INTRODUCTION TO COMPUTER MUSIC THE HUMAN VOICE

Roger B. Dannenberg

Professor of Computer Science, Art, and Music

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

1

INTRODUCTION

Source Filter Models

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

LPC

- LPC = Linear Prediction Coding
- Model: predict next sample as a weighted sum of past samples.

 $S_n = \sum_{i=1}^p a_i S_{n-i}$

- This formulation gives rise to an *allpole* filter: the response consists of resonant peaks.
- LPC analysis finds the filter with that best approximates the signal spectrum.

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

7

LPC Analysis

- The physical analogy is a tube with varying crosssection:
- Conducted in frames (analogous to short-time windows in SFFT)

 Frames give rise to changing coefficients, which model changes in tube geometry (or vocal tract shape)

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

Acoustic Tube Producing "AH"

From: the Exploratorium. http://www.exploratorium.edu/exhibits/vocal_vowels/vocal_vowels.html

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

٥

LPC Analysis, continued

- · LPC creates an inverse filter.
- · Applying inverse filter gives a residual.
- Residual may either be an estimate of glottal pulses → do pitch analysis to estimate source
- Or noise → use noise model for source

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

Musical Applications

- · Replace source with some other sound
- "Warp" the filter frequencies
- Modify the source and LPC coefficients (glottal pulses or noise) to perform time stretching
- See demos/lpcdemo.lsp

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

VOSIM

A simple and fun synthesis method inspired by the voice

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

13

VOSIM

- · Voice-inspired technique.
- Developed in 70's by Kaegi and Tempelaars
- What happens when a glottal pulse hits a resonance?
 - · Answer: exponentially damped sinusoid

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

VOSIM Parameters

VOSIM uses a pulse train of sin² pulses.

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

15

VOSIM Application

- One formant (resonance) per VOSIM oscillator
- T gives formant position
- M + NT is period
- Tempelaars used various "delta" or "increment" parameters to get change over time
- · See vosim.sal example code
- Some sounds on youtube: https://www.youtube.com/watch?v=7GetTjx96D0

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

OTHER VOICE SYNTHESIS TECHNIQUES

FOF, Vocoder, MQ, SMS

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

17

FOF

- FOF is a French acronym "Formant Wave-Function" (Synthesis)
- FOF simulates the effect of a glottal pulse exciting a single formant resonance
- Related to VOSIM

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

40

FOF Analysis

- FOF parameters can be obtained automatically by modeling the peaks of an STFT
- Not limited to voice synthesis

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

FOF Synthesis

- Each FOF generator creates the response of a single formant to a single impulse -- essentially a grain.
- FOF generators are allocated dynamically (since response to one impulse can overlap in time with response to the next impulse)

Example: Jean-Baptiste Barriere, Chreode I, https://www.youtube.com/watch?v=5AEFhybYrPg#t=128

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

21

Vocoder

From: http://www.ths-nation.de/recall/vocoder.htm

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

Phase Vocoder

- · Intended mainly for sounds with few partials
- Assume each partial lands in a separate Discrete FT bin/ channel/frequency
- From successive frames of FFT, estimate amplitude and phase of partial
- Reconstruct using inverse FFT
 - 🖸 Original 🛛 Stretched 🙋 Lower

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

23

MacAulay-Quatieri (MQ) Synthesis

- Developed as a speech compression technique
- Identify and track sinusoids in STFT frames
- Representation is list of trajectories of sinusoidal partials
- Additive synthesis

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

MQ Analysis/Synthesis

- Because of the spectral representation, time stretching and frequency shifting are easy
- Sinusoid track representation allows phase continuity – no "buzz" at frame rate
- Noise is handled by using large numbers of sinusoids – not very efficient or flexible
- Resonances not modeled
- No obvious cross-synthesis method (interpolation?)

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

25

SMS - Spectral Modeling Synthesis

- Xavier Serra's thesis work, continued at Music Technology Group, Audiovisual Institute, Pompeu Fabra University, Barcelona
- Extends MQ Analysis/Synthesis with explicit model for noise

ICM Week 9

Copyright © 2002-2013 by Roger B. Dannenberg

