
2/20/15	

1	

Copyright © 2002-2013 by Roger B. Dannenberg

INTRODUCTION TO COMPUTER MUSIC
PROGRAMMING TECHNIQUES
Mastering Nyquist

Roger B. Dannenberg
Professor of Computer Science, Art, and Music

1 ICM Week 6

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 6 2

Programming Techniques
• Recursive sound sequences
• Matching durations
• Smooth transitions
• Composing control functions
• Global vs Local control functions
• Stretchable behaviors
• Reading Sound Files
• Using Open Sound Control

2/20/15	

2	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 6 3

Recursive Sound Sequences
• SEQ delays evaluation of each behavior (it’s lazy)

•  Infinite sounds can be expressed recursively:
define function drum-stroke()
 return noise() * pwev(1, 0.05, 0.1)
define function drum-roll()
 return seq(drum-stroke(), drum-roll())
define function limited-drum-roll()
 return const(1, 2) * drum-roll() ; duration=2
play limited-drum-roll()

• Note that multiplying limited sound by an infinite
sound gives us a finite computation and result.

Copyright © 2002-2013 by Roger B. Dannenberg

MATCHING DURATIONS
Getting 2 sounds to have the same length

ICM Week 6 4

2/20/15	

3	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 6 5

Matching Durations
• Most common error in Nyquist: Combining
sounds and controls with different durations.

• Example of common error:
play
 pwl(0.5, 1, 10, 1, 13) * ; 13-seconds duration
 osc(c4) ; nominally 1-second duration
; result sound stops at 1 second(!)

• Remember that Nyquist sounds are immutable.
Nyquist will not adjust behaviors to get the “right”
durations – how would it know?

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 6 6

Specifying Durations
• Make everything have nominal length of 1 and
use STRETCH:
(pwl(0.1, 1, 0.8, 1, 1) * osc(c4)) ~ 13

• Provide duration parameters everywhere:
pwl(0.5, 1, 10, 1, 13) * osc(c4, 13)

•  If you provide duration parameters everywhere,
you will often end up passing duration as a
parameter – that’s not always a bad thing.

2/20/15	

4	

Copyright © 2002-2013 by Roger B. Dannenberg

CONTROL FUNCTIONS
Synthesizing control is like synthesizing sound

ICM Week 6 7

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 6 8

Smooth Transitions
• Apply envelopes to almost everything.

• See Code 6 (code_6.htm) for example:

• Without envelopes

• With gradually increasing vibrato

• With amplitude envelope

• With richer wave table

• With time-varying filter

2/20/15	

5	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 6 9

Composing Control Functions
• Try combinations of:

•  LFO – low frequency sinusoid

• PWL – arbitrary contours and shapes

• NOISE – random jitter

• See Code 6 (code_6.htm) example using NOISE

Copyright © 2002-2013 by Roger B. Dannenberg

GLOBAL VS LOCAL CONTROL
Hierarchical control

ICM Week 6 10

2/20/15	

6	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 6 11

Global vs Local Control Functions
• Control functions from PWL, LFO, etc., can be
passed as parameters and returned from
functions.

• They are of type SOUND, just like audio.
• See example in code_6.htm of control function
spanning many “notes”

Copyright © 2002-2013 by Roger B. Dannenberg

STRETCHABLE BEHAVIORS
Toward behavioral abstraction

ICM Week 6 12

2/20/15	

7	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 6 13

Making “Stretchable” Behaviors
• Nyquist has default stretch behaviors for all
primitives,

• But this may not be what you want
• Often, you want certain things to stretch, and
others (e.g. rise times) to remain fixed.

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 6 14

Stretch Example 1
• You want the number of events to increase with
stretch:

define function n-things()
begin

 with dur = get-duration(1),
 n = round(dur / *thing-duration*)
 return seqrep(i, n, thing() ~~ 1)
end

2/20/15	

8	

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 6 15

Stretch Example 2

• You want an envelope to have a fixed rise time.
MY-ENVELOPE has a fixed rise and fall time, but
stretches with the stretch factor:

define function my-envelope()
begin
 with dur = get-duration(1)
 return pwl(*rise-time*, 1,
 dur - *fall-time*, 1, dur) ~~ 1

 end

Copyright © 2002-2013 by Roger B. Dannenberg

GRANULAR SYNTHESIS
A versatile synthesis technique

ICM Week 6 16

2/20/15	

9	

Copyright © 2002-2013 by Roger B. Dannenberg

Summary
• Duration mismatch is a common bug in Nyquist
programs:
• Normalize durations to 1 and use stretch (~)
• Explicit durations everywhere

• Smooth transitions – not just fade-in/fade-out
• Do not neglect control functions or copy over-
simplified examples – your goal is expressiveness

• Global control spanning many sounds (notes) add
expressiveness on a different time scale

ICM Week 6 17

Copyright © 2002-2013 by Roger B. Dannenberg

Granular Synthesis
• Combine many “grains” of sound
• Grain is typically taken from a sound file
• Apply smooth envelope to avoid clicks

• Grains can overlap

ICM Week 6 18

2/20/15	

10	

Copyright © 2002-2013 by Roger B. Dannenberg

Control
• Too many grains to specify each one
• Stochastic/Statistical control is common
• Dimensions:

• Where to get grain: smooth progression or random
• Resample grain? Fixed ratio or random in range.
• When to play grains? Regular or random.

ICM Week 6 19

Copyright © 2002-2013 by Roger B. Dannenberg

Things to do with Granular Synthesis
• Texture generation: contains spectrum but loses
articulation, rhythm, identity

• Vocal mumblings: grains can chop up speech to
make speech-like nonsense

• Time stretching
• Or compression

ICM Week 6 20

2/20/15	

11	

Copyright © 2002-2013 by Roger B. Dannenberg

Implementation: Contruct a Grain

function cos-pulse()
 return 0.5 * (1 + hzosc(1 / get-duration(1),
 sine-table, 270.0))

s-read("filename.wav", time-offset: seconds, dur: d) *
(cos-pulse() ~ d)

ICM Week 6 21

Copyright © 2002-2013 by Roger B. Dannenberg

GRAINS IN SCORES
Generating grains as sound events in scores

ICM Week 6 22

2/20/15	

12	

Copyright © 2002-2013 by Roger B. Dannenberg

Implementation: Using Scores
• You can make a score with Score-gen, e.g.

{{0 0.05 {grain offset: 2.1}}
 {0.02 0.06 {grain offset: 3.0}}
 ...}

• And define a function:
function grain(offset: 0)
 begin with dur = get-duration(1)
 return s-read("filename.wav",
 time-offset: offset, dur: dur) *
 cos-pulse()

ICM Week 6 23

Copyright © 2002-2013 by Roger B. Dannenberg

Implementation: Using Score-Gen
• For the previous example, we need to specify
time (or inter-onset-time), duration, and offset.

• We could extend this to pass in other parameters
to modify grains, e.g. pitch shift:

score-gen(score-len: 2000,
 ioi: 0.05 + rrandom() * 0.01,
 dur: next(dur-pat),
 offset: next(offset-pat))

ICM Week 6 24

2/20/15	

13	

Copyright © 2002-2013 by Roger B. Dannenberg

GRAINS WITH SEQREP
Generating grains using the seqrep construct

ICM Week 6 25

Copyright © 2002-2013 by Roger B. Dannenberg

Implementation Using Seqrep
seqrep(i, 2000,
set-logical-stop(
 grain(offset: next(offset-pat)) ~
 next(dur-pat),
 0.05 + rrandom() * 0.01))

ICM Week 6 26

2/20/15	

14	

Copyright © 2002-2013 by Roger B. Dannenberg

Examples
• See granular.sal

ICM Week 6 27

Copyright © 2002-2013 by Roger B. Dannenberg

Extensions
• Continuous control of parameters like pitch and
rate of travel through file: s-ref(sound, time)

• Use amplitude in file to vary rate of travel to time-
expand attacks

ICM Week 6 28

