
2/20/15	

1	

Copyright © 2002-2013 by Roger B. Dannenberg

INTRODUCTION TO COMPUTER MUSIC
SPECTRAL CENTROID
An estimate of brightness

Roger B. Dannenberg
Professor of Computer Science, Art, and Music

1 ICM Week 5

Copyright © 2002-2013 by Roger B. Dannenberg

Project 3
• Goal: Use spectral centroid to control FM
synthesis parameters

• What’s a spectral centroid?
• Example code

ICM Week 5 2

2/20/15	

2	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 3

Discrete Fourier Transform

Rk = xi
i=0

N−1

∑ cos(2πki / N)

Xk = − xi
i=0

N−1

∑ sin(2πki / N)

Copyright © 2002-2013 by Roger B. Dannenberg

How to Interpret a Discrete Spectrum
•  FFT takes in N samples and

outputs N values
•  This must be because FFT and

Inverse FFT preserve
information: N-dimensions in, N-
dimensions out

•  The output values are:
•  R0 – the “DC” component
•  X0 – always zero, not in output
•  R1, X1, R2, X2, … RN/2-1, XN/2-1

•  RN/2 – the “Nyquist” component
•  XN/2 – always zero, not in output

•  Note there are N points as
expected

•  These points Xk and Rk are
evenly (linearly) spaced in
frequency.

•  Point RN/2 is at SR / 2.
•  Points Xk and Rk are at

 (k / (N/2)) * (SR / 2) =
 k * SR / N Hz.

•  Frequency spacing (width of
“bins”) is SR / N Hz –
 the “bin width”

•  Example: SR=44100 Hz, FFT
size = 1024 points, bin size =
44100/1024 = 43.0664 Hz

ICM Week 5 4

2/20/15	

3	

Copyright © 2002-2013 by Roger B. Dannenberg

Discrete Magnitude (or Amplitude)
Spectrum
• Magnitude Ak = sqrt(Rk

2 + Xk
2)

• The magnitude spectrum is:
• A0 , A1 , … , AN/2

• Note there are N/2+1 points.
• How can this be? There are only N/2-1 non-zero
phases, so we still have N total dimensions.

ICM Week 5 5

Copyright © 2002-2013 by Roger B. Dannenberg

Spectral Centroid
• Weighted average of the magnitude (amplitude)
spectrum:

• w is the width of each spectral bin in Hz
• w = sample rate / size of the FFT in samples

ICM Week 5 6

spectral centroid =
i ⋅w

i=0

N

∑ ⋅Ai

Ai
i=0

N

∑

2/20/15	

4	

Copyright © 2002-2013 by Roger B. Dannenberg

Spectral Centroid

ICM Week 5 7

frequency

amplitude

Copyright © 2002-2013 by Roger B. Dannenberg

Time-Varying Spectral Centroid

ICM Week 5 8

frequency

amplitude

time

2/20/15	

5	

Copyright © 2002-2013 by Roger B. Dannenberg

Review Project 3 Code Examples

ICM Week 5 9

Copyright © 2002-2013 by Roger B. Dannenberg

ALGORITHMIC
COMPOSITION
Introducing the score-gen construct

ICM Week 5 10

2/20/15	

6	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 11

Programs and Data
• We’ve seen:

• Ordinary programs:
•  pwl(…) * osc(…)

• Score-like programs:
•  sim(note(…) ~ 2 @ 0, note(…) ~ 3 @ 1, …)

• Scores:
•  {{0 2 {note …}}  
 {1 3 {note …}}  
 …}

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 12

Lots of Choices
• Data and programs have different properties
• Data and programs can work together:

• Programs create data (scores)
•  timed-seq interprets scores to invoke functions
• Programs can even create (Lisp) programs

• No right/wrong answers
• Today, we look at programs creating scores

2/20/15	

7	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 13

The score-gen Macro: Introduction
• The problem:

• Create a score of notes
• Specify attribute values with SAL expressions

(evaluated for each note)
•  Flexible expression of start time, inter-onset time, or

duration
• The solution: score-gen
• Alternative: build scores with list primitives

•  (been there, done that in Project 2 – was it fun?)

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 14

score-gen
score-gen(attribute: expression,  
 attribute: expression,  
 attribute: expression,  
 …)"
score-gen(score-len: 2, pitch: 60,  
 vel: 100, ioi: 0.7,  
 name: quote(note))"

2/20/15	

8	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 15

score-gen Loop Variables
• sg:start – starting time for current note
• sg:ioi – current inter-onset interval
• sg:dur – current duration
• sg:count – how many notes computed so far
• Example:

•  score-gen(score-len: 10, ioi: 0.2,  
 pitch: c4 + sg:count)

Copyright © 2002-2013 by Roger B. Dannenberg

PATTERN GENERATORS
Designing sequences of parameters

ICM Week 5 16

2/20/15	

9	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 17

Introduction to Pattern Generating Objects

• Score-gen is convenient, but …
• … hard problem is generating attribute values
• Pattern Objects encapsulate many selection/
sequencing algorithms for data

• Some are composable – very flexible, powerful
• Examples:

•  sequential selection from list,
•  random selection from a set,
•  output 3 copies of every set of 5 input values

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 18

Using Pattern Objects
begin"
 with pat = make-cycle({60 62 64 65})"
 exec score-gen(save: quote(simple),"
 score-len: 20, "
 ioi: 0.3,"
 pitch: next(pat))"
end"
"
exec play-score(simple)"

2/20/15	

10	

Copyright © 2002-2013 by Roger B. Dannenberg

MULTIPLE PATTERNS
Another score-gen example

ICM Week 5 19

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 20

make-heap
• make-heap(list-or-pattern,  
 for: number-or-pattern,  
 max: number-or-pattern)"

• Output elements of input list in random order
• Length of period given by for:"

• Default is the length of the input list

•  If max: is 1, do not repeat elements in output
• Every period:

• Update any pattern inputs

2/20/15	

11	

Copyright © 2002-2013 by Roger B. Dannenberg

Two Pattern Objects
begin"
 with pitch-pat = make-heap( 
 list(c4, cs5, e4, f4, a4, bf4), max: 1),"
 rhythm-pat = make-cycle( 
 list(s, s, i, s, i, s))"
 exec score-gen(save: quote(test1),"
 score-len: 50, "
 ioi: next(rhythm-pat),"
 pitch: next(pitch-pat))"
end"

ICM Week 5 21

Copyright © 2002-2013 by Roger B. Dannenberg

MORE PATTERNS

ICM Week 5 22

2/20/15	

12	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 23

make-palindrome
•  make-palindrome(list-or-pattern,  
 for: number-or-pattern,  
 elide: keyword)"

• Output elements of input list forward then reverse order
•  Length of period given by for:"

•  Default is full forward-backward traversal
• Elide:

•  :first – A,B,C becomes A,B,C,C,B,A,B,C,C,B,... (elide the final A)
•  :last – A,B,C becomes A,B,C,B,A,A,B,C,B,A,...

 (elide the duplicate of C)
•  #t – A,B,C becomes A,B,C,B,A,B,C,B,... (elide first and last)
•  #f – A,B,C becomes A,B,C,C,B,A,A,B,C,C,B,A,... (no elision)

• Every period:
•  Update any pattern inputs

Copyright © 2002-2013 by Roger B. Dannenberg

Palindrome Example 1
begin"
 with pitch-pat = make-palindrome( 
 list(c4, f4, bf4, ef5, af5))"
 exec score-gen(save: quote(palindrome-1),"
 score-len: 20,"
 ioi: 0.3,"
 pitch: next(pitch-pat))"
end"

ICM Week 5 24

2/20/15	

13	

Copyright © 2002-2013 by Roger B. Dannenberg

Palindrome Example 2
begin"
 with pitch-pat = make-palindrome( 
 list(c4, f4, bf4, ef5, af5),  
 elide: #t)"
 exec score-gen(save: quote(palindrome-2),"
 score-len: 25,"
 ioi: 0.3,"
 pitch: next(pitch-pat))"
end"

ICM Week 5 25

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 26

More Simple Patterns
•  make-random(list-or-pattern,  
 for: number-or-pattern)"
•  Select items from list at random
•  Fancy list elements: { value weight: 5 min: 3 max: 5 }

•  make-line(list-or-pattern,  
 for: number-or-pattern)"
• Output elements of list, repeating last element forever

•  make-accumulation(list-or-pattern,  
 for: number-or-pattern)"
• Output initial substrings
•  {a b c} → a a b a b c, a a b a b c, …

•  make-markov - maybe later or see manual

2/20/15	

14	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 27

Pattern Periods
• Pattern object output is structured into periods
• next(pattern) returns one element
• next(pattern, #t) returns list of one full period
• next(make-cycle({1 2 3}), #t) → {1 2 3}
• Why periods?

• Sometimes patterns do something every period.

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 28

make-cycle
• make-cycle(list-or-pattern,  
 for: number-or-pattern)"

• Output elements of input list in sequence
• Length of period given by for:"

• Default is the length of the input list

• Every period:
• Update list-or-pattern to next period
• Update number-or-pattern to next value

2/20/15	

15	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 29

Patterns of Patterns - 1
•  make-accumulate(pattern,  
 max: expr, min: expr,  
 for: number-or-pattern)"
• Sum successive elements from input pattern

•  make-copier(pat, repeat: expr-or-pat,  
 merge: boolean,  
 for: number-or-pattern)"
• Copy each period repeat times,
• merge to one period if merge is true

Copyright © 2002-2013 by Roger B. Dannenberg

Accumulate Example

ICM Week 5 30

begin"
 with pitch-incr-pat = make-random( 
 list(-3, -2, -1, +1, +2, +3)),"
 pitch-pat = make-accumulate(pitch-incr-pat)"
 exec score-gen(save: quote(accumulate-1),"
 score-len: 25,"
 ioi: 0.2,"
 pitch: 60 + next(pitch-pat))"
end"

2/20/15	

16	

Copyright © 2002-2013 by Roger B. Dannenberg

Copier Example

ICM Week 5 31

begin"
 with pitch-heap-pat = make-heap( 
 list(c4, cs5, e4, f4, a4, bf4)),"
 pitch-pat = make-copier(pitch-heap-pat,  
 repeat: 4)"
 exec score-gen(save: quote(copier-1),"
 score-len: 4 * 6 * 3,"
 ioi: 0.15,"
 pitch: next(pitch-pat))"
end"

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 32

Patterns of Patterns - 2
•  make-length(list-or-pattern,  
 number-or-pattern)"
• Regroup input sequence to specified period lengths

•  make-window(pattern, window-size,  
 window-skip) "
• Output window-size elements,
•  then advance window-skip
• make-cycle({a b c d}), 3, 1 → a b c b c d c d a d a b a b

c …"

2/20/15	

17	

Copyright © 2002-2013 by Roger B. Dannenberg

Window Example

ICM Week 5 33

begin"
 with pitch-line-pat = make-line( 
 list(c4, cs4, e4, f4, a4, bf4)),"
 pitch-pat = make-window(pitch-line-pat, 3, 1)"
 exec score-gen(save: quote(window-1),"
 score-len: 17,"
 ioi: 0.2,"
 pitch: next(pitch-pat))"
end"

make-window(pitch-pat, 9, 3)"

Copyright © 2002-2013 by Roger B. Dannenberg

NESTED PATTERNS

ICM Week 5 34

2/20/15	

18	

Copyright © 2002-2013 by Roger B. Dannenberg

Nested Patterns
• When a pattern generator accesses a list or other
parameter and gets a pattern object, it uses the
next value generated by the pattern object.

ICM Week 5 35

begin"
 with pitch-pat = make-heap(list(c4, cs5, e4, f4, a4, bf4),  
 max: 1),"
 phrase-pat = make-heap("
 list(make-cycle(list(s, s, s, s, q)),"
 make-cycle(list(q, s, s, s, s)),"
 make-cycle(list(q, q))))"
 exec score-gen(save: quote(test2),"
 score-len: 50, "
 ioi: next(phrase-pat),"
 pitch: next(pitch-pat))"
end"

Copyright © 2002-2013 by Roger B. Dannenberg

Summary
• SCORE-GEN is a special loop structure that
evaluates expressions and inserts values into
scores.

• Pattern objects are like unit generators, but they
generate streams of numbers rather than audio.

• Pattern objects can serve as parameters to other
pattern objects, enabling very complex behaviors
on multiple time scales.

ICM Week 5 36

2/20/15	

19	

Copyright © 2002-2013 by Roger B. Dannenberg

MORE ALGORITHMIC
COMPOSITION
Probability Distributions, Random Walks, Grids, Masks,
and more

ICM Week 5 37

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 38

Types of Machine-Aided Composition
• Completely directed by composer

• Notation packages
• Cut and Paste
• Editing macros

• Algorithmic Compositions
• Procedures + random numbers

• Artificial Intelligence
• Music models
• Models of composition
• Machine learning
• Search

2/20/15	

20	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 39

Types of Machine-Aided Composition
• Completely directed by composer

• Notation packages
• Cut and Paste
• Editing macros

• Algorithmic Compositions
• Procedures + random numbers

• Artificial Intelligence
• Music models
• Models of composition
• Machine learning
• Search

Greatest “High” Culture Impact

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 40

Types of Machine-Aided Composition
• Completely directed by composer

• Notation packages
• Cut and Paste
• Editing macros

• Algorithmic Compositions
• Procedures + random numbers

• Artificial Intelligence
• Music models
• Models of composition
• Machine learning
• Search

Increasing “Pop” Culture Impact

Greatest “High” Culture Impact

2/20/15	

21	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 41

Techniques – Tricks of the Trade
• Rhythm using Negative Exponential distribution
• Melody using random walk
• Markov algorithm
• Rhythmic pattern generation
• Melodic transformations & serialism
• Fractals
• Grammars
• Pitch and Rhythm grids
• Tendency masks

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 42

Scores and Score Manipulation

• SCORE-BEGIN-END
 is not synthesized:
(score-begin-end

 <start-time>
 <end-time>)

• Pitch lists are expanded
as chords

set myscore =!
 {{0 1 {score-begin-end 0 2}}!
 {0 1 {tpt :pitch {64 67 72} :vel 100}}!
 {1 1 {tbn :pitch 48 :vel 80}}}
!
function tpt(pitch: 60, vel: 100)!
 return trumpet(pitch, vel)!
!
eval score-play(myscore)!

2/20/15	

22	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 43

Scores and Score Manipulation (2)

score-shift(score, offset)
score-stretch(score, factor)
score-transpose(score, keyword, amount)
score-scale(score, keyword, amount)
score-sustain(score, factor)
score-voice(score, replacement-list)
score-merge(score1, score2, …)
score-adjacent-events(score, function)
score-apply(score, function)
score-stretch-to-length(score, length)

score-append(score1, score2, …)
score-select(score, predicate)
score-filter-length(score, cutoff)
score-repeat(score, n)
score-filter-overlap(score)
score-print(score)
score-play(score)
score-last-index-of(score,

function)
score-randomize-start(score amt)
score-sort(score, [copy-flag])

Copyright © 2002-2013 by Roger B. Dannenberg

Scores and Score Manipulation (3)
• All score functions take some optional keyword

parameters:
•  :from-index i
•  :to-index i
•  :from-time seconds
•  :to-time seconds

• Score functions construct new scores
• Standard MIDI File I/O:

•  score-read-smf(filename)
•  score-write-smf(score, filename)

ICM Week 5 44

2/20/15	

23	

Copyright © 2002-2013 by Roger B. Dannenberg

Workspaces
• How do you save score data?
set my-score = {… score data …}"
set new-score = score-transpose(my-score, "
 :pitch 3)"
exec add-to-workspace(quote(my-score))"
exec describe(my-score, “original data”)"
exec add-to-workspace(quote(new-score))"
exec describe(new-score, “transposed version”)"
exec save-workspace()"
"
•  Later, you can just load workspace.lsp to restore

everything. The variable names are in *workspace*.

ICM Week 5 45

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 46

The Negative Exponential Distribution
• “Random” is interesting(!)
• What does it mean to be random in time?

• Uniform random interval between events?
• Gaussian?
• Some other distribution?

• Examples from real world:
• Atomic decay
• Sequence of uncorrelated events (yellow cars driving by)

2/20/15	

24	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 47

Negative Exponential Distribution (2)
•  The inter-arrival time has a negative exponential

distribution: longer and longer intervals are less and less
likely

• Equivalently: in each very small interval of time, generate
an event with some small probability P = density * interval
duration

• Equivalently: generate events at times that are uniformly
random across total duration.

score-gen(score-len: 50,"
 time: real-random(0, 12.5),"
 dur: 1,"
 name: quote(s-pop-kwp),"
 lo: 800, hi: 1200)"

Copyright © 2002-2013 by Roger B. Dannenberg

Probability distributions in Nyquist
•  load “distributions”
• See Distributions, probability in Nyquist index

ICM Week 5 48

 begin "
 with ne-score"
 loop"
 for i below 30"
 for now = 0 then now + exponential-dist(1.0)"
 set ne-score @= list(now, 1, {s-pop 800 1200})"
 end"
 return reverse(ne-score)"
 end"

score is in reverse order, so
rather than sorting, we can
just reverse it

2/20/15	

25	

Copyright © 2002-2013 by Roger B. Dannenberg

RANDOM WALK, MARKOV,
AND RHYTHMIC PATTERNS

ICM Week 5 49

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 50

Melody Using Random Walk
• What kinds of pitches create interesting melody?
• Uniform random pitch has too many large
intervals.

• Lots of small intervals is more typical.
• Melodies are said to have fractal properties.
begin"
 with small-pat = make-random("
 {0 0 -1 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -4 -4 "
 -5 -5 -6 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 6}),"
 pitch-pat = make-accumulate("
 make-line(list(57, small-pat)))"
end"

2/20/15	

26	

Copyright © 2002-2013 by Roger B. Dannenberg

Markov Algorithm
• Generate sequence of
“states”

• Probability of being in a
state depends only upon
probability of being in
previous state (First Order)

• Or previous 2 states
(Second Order)

• Etc.

• See example code

ICM Week 5 51

p

1-p

Copyright © 2002-2013 by Roger B. Dannenberg

Rhythmic Pattern Generation
• Of course there are many techniques; here’s
one:
• Generate a sequence length from some probability

distribution or just by your choice

• Generate a random number with that number of bits,
e.g. length N  (random 2^N)

•  Translate 0 to rest, 1 to event

ICM Week 5 52

2/20/15	

27	

Copyright © 2002-2013 by Roger B. Dannenberg

Rhythmic Pattern Example

ICM Week 5 53

function rhythm-pattern-demo(n, freq)"
 begin"
 with pat = make-cycle(list(random(2), random(2),  
 random(2), random(2), random(2),  
 random(2), random(2), random(2)))"
 return score-gen(score-len: n,"
 ioi: 0.15,"
 name: quote(s-pop-kwp),"
 hi: freq, lo: freq,"
 pitch: #?(next(pat) = 1, c4, nil))"
 end"

Three instances of this
function, each with different
resonance frequency:

Copyright © 2002-2013 by Roger B. Dannenberg

SERIALISM, FRACTALS,
GRAMMARS AND GRIDS
Algorithmic Composition

ICM Week 5 54

2/20/15	

28	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 55

Serialism
• Arnold Schoenberg and Serialism
• Chromatic scale – 12 notes/octave with equal
ratios between (half)steps

• Pitch – an element of the chromatic scale
• Pitch class – pitch mod 12, e.g. “C-sharp” without
regard to octave

• Tone row – permutation of the 12 pitch classes
• Music based on tone rows can be atonal

Copyright © 2002-2013 by Roger B. Dannenberg

Melodic/Tone Row Transformation
• Original: p[i]
• Transposition: T(p[i],c) = (p[i] + c) mod 12
•  Inversion: I(p[i]) = (-p[i]) mod 12
• Retrograde: R(p[i]) = p[12 – i]
• Also: (p[i]*5) mod 12 = I(p[i]*7)

ICM Week 5 56

2/20/15	

29	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 57

Why serialism?
•  In general, listeners cannot hear retrograde and/
or inversion relationships

•  Intervals are preserved
• Tone “row-ness” is preserved
• “Denial of tonality” produces new textures

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 58

Fractals and Nature
• Melodic contours are often fractal-like
• Composers often use fractal curves to generate
music data

• Examples:
• Austin, Canadian Coastline
• Cage, Atlas Eclipticalis

2/20/15	

30	

Copyright © 2002-2013 by Roger B. Dannenberg

Grammars
melody ::= intro middle ending
middle ::= phrase | middle phrase
phrase ::= sequence-a | sequence-b

function melody()  
return seq(intro(), middle(), ending())"

function middle() return #?(random() < 0.5,  
 phrase(), seq(middle(), phrase()))"

function phrase() return #?(random() < 0.3,  
 sequence-a(), sequence-b())

ICM Week 5 59

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 60

Pitch and Rhythm Grids
• Quantize random numbers to scales, grids
"
define function pitch-filter(p, f)"
 return #?(member(p % 12, f),"
 p, pitch-filter(p + 1, f))"
"
define function grid-scale(grid-function)"
 return score-gen(score-len: 50,"
 ioi: 0.15,  
 pitch: funcall(grid-function, 60 + random(12)),"
 name: quote(pluck-kwp))"
 "
define function c-major(p)"
 return pitch-filter(p, {0 2 4 5 7 9 11})"
"

2/20/15	

31	

Copyright © 2002-2013 by Roger B. Dannenberg

Quantizing to Rhythmic Grid
function on-beat(time, beat-len)"
 begin with beats = round(time / float(beat-len))"
 return beats * beat-len"
 end"
"
define function grid-rhythm(grid-function)"
 return score-gen(score-len: 100,"
 time: on-beat(real-random(0, 15), 0.15),"
 pitch: funcall(grid-function, 60 + random(12)),"
 dur: 1.0,"
 name: quote(pluck-kwp))"
"
exec score-play(grid-rhythm(quote(c-major)))"
"
"

ICM Week 5 61

Copyright © 2002-2013 by Roger B. Dannenberg

TENDENCY MASKS
Directly controlling shape at the macro level

ICM Week 5 62

2/20/15	

32	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 63

Tendency Masks
• A problem with algorithmic composition is that
things can get static

• Manual parametric change allows composition of
global trends:

Copyright © 2002-2013 by Roger B. Dannenberg

Tendency Function
Example
set dur-envelope = pwlv(…)"
"
function follow-the-envelope()"
 begin"
 with pitch-pat = make-cycle(list(g4, a4)) "
 return score-gen(score-dur: 20,"
 ; here is how to access a signal"
 ; at some time:"
 ioi: sref(dur-envelope, sg:start) +"
 real-random(-0.01, 0.01)"
 pitch: next(pitch-pat))"
 end"
"
exec score-play(follow-the-envelope())"

ICM Week 5 64

2/20/15	

33	

Copyright © 2002-2013 by Roger B. Dannenberg

Summary
• Score manipulation functions
• Negative Exponential and Rhythm/Timing
• Probability Distributions
• Random Walk Melodies
• Repetition Creates Rhythm
• Serialism & 12-Tone Music & Atonal Music
• Quantization for scales and beats
• Tendency masks for long-term form

ICM Week 5 65

