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INTRODUCTION TO COMPUTER MUSIC 
FM SYNTHESIS 
A classic synthesis algorithm 
 
Roger B. Dannenberg 
Professor of Computer Science, Art, and Music 
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Frequency Modulation 
• Frequency modulation occurs naturally: 

• Voice inflection, natural jitter, and vibrato in singing 
• Vibrato in instruments 
•  Instrumental effects, e.g. electric guitar 
• Many tones begin low and come up to pitch 
•  Loose vibrating strings go sharp as they go louder 
• Slide trombone, Theremin, voice, violin, etc. create 

melodies by FM (as opposed to, say, pianos) 
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Frequency Modulation with Nyquist 
•  fmosc(basic-pitch, fm-control [, table [, phase]]) 
•  fm-control is expressed as deviation in Hz 

 
•  hzosc(fm-control) 
•  fm-control is absolute frequency in Hz 

•  snd-compose(f, g) 
• Computes f(g(t)) – if g is non-linear, frequency changes 

occur 
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FM EXAMPLES 
Exploring the sound world of FM synthesis 
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Examples 
• See Code 4 (code_4.sal) 
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Why FM Synthesis? 
• We’ve already seen wavetable or table-lookup 
synthesis: 
•  Very efficient 
•  Create any harmonic spectrum 
•  Simple frequency and amplitude control 

• What’s missing? 
•  Time-varying control over the spectrum 
•  Inharmonic spectra 

• Various Approaches: 
•  Synthesize each sinusoid separately – tedious, costly 
•  Filter the output of table – useful, but only harmonic output 
•  FM Synthesis 
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FM Synthesis 
• When modulation frequency is in the audio range, 
interesting things happen. 
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Carrier Frequency (C) 

Modulation Frequency (M) 

Number of significant 
partials is roughly the ratio 
of modulation amp (freq 
dev, D) to modulation freq.  

Bandwidth~2(D+M) 
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Mathematics of FM 
• The exact amplitudes of the partials generated by 
FM are described by Bessel functions 

• These functions are messy, their evolution is 
messier, and there is no simple way to invert the 
functions 

• Many lives of FM: 
•  1967-1968 Invented by John Chowning, patented 1975 
•  1983-1986: Yamaha DX7 160,000 sold 
•  1990-1995: IBM PC-compatible Sound Cards 
•  2000’s: FM synthesis provides polyphonic ring tones 
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FM and Harmonics 
• Generated frequencies are: 

• Where C = “Carrier” and M = Modulator 
• Simplest case: C = M 
• Generated frequencies are: 
         C+nM gives us C, 2C, 3C, 4C, … 

• What about negative frequencies? 
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C ± nM
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FM and Harmonics (2) 
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Bandwidth~2(D+M) C 

C 
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FM and Harmonics (3) 
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Bandwidth~2(D+M) C 

C 
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Classic FM brass sound 
• Characterized by a rise in upper partials 
• Generated by increasing depth of modulation 
• Uses 1:1 Carrier:Modulation frequency 

• See example in code_4.htm 
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Odd Harmonics 
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• Let M = 2C 
• Resulting frequencies are C, 3C, 5C, … 
• Negative frequencies are -C, -3C, -5C, … 
• Try it… 

C ± nM
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Other Harmonic Schemes 
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• Let M = i/j x C, for small integers i and j 
• Let F = C/j, then M = iF 
• C = jF, C+M = (i+j)F, C+2M = (2i+j)F, etc. 
• All frequencies are harmonics (integer multiples) 
of F  

• Try it… 

C ± nM
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Inharmonic Partials 

• Let M = not i/j x C 
• Resulting frequencies are not harmonics 
• Negative frequencies are not harmonics 
• Try it… 
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C ± nM
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Formants 
• Resonances (especially in the vocal tract) 
emphasize frequencies around the resonant 
frequency 

• We can simulate resonances (and voice) by 
placing a carrier near the desired resonant 
frequency and modulating it to create nearby 
harmonics: 
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C 

M 
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Summary 
• FM Synthesis 

•  Time varying spectra 
•  Low cost (simplest case is only 2 oscillators) 
• Simple parametric control 
• Musically useful results 

• FM Control 
• Carrier:Modulator ratio 

•  Harmonic or inharmonic spectra 
•  Odd or all harmonics 
•  Formants 

• Depth of modulation 
•  Number of partials 
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See examples  
in code_4.sal  
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BEHAVIORAL 
ABSTRACTION 
A sound event can behave differently according to the 
context in which it is instantiated. 
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Temporal Semantics and 
Behavioral Abstraction 
• Extensions to ordinary (Lisp, SAL) semantics: 

• Behaviors 
• Evaluation environment 
•  Transformations 
•  Temporal combination: SEQ and SIM 
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Behaviors 
• Nyquist sound expressions denote a whole class 
of behaviors 

• The specific sound computed by the expression 
depends upon the environment 

• Transformations like STRETCH and 
TRANSPOSE alter the behavior. 

• Behaviors vs. linear transformation: when you 
play a longer note, you don’t simply stretch the 
signal! The behavior concept is critical for music. 
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Evaluation Environment 
• To implement behavior concept, all Nyquist 
expressions evaluate within an environment. 

• Nyquist environment includes: starting time, 
stretch factor, transposition, legato factor, 
loudness, sample rates, and more. 

• Environment is “hidden” and changed or 
accessed using special function-like constructs. 
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Manipulating the Environment 
• Example: 
osc(c4) ~ 3 

• Within STRETCH, all expressions see altered 
environment and behave accordingly 

• Scoping is dynamic: 
function tone() return osc(c4) 
play tone() ~ 3  <? second sound> 

• Transformations can be nested: 
function tone() return osc(c4) ~ 2 
play tone() ~ 3  <? second sound> 
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Manipulating the Environment 
• Example: 
osc(c4) ~ 3 

• Within STRETCH, all expressions see altered 
environment and behave accordingly 

• Scoping is dynamic: 
function tone() return osc(c4) 
play tone() ~ 3  <3 second sound> 

• Transformations can be nested: 
function tone() return osc(c4) ~ 2 
play tone() ~ 3  <6 second sound> 
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Absolute Transformations 
• You can override the “inherited” environment: 
function tone2() return osc(c4) ~~ 2 

play tone2() ~ 100  <2 second tone> 

• Even though TONE2 is called with a stretch factor of 100, 
its STRETCH-ABS transformation overrides the 
environment and sets it to 2 

• Once sound is computed by OSC(C4), the sound 
is immutable, i.e. not subject to transformation!!!!! 
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The SOUND Type 
• osc(c4) ~~ 2   this is an expression 
• When evaluated, osc() uses the environment 
(especially start time and stretch factor) and 
returns a SOUND: 
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Start time 

Logical stop time 

Terminate time Sample Rate 
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Example 
• begin  
  with x = osc(c4) 
  play x ~ 3  <? second tone> 
end 

• function x() return osc(c4) 
play x() ~ 3  <? second tone> 
!
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Example 
• begin  
  with x = osc(c4) 
  play x ~ 3  <1 second tone> 
end 

• function x() return osc(c4) 
play x() ~ 3  <3 second tone> 
!
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Transformations 
• STRETCH, STRETCH-ABS (~, ~~) 
• AT, AT-ABS (@, @@) 
• LOUD, LOUD-ABS 
• SUSTAIN, SUSTAIN-ABS 
• ABS-ENV – use default environment 
• See manual for others. 
• Maybe we’ll talk about time-varying 
transformations later in semester. 
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Practical Notes 
•  In practice, the most critical transformations are 
AT (@) and STRETCH (~), which control when 
sounds are computed and how long they are. 

• Technically, transformations are not functions 
because they do not evaluate their arguments in 
the normal order: instead, they manipulate the 
environment, evaluate the behavior, then restore 
the environment. 

•  Implemented as macros in XLISP 
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SEQ 
A construct for sequential behavior 

ICM Week 4 30 
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SEQ 
• How do we make a sequence of sounds: 
seq(osc(c4), osc(d4)) 

• Semantics: 
• Evaluate osc(c4) at default time (t=0) 
• Resulting sound has logical stop time of 1.0 
• Evaluate osc(d4) at start time t=1.0 
• Return the sum of the results 
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Counterexample 
•  You MUST use seq with behavior expressions, not sound values: 
•  set x = osc(c4) ; compute sounds 
set y = osc(d4) ; 
play seq(x, y)  ; WRONG!! 
 
function x() return osc(c4) ; define 
function y() return osc(d4) ;  behaviors 
play seq(x(), y())  ; RIGHT!! 
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SIM 
A construct for simultaneous behavior 
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SIM 
• SIM is exactly the same as SUM and + 
• SIM evaluates a list of behaviors and forms their 
sum (equivalent to audio mixing) 

• sim(osc(c4), osc(g4)) 
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Example Using @ 
• play sim(osc(c4),  
         osc(e4) @ 0.1, 
         osc(g4) @ 0.2,  
         osc(b4) @ 0.3),  
          osc(d5) @ 0.4))  
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LOGICAL STOP TIME 
Decoupling the “logical” end of a sound (its duration) 
from the “physical” end of a sound (its articulation) 
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Overlap With Logical Stop Times 
•  play seq(set-logical-stop(osc(c4), 0.1),  
         set-logical-stop(osc(e4), 0.1), 
         set-logical-stop(osc(g4), 0.1),  
         set-logical-stop(osc(b4), 0.1),  
          set-logical-stop(osc(d5), 0.1)) 
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Logical stop time Physical stop time 

Start times 
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Scores 
• We’ve seen scores already 
• To evaluate a score, evaluate each sound 
expression with the start time and stretch factor: 

• {{start dur {instr parameters}} ⇒ 
     instr(parameters) ~ dur @ start 

• Note: instr() ~ dur @ start ⇔ 
            instr() @ (start / dur) ~ dur 
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Summary 
• SOUNDS 

• Start time 
•  Logical stop time 
• Physical stop time 

• Functions evaluated in an environment 
• Dynamically scoped – inherited across calls 
• Modified by transformations 

•  Stretch (~) 
•  Shift (@) 

• Results of functions (SOUNDS) are immutable 
• Sim and Seq control constructs 
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