two amplitudes: 
• R(ω) and X(ω)	


•   Trig identities tell us there is no conflict: 
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A = R2 + X 2 φ = arctan(X / R)

A ⋅sin(ωt +φ)

A(ω) = R2 (ω)+ X 2 (ω) φ(ω) = arctan(X(ω) / R(ω))
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From Cartesian to Complex 
• R  is “real” or cosine part 
• X is “imaginary” or sine part 
• Use   
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F(ω) = R(ω)+ j ⋅X(ω)
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Fourier Transform (Complex Form) 
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F(ω) = f (t)e− jωt dt
−∞

∞

∫

R(ω) = f (t)cosωt dt
−∞

∞

∫

j ⋅X(ω) = − j f (t)sinωt dt
−∞

∞

∫
+ 

= 
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Orthogonal Basis Functions 

N 

E 

S 

W 

Horizontal and vertical axes are 
independent or orthogonal in 
the 2-dimensional plane, 
sinusoids are orthogonal in the 
infinite-dimensional space of 
continuous signals.  
 
Just as every point in the plane 
is a unique linear combination 
of the unit E and N vectors, 
every signal is a unique linear 
combination of sinusoids. 
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The Frequency Domain 

Graphic!
Equalizer!

Spectral!
Analyzer 
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The Frequency Domain (2) 

100-200 
hz 

200-400 
hz 

400-800 
hz 

800-1.6k 
hz 

1.6-3.2k 
hz 

Spectrum 

? 

? 
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The Amplitude Spectrum 

Amplitude 

Frequency 440hz 
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Amplitude Spectrum of a “Real” Signal 
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Representations 
• (Real, Imaginary) or (Amplitude, Phase)? 

• Power ~ Amplitude2 

• We generally cannot hear phase 
• Measure a stationary signal after Δt: Amplitude 

spectrum is unchanged, but phase changes by  
• Given (amplitude, phase) 

•  It’s hard to plot both 
• Usually, we ignore the phase 
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Δt ⋅ω
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Time vs Frequency 
• What happens to time when you transform to the 
frequency domain? 

• Note that time is “integrated out” 
• NO TIME REMAINS 
• The Fourier Transform of a signal is not a function 
of time !!!!! 

• (Later, we’ll look at short-time transforms – e.g. 
what you see on a time-varying spectral display – 
which are time varying.) 
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F(ω) = f (t)e− jωt dt
−∞

∞

∫


