
1/26/15	

1	

Copyright © 2002-2013 by Roger B. Dannenberg

BEHAVIORAL
ABSTRACTION
A sound event can behave differently according to the
context in which it is instantiated.

ICM Week 4 1

Copyright © 2002-2013 by Roger B. Dannenberg

Temporal Semantics and
Behavioral Abstraction
• Extensions to ordinary (Lisp, SAL) semantics:

• Behaviors
• Evaluation environment
•  Transformations
•  Temporal combination: SEQ and SIM

ICM Week 4 2

1/26/15	

2	

Copyright © 2002-2013 by Roger B. Dannenberg

Behaviors
• Nyquist sound expressions denote a whole class
of behaviors

• The specific sound computed by the expression
depends upon the environment

• Transformations like STRETCH and
TRANSPOSE alter the behavior.

• Behaviors vs. linear transformation: when you
play a longer note, you don’t simply stretch the
signal! The behavior concept is critical for music.

ICM Week 4 3

Copyright © 2002-2013 by Roger B. Dannenberg

Evaluation Environment
• To implement behavior concept, all Nyquist
expressions evaluate within an environment.

• Nyquist environment includes: starting time,
stretch factor, transposition, legato factor,
loudness, sample rates, and more.

• Environment is “hidden” and changed or
accessed using special function-like constructs.

ICM Week 4 4

1/26/15	

3	

Copyright © 2002-2013 by Roger B. Dannenberg

Manipulating the Environment
• Example:
osc(c4) ~ 3

• Within STRETCH, all expressions see altered
environment and behave accordingly

• Scoping is dynamic:
function tone() return osc(c4)
play tone() ~ 3 ! <? second sound>

• Transformations can be nested:
function tone() return osc(c4) ~ 2
play tone() ~ 3 ! <? second sound>

ICM Week 4 5

Copyright © 2002-2013 by Roger B. Dannenberg

Manipulating the Environment
• Example:
osc(c4) ~ 3

• Within STRETCH, all expressions see altered
environment and behave accordingly

• Scoping is dynamic:
function tone() return osc(c4)
play tone() ~ 3 ! <3 second sound>

• Transformations can be nested:
function tone() return osc(c4) ~ 2
play tone() ~ 3 ! <6 second sound>

ICM Week 4 6

1/26/15	

4	

Copyright © 2002-2013 by Roger B. Dannenberg

Absolute Transformations
• You can override the “inherited” environment:
function tone2() return osc(c4) ~~ 2

play tone2() ~ 100 ! <2 second tone>

• Even though TONE2 is called with a stretch factor of 100,
its STRETCH-ABS transformation overrides the
environment and sets it to 2

• Once sound is computed by OSC(C4), the sound
is immutable, i.e. not subject to transformation!!!!!

ICM Week 4 7

Copyright © 2002-2013 by Roger B. Dannenberg

The SOUND Type
• osc(c4) ~~ 2 ß this is an expression
• When evaluated, osc() uses the environment
(especially start time and stretch factor) and
returns a SOUND:

ICM Week 4 8

Start time

Logical stop time

Terminate time Sample Rate

1/26/15	

5	

Copyright © 2002-2013 by Roger B. Dannenberg

Example
• begin
 with x = osc(c4)
 play x ~ 3 ! <? second tone>
end

• function x() return osc(c4)
play x() ~ 3 ! <? second tone>
!

ICM Week 4 9

Copyright © 2002-2013 by Roger B. Dannenberg

Example
• begin
 with x = osc(c4)
 play x ~ 3 ! <1 second tone>
end

• function x() return osc(c4)
play x() ~ 3 ! <3 second tone>
!

ICM Week 4 10

1/26/15	

6	

Copyright © 2002-2013 by Roger B. Dannenberg

Transformations
• STRETCH, STRETCH-ABS (~, ~~)
• AT, AT-ABS (@, @@)
• LOUD, LOUD-ABS
• SUSTAIN, SUSTAIN-ABS
• ABS-ENV – use default environment
• See manual for others.
• Maybe we’ll talk about time-varying
transformations later in semester.

ICM Week 4 11

Copyright © 2002-2013 by Roger B. Dannenberg

Practical Notes
•  In practice, the most critical transformations are
AT (@) and STRETCH (~), which control when
sounds are computed and how long they are.

• Technically, transformations are not functions
because they do not evaluate their arguments in
the normal order: instead, they manipulate the
environment, evaluate the behavior, then restore
the environment.

•  Implemented as macros in XLISP

ICM Week 4 12

