
3/2/15	
  

1	
  

Copyright © 2002-2013 by Roger B. Dannenberg 

INTRODUCTION TO COMPUTER MUSIC 
SPECTRAL PROCESSING 
Roger B. Dannenberg 
Professor of Computer Science, Art, and Music 
 

1 ICM Week 8 

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 8 2 

Review of Fourier Transform 

R(ω) = f (t)cosωt dt
−∞

∞

∫

X(ω) = − f (t)sinωt dt
−∞

∞

∫

Real part: 

Imaginary part: 



3/2/15	
  

2	
  

Copyright © 2002-2013 by Roger B. Dannenberg ICM Week 8 3 

Discrete Fourier Transform 

Rk = xi
i=0

N−1

∑ cos(2πki / N )

Xk = − xi
i=0

N−1

∑ sin(2πki / N )

Copyright © 2002-2013 by Roger B. Dannenberg 

Computing Spectra in Nyquist 
• Representation: spectra appear as floating 
point arrays. 

•  (More detail in Week 5 slides) 

ICM Week 8 4 

DC (0 Hz) 

Cosine terms Sine terms 

Nyquist term 



3/2/15	
  

3	
  

Copyright © 2002-2013 by Roger B. Dannenberg 5 

What does the array mean? 

0 

1 

2 
3 

4 
5 

6 

n-1 

Frequencies ∈ 
{K/duration |  
  0 ≤ K ≤ n/2} 

ICM Week 8 

Copyright © 2002-2013 by Roger B. Dannenberg 6 

Windows and Step Size 

frame size (in samples, power of 2) 

step size (in samples) 

ICM Week 8 



3/2/15	
  

4	
  

Copyright © 2002-2013 by Roger B. Dannenberg 

Perfect Reconstruction? 
• Converting to frequency domain and back opens up 
many possibilities. Can we do this without loss? 

• FFT can be inverted: IFFT 
• Simple but flawed approach: 

• Square windows, no overlap 

• What about windowing? 

ICM Week 8 7 

FFT 

IFFT 

Copyright © 2002-2013 by Roger B. Dannenberg 

Perfect Reconstruction? (2) 
• There are many overlapping windows that sum to 
one: 

 
• But windows are applied twice!  

• Window è FFT è (alter signal) è IFFT è Window 

• Raised cos2 with 25% overlap sums to one! 
ICM Week 8 8 



3/2/15	
  

5	
  

Copyright © 2002-2013 by Roger B. Dannenberg 

 
SPECTRAL PROCESSING 
Using SAL to operate on spectra 

9 ICM Week 8 

Copyright © 2002-2013 by Roger B. Dannenberg 10 

From Sound to Spectra 

Sound 

FFT iterator 

Sound SND-IFFT 

Spectral frames (arrays) delivered 
on demand 

This is the hidden object that 
lazily computes sound samples 

Data flows this way 

ICM Week 8 



3/2/15	
  

6	
  

Copyright © 2002-2013 by Roger B. Dannenberg 11 

OOP vs SAL 

Sound 

FFT iterator 

Sound SND-IFFT 

CUSTOM OBJECT Data flows this way 

ICM Week 8 

Copyright © 2002-2013 by Roger B. Dannenberg 12 

Data flows this way 

OOP vs SAL 

Sound 

FFT iterator 

Sound SND-IFFT 

CUSTOM OBJECT 

Sound 

FFT iterator 

Some state 

ICM Week 8 



3/2/15	
  

7	
  

Copyright © 2002-2013 by Roger B. Dannenberg 13 

The Object Behavior We Need 

CUSTOM OBJECT 

Send :next method, get frame 

Accept :next method, produce frame 

Some state 

ICM Week 8 

Copyright © 2002-2013 by Roger B. Dannenberg 14 

How To Get Object Behavior From SAL 

CUSTOM OBJECT 

Send :next method, get frame 

Accept :next method, produce frame 

Some state Fn 

sal-function(…)!

ICM Week 8 



3/2/15	
  

8	
  

Copyright © 2002-2013 by Roger B. Dannenberg 

How To Get Object Behavior From SAL (2) 

ICM Week 8 15 

CUSTOM OBJECT 

Call sa-next() function 

Accept :next method,  
call (SAL) function with some state to produce frame 

Some state Fn 

sal-function(…)!

Copyright © 2002-2013 by Roger B. Dannenberg 16 

Template for Spectral Processing (1) 
set sa = sa-init(input: "./rpd-cello.wav", !
                 fft-dur: 4096 / 44100.0, !
                 skip-period: 512 / 44100.0,!
                 window: :hann)!
!

ICM Week 8 



3/2/15	
  

9	
  

Copyright © 2002-2013 by Roger B. Dannenberg 17 

Template for Spectral Processing (2) 
set sp = sp-init(sa, quote(processing-fn), 0, 0)!
!
!
!
!
function processing-fn(sa, frame, p1, p2)!
  begin!
    ... Process frame here ...!
    set frame[0] = 0.0 ; simple example: remove DC!
    return list(frame, f(p1), g(p2)) ; state change!
  end!
!
play sp-to-sound(sp)!

ICM Week 8 

Spectral processing object    
                  Spectral analysis object      SAL Function           Initial State 

Copyright © 2002-2013 by Roger B. Dannenberg 18 

Simple analysis/synthesis examples 
• See spectral-process.sal 

• Note: requires spectral-process.lsp and spectral-
analysis.lsp as well. 

 

ICM Week 8 



3/2/15	
  

10	
  

Copyright © 2002-2013 by Roger B. Dannenberg 19 

Cross-Synthesis, Morphs, etc. 

•  In general, combine features from two sounds 
• Common approach: separate sounds into excitation and 
filter parts. 

• Combine filter of one signal with excitation of the other, 
e.g. 
•  Vocal tract filter applied to noise, orchestra, etc. 
•  Cello body applied to woodwind sound 

• See spectral-process.sal 
 
 

ICM Week 8 


