
1/31/15	

1	

Copyright © 2002-2013 by Roger B. Dannenberg

ALGORITHMIC
COMPOSITION
Introducing the score-gen construct

ICM Week 5 1

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 2

Programs and Data
• We’ve seen:

• Ordinary programs:
•  pwl(…) * osc(…)

• Score-like programs:
•  sim(note(…) ~ 2 @ 0, note(…) ~ 3 @ 1, …)

• Scores:
•  {{0 2 {note …}}  
 {1 3 {note …}}  
 …}

1/31/15	

2	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 3

Lots of Choices
• Data and programs have different properties
• Data and programs can work together:

• Programs create data (scores)
•  timed-seq interprets scores to invoke functions
• Programs can even create (Lisp) programs

• No right/wrong answers
• Today, we look at programs creating scores

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 4

The score-gen Macro: Introduction
• The problem:

• Create a score of notes
• Specify attribute values with SAL expressions

(evaluated for each note)
•  Flexible expression of start time, inter-onset time, or

duration
• The solution: score-gen
• Alternative: build scores with list primitives

•  (been there, done that in Project 2 – was it fun?)

1/31/15	

3	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 5

score-gen
score-gen(attribute: expression,  
 attribute: expression,  
 attribute: expression,  
 …)"
score-gen(score-len: 2, pitch: 60,  
 vel: 100, ioi: 0.7,  
 name: quote(note))"

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 5 6

score-gen Loop Variables
• sg:start – starting time for current note
• sg:ioi – current inter-onset interval
• sg:dur – current duration
• sg:count – how many notes computed so far
• Example:

•  score-gen(score-len: 10, ioi: 0.2,  
 pitch: c4 + sg:count)

