
1

Recovery Using ARIES

15-823
Advanced Topics in Database Systems Performance

2© 2001 Ailamaki and DeWitt

DBMS Storage Types

Buffers for Disk Pages
(Volatile Storage in

main memory)

DB

Actual Database

(non-volatile storage)

LOG1

LOG2

System Log
(stable storage)

Archives

(off-line non-volatile storage)

3© 2001 Ailamaki and DeWitt

Assumptions about failures/crashes

� Volatile storage
� (i.e. buffers in main memory) is lost when a crash occurs

� Non-volatile storage
� survives software crashes and only fails due to media failures

(more reliable than volatile storage)

� Stable storage
� “never” fails. Talk about mirrored disks and RAID devices

� Non-volatile off-line storage
� also exists and is highly reliable (e.g. tape archives)

4© 2001 Ailamaki and DeWitt

Possible Failure Types

� Action failure
� (bad action parameters, etc.).

� Transaction failure
� (deadlock, abort, local errors)

� System failure
� (serious error, hardware crash)

� Media failure
� (disk crash)

5© 2001 Ailamaki and DeWitt

Goal: Always be able to:

� Back out effects of uncommitted transactions

� Recover results of committed transactions

� Get consistent snapshot of the DB
� (as a result of above)

6© 2001 Ailamaki and DeWitt

� Some concurrency control mechanism
� such as locking with fancier tricks on “hot spots” such

as indices.

� DO-UNDO-REDO
� paradigm for log records

� Write Ahead Log (WAL) protocol
� Two-Phase Commit

� protocol for distributed transactions spanning

Approach to achieving the goal



2

7© 2001 Ailamaki and DeWitt

� Provided by Action:
� LSN (generally implicit)
� Record ID/Name (globally unique)
� Old record value (for UNDO)
� New record value (for REDO )

� Provided by Log Manager:
� Transaction ID
� Action ID (e.g. update, delete, insert, …)
� Log record length
� LSN of previous log record generated by this XACT

Typical DBMS log record entry

8© 2001 Ailamaki and DeWitt

Write Ahead Log Protocol (WAL)

� Question: When must UNDO information reach the log?
� Question: When must REDO information reach the log?

� Answer: WAL protocol means that:
� UNDO information for an update must reach the log before the

update is applied to the non-volatile copy of the DB. Explain why!
� REDO information must reach the log before the commit record for

the transaction gets there (i.e. before we promise not to lose its
updates). Likewise, for UNDO information, so we can go either
way for the two-phase commit (distributed DBMS only).

9© 2001 Ailamaki and DeWitt

� Every log record has an associated LSN.
� The LSN is really the address of the log record in the log

� Every recoverable object (normally a page) has a “high
water mark” which is the largest LSN that applies to it.
� In ARIES this is called the PageLSN.

� Use LSN/High Water Marks (HWM) as follows:
� On update, set HWM of object to the LSN of the log record

corresponding to the update operation.
� Don’t allow an object to be written out to non-volatile storage

before the log has been written past the object’s HWM
� Get idempotent UNDO/REDO operations by simply checking

HWM versus LSN to see whether or NOT UNDO/REDO is
necessary.

Log Sequence Number (LSN)

10© 2001 Ailamaki and DeWitt

Summary (up to now)

� Do/Undo/Redo - Allows for recovery of actions

� WAL - makes sure that Undo/Redo is always
really possible

11© 2001 Ailamaki and DeWitt

Recovery Manager Structure

� Recovery management has two components:
� Recovery manager - Keeps track of transactions,

handles commit and abort for transactions, takes care
of system checkpoint and restart

� Log manager - Provides log service to the recovery
manager and other components that may need its
services

� Reminder: Recovery manager really has two jobs:
� Handle per transaction recovery (UNDO) when “minor” errors

occur
� Get DB back to most recently committed state when a

“serious” error occurs (i.e. a crash)

12© 2001 Ailamaki and DeWitt

Recovery Manager

Actions

Undo

Redo

Read/Write Log

Log Manager
LOG

Recovery Manager Structure



3

13© 2001 Ailamaki and DeWitt

� Flavors of Recovery Schemes [Haerder/Reuter
Surveys Paper]
� Can combine features of:

� Atomic/ ~Atomic Can updated pages be grouped in all/nothing
way for disk I/O (really shadows vs. logging at least in practice)

� Force/~Force Changes forced to disk at commit time?

� Steal/~Steal OK for uncommitted data to migrate to disk?

� Logging schemes can be:
� Physical e.g., did this to these bytes on this specific page (log

before + after + physical location information

� Logical e.g. changed field 2 of record with this RID. Log old/new
field value plus information on logical entry affected. Might imply the
index changes needed, and records may move, etc.

Other Recovery-Related Issues

14© 2001 Ailamaki and DeWitt

ARIES
� WAL based
� Supports ~atomic/~force/steal
� Support advanced locking techniques:

� Records
� Semantic operations (e.g. increment/decrement field values)
� Non-2PL index locking methods

� Also supports
� Flexible storage (i.e. space management)
� Partial rollbacks (i.e. save units)
� Recovery independence (media/page-change errors)
� Parallelism & low overhead

� And, importantly:
� Bounded space consumed with repeated crashes

15© 2001 Ailamaki and DeWitt

ARIES basics
� Each page in the database has a pageLSN field

� identifies which log record is associated with its latest update.
Uses of the pageLSN include:
� During recovery: Does a given update need to be redone?

� Not if pageLSN is bigger than the log record for the update

� During analysis: Where does the REDO pass have to start?
� Based on information on LSN’s of resident and/or possibly resident

dirty pages

� Each XACT has a reverse-chained list of log records
� formed using the prevLSN field of the log record to point to the

previous log record generated by the transaction.
� On Undo, ARIES logs a “compensation” log record

� (or CLR), and its LSN goes on the page as you will see. Otherwise,
undoing an update would require that the pageLSN be rolled back to its
previous value

� Bottom line:
� Physical REDO (“repeat history”)
� Logical UNDO

16© 2001 Ailamaki and DeWitt

Normal Operation

� Transactions do logging of stuff using WAL rules
as discussed earlier.

� Two key data structures for ARIES:
� XACT Table: This table has entries for every active

transaction, keeping the LSN of the last log record generated
by the transaction (known as the lastLSN field).

� Dirty Page Table (DPT) has entries for all buffer-resident
dirty pages, where dirty means changed but not on disk yet.
Entries contain an recoveryLSN field which is the LSN of the
log record that first (since last write) dirtied the page.
Therefore, recoveryLSN for page P is the address of the
earliest log record relevant to recoverying page P!

17© 2001 Ailamaki and DeWitt

Operation Checkpoints

� Operations keep these structures updated in the
appropriate way. In addition, checkpoints are performed
on a periodic basis to help avoid excessively long
recovery times. Do this as follows:
� Fuzzy checkponts
� Checkpoint record contains:

� XACT table

� Dirty Page Table

� Actually the checkpoint is performed as a beginChkpt/endChkpt
pair (to avoid quiescing operation);
� The LSN of the Checkpoint record is then written at a well-known

location on stable storage. This is written (atomically) after
checkpoint finishes successfully.

18© 2001 Ailamaki and DeWitt

Crash Recovery
� Crash recovery is performed after a crash occurs.

� recovery must insure that the effects of committed transactions
are reflected on non-volatile storage and effects of uncommitted
transactions on non-volatile storage at the time of the crash must
not persist after restart.

� Consider the following picture (fig3):

� In this picture T1 and T2 are “losers”.
� Their effects are undone during the recovery process.

� T3 and T4 are “winners”.
� Recovery must insure that the effects of T3 and T4 are reflected

on non-volatile storage when the system is restarted.
� The purpose of the analysis phase is to figure out which

transactions are winners and losers.

� A key point to observe is that T2 and T4 were not active
as of the most recent checkpoint record.



4

19© 2001 Ailamaki and DeWitt

Crash Recovery

T1

T2

T3

T4

Checkpoint Crash

20© 2001 Ailamaki and DeWitt

Three passes
� Analysis pass:

� This pass figures out information about dirty pages and uncommitted
transactions.

� It starts at the most recent checkpoint, going forward

� REDO pass:
� This pass goes forward, redoing updates from the earliest spot in the

log where an update might have been lost.
� Idea is to “redo history” to ensure that all logged operations have

been applied prior to the Undo pass.
� A key idea of ARIES is that all logged updates are redone, not just

the ones from the committed transactions.

� UNDO pass:
� This pass goes backward from the end of the log, removing the

effects of all uncommitted updates from the DB.

� Question: Why REDO history?
� Answer: It turns out to (greatly) simplify otherwise complex

problems raised by fine-grained locking, space management,
index locking, etc.

21© 2001 Ailamaki and DeWitt

ARIES Logging
“start” of oldest in-
progress transaction

First possibly lost
update to do crash

Most recent (known)
checkpoint End of Log

(1) Analysis

(2) REDO

(3) UNDO

Note: “Start”, above, means the oldest active transactions first update log record

22© 2001 Ailamaki and DeWitt

Analysis Pass
� Its jobs are to:

� Determine starting point for REDO pass
� Identify set of “might have been dirty at crash pages”, to avoid unnecessary

I/O during REDO.
� Identify “Loser” transactions ie. uncommitted, active transactions at the time

of the crash which must be dealt with in UNDO pass.

� How it works:
� Scan log forward from most recent checkpoint record
� Initialize XACT Table and Dirty Page Table (DPT) to their respective states

in the checkpoint record
� Process subsequent log records, updating XACT Table and DPT

appropriately based on the log records’ contents:
� Add/Remove XACTS as the come (begin transaction) and go (commit)
� Add entries to the DPT for additional updated pages

� When analysis pass is done:
� DPT = conservative estimate of possible “dirty-at-crash” pages.
� XACT Table = Exact list of transactions requiring UNDO (due to being

uncommitted at the time of the crash)
� Earliest recoveryLSN in DPT = firstLSN = place to being the REDO pass

23© 2001 Ailamaki and DeWitt

REDO Pass
� The job of the REDO pass is to put the database

back in the same (physical) state it was in
immediately before the crash occurred.
� The REDO phase, in effect, “repeats” history.

� How it works
� Scan log forward from firstLSN (determined by

analysis)
� For each log record, REDO the operation by:

� reapply the logged update to the page it applies to
� set the pageLSN of the page to that of the log record

� When do you actually have to perform the REDO
work specified by the log record

24© 2001 Ailamaki and DeWitt

UNDO Pass
� The job of the UNDO pass is to provide atomicity by

removing “all” stuff done by uncommitted transactions.
� Due to the repeating history of ARIES, UNDO in ARIES is

unconditional.

� How UNDO works:
� Scan backward from the end of the log, undoing updates of

uncommitted transactions.
� To undo an update:

� Apply UNDO function associated with the action indicated in the log record
� Write a CLR (compensation log record) to the log to indicate that UNDO

occurred, with:
� UNDO Information (what was done)
� undoNextLSN = LSN of next (older) log record that must be undone for this

transaction = prevLSN field of the log record being undone.

� When CLR’s are encountered during UNDO:
� Don’t do anything to the page, ...
� Just follow undoNextLSN pointer to the next previous log record needing to

be applied for this transaction



5

25© 2001 Ailamaki and DeWitt

What good are CLR’s then?
� A: They serve several purposes:

� Keep pageLSN’s growing, even during recovery
� Never have to UNDO an UNDO

� (which bounds the amount of logging at recovery time with
repeated crashes during recovery). This is a big deal as you
are doomed if you run out of log spaced during recovery.

� UNDO for an aborting transaction is similar to this

� Example (fig.5)
� (log records for one transaction for one page, for

simplicity):

26© 2001 Ailamaki and DeWitt

Use of CLRs

Write
Page 1

Write
Page 1

Write
Page 1

CLR for
LSN 30

CLR for
LSN 20

CLR for
LSN 10

LSN: 10 3020 40 50 60

Crash #1 Crash #2

27© 2001 Ailamaki and DeWitt

Notes on the example:

� 1st crash outcome is:
� Analysis determines that this transaction is a loser
� REDO: log records 10, 20, and 30 are redone (repeating

history)
� UNDO: undo 30, then undo 20, writing CLRs

� 2nd crash outcome is:
� Same restart analysis. The transaction must be undone
� REDO: log records 10 to 50 are redone (as needed depending

on the pageLSN of page 1)
� UNDO: “UNDO” 50, then skip to UNDO 10, writing CLR

� No extra log records are generated during the second
crash!
� (vs. having even more to do this time, as some other logging

approaches might have.)

28© 2001 Ailamaki and DeWitt

Other Goodies

� A “Biggie” is a feature called nested top actions, which
ARIES supports nicely via CLRs!

� A nested top action is work that is done by a transaction that is
unconditional. That is, the work is committed even if the transaction
fails

� Examples:
� B+ tree page split

� Addition of space to a file

� Other subsequent transactions depend on the durability
of such changes if using high concurrency cc for such
operations.
� Trick is to use a “Dummy” CLR to bracket these, hence

preventing undo, i.e. (fig. 6)

29© 2001 Ailamaki and DeWitt

Nested Top Actions

� Do you see how/why this works???

CLR for
LSN 20

CLR for
LSN 70

10 20 30 60 90 100

Crash

40 50 70

Nested Top Action

80

CLR for
LSN 10

30© 2001 Ailamaki and DeWitt

Summary of ARIES

� Basic approach is:
� Analysis + REDO (repeat history) + UNDO (loser transactions)
� REDO is physical, undo is logical, CLR’s used

� Results algorithm is extremely nice/flexible
� Permits ~atomic/~force/steal buffering
� One pageLSN per page (monotonically increasing)
� Fine-grained locking and fancy semantic stuff supported (key-

range locking)
� Nested top actions (efficient!) for indices and space

management
� Bounded logging regardless of number of failures during restart
� Low-cost, fuzzy checkpointing
� Recovery independence (roll each page forward using log)


