
2/20/15	

1	

Copyright © 2002-2013 by Roger B. Dannenberg

INTRODUCTION TO COMPUTER MUSIC
FM SYNTHESIS
A classic synthesis algorithm

Roger B. Dannenberg
Professor of Computer Science, Art, and Music

1 ICM Week 4

Copyright © 2002-2013 by Roger B. Dannenberg

Frequency Modulation
• Frequency modulation occurs naturally:

• Voice inflection, natural jitter, and vibrato in singing
• Vibrato in instruments
•  Instrumental effects, e.g. electric guitar
• Many tones begin low and come up to pitch
•  Loose vibrating strings go sharp as they go louder
• Slide trombone, Theremin, voice, violin, etc. create

melodies by FM (as opposed to, say, pianos)

ICM Week 4 2

2/20/15	

2	

Copyright © 2002-2013 by Roger B. Dannenberg

Frequency Modulation with Nyquist
•  fmosc(basic-pitch, fm-control [, table [, phase]])
•  fm-control is expressed as deviation in Hz

•  hzosc(fm-control)
•  fm-control is absolute frequency in Hz

•  snd-compose(f, g)
• Computes f(g(t)) – if g is non-linear, frequency changes

occur

ICM Week 4 3

Copyright © 2002-2013 by Roger B. Dannenberg

FM EXAMPLES
Exploring the sound world of FM synthesis

ICM Week 4 4

2/20/15	

3	

Copyright © 2002-2013 by Roger B. Dannenberg

Examples
• See Code 4 (code_4.sal)

ICM Week 4 5

Copyright © 2002-2013 by Roger B. Dannenberg

Why FM Synthesis?
• We’ve already seen wavetable or table-lookup
synthesis:
•  Very efficient
•  Create any harmonic spectrum
•  Simple frequency and amplitude control

• What’s missing?
•  Time-varying control over the spectrum
•  Inharmonic spectra

• Various Approaches:
•  Synthesize each sinusoid separately – tedious, costly
•  Filter the output of table – useful, but only harmonic output
•  FM Synthesis

ICM Week 4 6

2/20/15	

4	

Copyright © 2002-2013 by Roger B. Dannenberg

FM Synthesis
• When modulation frequency is in the audio range,
interesting things happen.

ICM Week 4 7

Carrier Frequency (C)

Modulation Frequency (M)

Number of significant
partials is roughly the ratio
of modulation amp (freq
dev, D) to modulation freq.

Bandwidth~2(D+M)

Copyright © 2002-2013 by Roger B. Dannenberg

Mathematics of FM
• The exact amplitudes of the partials generated by
FM are described by Bessel functions

• These functions are messy, their evolution is
messier, and there is no simple way to invert the
functions

• Many lives of FM:
•  1967-1968 Invented by John Chowning, patented 1975
•  1983-1986: Yamaha DX7 160,000 sold
•  1990-1995: IBM PC-compatible Sound Cards
•  2000’s: FM synthesis provides polyphonic ring tones

ICM Week 4 8

2/20/15	

5	

Copyright © 2002-2013 by Roger B. Dannenberg

FM and Harmonics
• Generated frequencies are:

• Where C = “Carrier” and M = Modulator
• Simplest case: C = M
• Generated frequencies are:
 C+nM gives us C, 2C, 3C, 4C, …

• What about negative frequencies?

ICM Week 4 9

C ± nM

Copyright © 2002-2013 by Roger B. Dannenberg

FM and Harmonics (2)

ICM Week 4 10

Bandwidth~2(D+M) C

C

2/20/15	

6	

Copyright © 2002-2013 by Roger B. Dannenberg

FM and Harmonics (3)

ICM Week 4 11

Bandwidth~2(D+M) C

C

Copyright © 2002-2013 by Roger B. Dannenberg

Classic FM brass sound
• Characterized by a rise in upper partials
• Generated by increasing depth of modulation
• Uses 1:1 Carrier:Modulation frequency

• See example in code_4.htm

ICM Week 4 12

More partials over time

2/20/15	

7	

Copyright © 2002-2013 by Roger B. Dannenberg

Odd Harmonics

ICM Week 4 13

• Let M = 2C
• Resulting frequencies are C, 3C, 5C, …
• Negative frequencies are -C, -3C, -5C, …
• Try it…

C ± nM

Copyright © 2002-2013 by Roger B. Dannenberg

Other Harmonic Schemes

ICM Week 4 14

• Let M = i/j x C, for small integers i and j
• Let F = C/j, then M = iF
• C = jF, C+M = (i+j)F, C+2M = (2i+j)F, etc.
• All frequencies are harmonics (integer multiples)
of F

• Try it…

C ± nM

2/20/15	

8	

Copyright © 2002-2013 by Roger B. Dannenberg

Inharmonic Partials

• Let M = not i/j x C
• Resulting frequencies are not harmonics
• Negative frequencies are not harmonics
• Try it…

ICM Week 4 15

C ± nM

Copyright © 2002-2013 by Roger B. Dannenberg

Formants
• Resonances (especially in the vocal tract)
emphasize frequencies around the resonant
frequency

• We can simulate resonances (and voice) by
placing a carrier near the desired resonant
frequency and modulating it to create nearby
harmonics:

ICM Week 4 16

C

M

2/20/15	

9	

Copyright © 2002-2013 by Roger B. Dannenberg

Summary
• FM Synthesis

•  Time varying spectra
•  Low cost (simplest case is only 2 oscillators)
• Simple parametric control
• Musically useful results

• FM Control
• Carrier:Modulator ratio

•  Harmonic or inharmonic spectra
•  Odd or all harmonics
•  Formants

• Depth of modulation
•  Number of partials

ICM Week 4 17

See examples
in code_4.sal

Copyright © 2002-2013 by Roger B. Dannenberg

BEHAVIORAL
ABSTRACTION
A sound event can behave differently according to the
context in which it is instantiated.

ICM Week 4 18

2/20/15	

10	

Copyright © 2002-2013 by Roger B. Dannenberg

Temporal Semantics and
Behavioral Abstraction
• Extensions to ordinary (Lisp, SAL) semantics:

• Behaviors
• Evaluation environment
•  Transformations
•  Temporal combination: SEQ and SIM

ICM Week 4 19

Copyright © 2002-2013 by Roger B. Dannenberg

Behaviors
• Nyquist sound expressions denote a whole class
of behaviors

• The specific sound computed by the expression
depends upon the environment

• Transformations like STRETCH and
TRANSPOSE alter the behavior.

• Behaviors vs. linear transformation: when you
play a longer note, you don’t simply stretch the
signal! The behavior concept is critical for music.

ICM Week 4 20

2/20/15	

11	

Copyright © 2002-2013 by Roger B. Dannenberg

Evaluation Environment
• To implement behavior concept, all Nyquist
expressions evaluate within an environment.

• Nyquist environment includes: starting time,
stretch factor, transposition, legato factor,
loudness, sample rates, and more.

• Environment is “hidden” and changed or
accessed using special function-like constructs.

ICM Week 4 21

Copyright © 2002-2013 by Roger B. Dannenberg

Manipulating the Environment
• Example:
osc(c4) ~ 3

• Within STRETCH, all expressions see altered
environment and behave accordingly

• Scoping is dynamic:
function tone() return osc(c4)
play tone() ~ 3  <? second sound>

• Transformations can be nested:
function tone() return osc(c4) ~ 2
play tone() ~ 3  <? second sound>

ICM Week 4 22

2/20/15	

12	

Copyright © 2002-2013 by Roger B. Dannenberg

Manipulating the Environment
• Example:
osc(c4) ~ 3

• Within STRETCH, all expressions see altered
environment and behave accordingly

• Scoping is dynamic:
function tone() return osc(c4)
play tone() ~ 3  <3 second sound>

• Transformations can be nested:
function tone() return osc(c4) ~ 2
play tone() ~ 3  <6 second sound>

ICM Week 4 23

Copyright © 2002-2013 by Roger B. Dannenberg

Absolute Transformations
• You can override the “inherited” environment:
function tone2() return osc(c4) ~~ 2

play tone2() ~ 100  <2 second tone>

• Even though TONE2 is called with a stretch factor of 100,
its STRETCH-ABS transformation overrides the
environment and sets it to 2

• Once sound is computed by OSC(C4), the sound
is immutable, i.e. not subject to transformation!!!!!

ICM Week 4 24

2/20/15	

13	

Copyright © 2002-2013 by Roger B. Dannenberg

The SOUND Type
• osc(c4) ~~ 2  this is an expression
• When evaluated, osc() uses the environment
(especially start time and stretch factor) and
returns a SOUND:

ICM Week 4 25

Start time

Logical stop time

Terminate time Sample Rate

Copyright © 2002-2013 by Roger B. Dannenberg

Example
• begin
 with x = osc(c4)
 play x ~ 3  <? second tone>
end

• function x() return osc(c4)
play x() ~ 3  <? second tone>
!

ICM Week 4 26

2/20/15	

14	

Copyright © 2002-2013 by Roger B. Dannenberg

Example
• begin
 with x = osc(c4)
 play x ~ 3  <1 second tone>
end

• function x() return osc(c4)
play x() ~ 3  <3 second tone>
!

ICM Week 4 27

Copyright © 2002-2013 by Roger B. Dannenberg

Transformations
• STRETCH, STRETCH-ABS (~, ~~)
• AT, AT-ABS (@, @@)
• LOUD, LOUD-ABS
• SUSTAIN, SUSTAIN-ABS
• ABS-ENV – use default environment
• See manual for others.
• Maybe we’ll talk about time-varying
transformations later in semester.

ICM Week 4 28

2/20/15	

15	

Copyright © 2002-2013 by Roger B. Dannenberg

Practical Notes
•  In practice, the most critical transformations are
AT (@) and STRETCH (~), which control when
sounds are computed and how long they are.

• Technically, transformations are not functions
because they do not evaluate their arguments in
the normal order: instead, they manipulate the
environment, evaluate the behavior, then restore
the environment.

•  Implemented as macros in XLISP

ICM Week 4 29

Copyright © 2002-2013 by Roger B. Dannenberg

SEQ
A construct for sequential behavior

ICM Week 4 30

2/20/15	

16	

Copyright © 2002-2013 by Roger B. Dannenberg

SEQ
• How do we make a sequence of sounds:
seq(osc(c4), osc(d4))

• Semantics:
• Evaluate osc(c4) at default time (t=0)
• Resulting sound has logical stop time of 1.0
• Evaluate osc(d4) at start time t=1.0
• Return the sum of the results

ICM Week 4 31

Copyright © 2002-2013 by Roger B. Dannenberg

Counterexample
•  You MUST use seq with behavior expressions, not sound values:
•  set x = osc(c4) ; compute sounds
set y = osc(d4) ;
play seq(x, y) ; WRONG!!

function x() return osc(c4) ; define
function y() return osc(d4) ; behaviors
play seq(x(), y()) ; RIGHT!!

ICM Week 4 32

2/20/15	

17	

Copyright © 2002-2013 by Roger B. Dannenberg

SIM
A construct for simultaneous behavior

ICM Week 4 33

Copyright © 2002-2013 by Roger B. Dannenberg

SIM
• SIM is exactly the same as SUM and +
• SIM evaluates a list of behaviors and forms their
sum (equivalent to audio mixing)

• sim(osc(c4), osc(g4))

ICM Week 4 34

2/20/15	

18	

Copyright © 2002-2013 by Roger B. Dannenberg

Example Using @
• play sim(osc(c4),
 osc(e4) @ 0.1,
 osc(g4) @ 0.2,
 osc(b4) @ 0.3),
 osc(d5) @ 0.4))

ICM Week 4 35

Copyright © 2002-2013 by Roger B. Dannenberg

LOGICAL STOP TIME
Decoupling the “logical” end of a sound (its duration)
from the “physical” end of a sound (its articulation)

ICM Week 4 36

2/20/15	

19	

Copyright © 2002-2013 by Roger B. Dannenberg

Overlap With Logical Stop Times
•  play seq(set-logical-stop(osc(c4), 0.1),
 set-logical-stop(osc(e4), 0.1),
 set-logical-stop(osc(g4), 0.1),
 set-logical-stop(osc(b4), 0.1),
 set-logical-stop(osc(d5), 0.1))

ICM Week 4 37

Logical stop time Physical stop time

Start times

Copyright © 2002-2013 by Roger B. Dannenberg

Scores
• We’ve seen scores already
• To evaluate a score, evaluate each sound
expression with the start time and stretch factor:

• {{start dur {instr parameters}} ⇒
 instr(parameters) ~ dur @ start

• Note: instr() ~ dur @ start ⇔
 instr() @ (start / dur) ~ dur

ICM Week 4 38

2/20/15	

20	

Copyright © 2002-2013 by Roger B. Dannenberg

Summary
• SOUNDS

• Start time
•  Logical stop time
• Physical stop time

• Functions evaluated in an environment
• Dynamically scoped – inherited across calls
• Modified by transformations

•  Stretch (~)
•  Shift (@)

• Results of functions (SOUNDS) are immutable
• Sim and Seq control constructs

ICM Week 4 39

