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My research is focused at the intersection of                                                                     
machine learning and public policy, with two main goals: 

1) Develop new machine learning methods for better (more scalable and accurate) 
detection and prediction of events and other patterns in massive datasets.

2) Apply these methods to improve the quality of public health, safety, and security.

Medicine: Discovering new 
“best practices” of patient 

care, to improve outcomes 
and reduce costs.

Disease Surveillance: 
Very early and 

accurate detection of 
emerging outbreaks. 

Law Enforcement: 
Detection, prediction, 

and prevention of “hot-
spots” of violent crime.
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“CrimeScan was set up to run daily, 
completely autonomously.  Predictions were 
sent to police analysts, and messages were 
compiled into detailed intelligence reports 

disseminated through the chain of command.

Based upon deployment suggestions 
indicated in the CrimeScan reports,  

important arrests were effected, weapons 
were seized, and crimes were prevented.”



Pattern detection by subset scan
One key insight that underlies much of my work is that pattern 
detection can be viewed as a search over subsets of the data.

Statistical challenges: 
Which subsets to search?

Is a given subset anomalous?                            
Which anomalies are relevant?

Computational challenge: 
How to make this search over 
subsets efficient for massive, 

complex, high-dimensional data?

New algorithms and data structures make previously 
impossible detection tasks computationally feasible and fast.

New statistical methods enable more timely and more accurate 
detection by integrating multiple data sources, incorporating spatial
and temporal information, and using prior knowledge of a domain.

New machine learning methods enable our systems to 
learn from user feedback, modeling and distinguishing 

between relevant and irrelevant types of anomaly.
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This talk will focus on how we can scale up
event and pattern detection to address the                                  

size and complexity of real-world data:

1) New computational methods based on fast 
multidimensional subset scanning make            

pattern detection in massive datasets both 
computationally feasible and very fast.

2) New statistical approaches to modeling 
complex structure (online social networks) 

allow us to address important real-world 
problems ranging from rare outbreak         

detection to prediction of civil unrest.
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Multivariate event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED

d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

Outbreak detection

(etc.)

Main goals: 

Detect any emerging events.

Pinpoint the affected subset of 
locations and time duration.

Characterize the event, e.g., by 
identifying the affected streams.

Compare hypotheses:

H1(D, S, W)

D = subset of streams                           
S = subset of locations                         

W = time duration

vs. H0: no events occurring
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Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)

We search for spatial regions 
(subsets of locations) where the 

recently observed counts for 
some subset of streams are 

significantly higher than expected.

Expected 
counts

Historical 
counts

Current counts 
(3 day duration)

We perform time series analysis 
to compute expected counts 

(“baselines”) for each location and 
stream for each recent day.

We then compare the actual and 
expected counts for each subset 
(D, S, W) under consideration.
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We find the subsets with highest 
values of a likelihood ratio statistic, 
and compute the p-value of each 
subset by randomization testing.

Maximum subset 
score = 9.8

2nd highest 
score = 8.4

Significant! (p = .013)

Not significant 
(p = .098)

…
F1* = 2.4 F2* = 9.1 F999* = 7.0To compute p-value

Compare subset score 
to maximum subset 
scores of simulated 
datasets under H0.

Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)
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Likelihood ratio statistics

Expectation-based Poisson Expectation-based Gaussian

H0: ci,m
t ~ Gaussian(bi,m

t, σi,m
t)H0: ci,m

t ~ Poisson(bi,m
t)

H1(S): ci,m
t ~ Poisson(qbi,m

t) H1(S): ci,m
t ~ Gaussian(qbi,m

t, σi,m
t)

Let C = ∑S ci,m
t and B = ∑S bi,m

t. Let C’ = ∑S ci,m
t bi,m

t  / (σi,m
t)2

and B’ = ∑S (bi,m
t)2 / (σi,m

t)2. 

Maximum likelihood: q = C / B. Maximum likelihood: q = C’ / B’.

F(S) = C log (C/B) + B – C F(S) = (C’)2 / 2B’ + B’/2 – C’

Many possibilities: exponential family, nonparametric, Bayesian…

For our expectation-based scan statistics, the null hypothesis 
H0 assumes “business as usual”: each count ci,m

t is drawn 
from some parametric distribution with mean bi,m

t.  H1(S) 
assumes a multiplicative increase for the affected subset S.



11

Which regions to search?
Typical approach: “spatial scan” (Kulldorff, 1997)

Each search region S is a sub-region of space.
• Choose some region shape (e.g. circles, rectangles) and 

consider all regions of that shape and varying size.
• Low power for true events that do not correspond well to 

the chosen set of search regions (e.g. irregular shapes).

Our approach: “subset scan” (Neill, 2012)
Each search region S is a subset of locations.

• Find the highest scoring subset, subject to some 
constraints (e.g. spatial proximity, connectivity).

• For multivariate, also optimize over subsets of streams.
• Exponentially many possible subsets, O(2N x 2M): 

computationally infeasible for naïve search.
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Question: Why search over subsets?  
Answer: Simpler approaches can fail.

Top-down detection approaches Bottom-up detection approaches
Are there any globally interesting 

patterns?  If so, recursively search 
the most interesting sub-partition.

Two examples: bump hunting; 
“cluster then detect”.

Find individually (or locally) 
anomalous data points, and 

optionally, aggregate into clusters.

Two examples: anomaly/outlier 
detection; density-based clustering.

Top-down fails for small-scale 
patterns that are not evident 
from the global aggregates.

Bottom-up fails for subtle patterns that 
are only evident when a group of data 

records are considered collectively.
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Question: Why search over subsets?  
Answer: Simpler approaches can fail.

Top-down detection approaches Bottom-up detection approaches
Are there any globally interesting 

patterns?  If so, recursively search 
the most interesting sub-partition.

Two examples: bump hunting; 
“cluster then detect”.

Find individually (or locally) 
anomalous data points, and 

optionally, aggregate into clusters.

Two examples: anomaly/outlier 
detection; density-based clustering.

Top-down fails for small-scale 
patterns that are not evident 
from the global aggregates.

Bottom-up fails for subtle patterns that 
are only evident when a group of data 

records are considered collectively.

So here’s where we are so far:

Treating pattern detection as a subset 
scan problem is statistically desirable 
for maximizing detection power…

but computationally infeasible
(for exhaustive search at least).



Fast subset scan
• In certain cases, we can optimize F(S) over the 

exponentially many subsets of the data, while 
evaluating only O(N) rather than O(2N) subsets.

• Many commonly used scan statistics have the 
property of linear-time subset scanning:
• Just sort the data records (or spatial locations, etc.) from 

highest to lowest priority according to some function…
• … then search over groups consisting of the top-k 

highest priority records, for k = 1..N.

The highest scoring subset is 
guaranteed to be one of these!

Sample result: we can find the most anomalous subset 
of Allegheny County zip codes in 0.03 sec vs. 1024 years.

16

(Neill, 2012)
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Linear-time subset scanning
• Example: Expectation-Based Poisson statistic

• Sort data locations si by the ratio of observed to 
expected count, ci / bi. 

• Given the ordering s(1) … s(N), we can prove that the 
top-scoring subset F(S) consists of the locations s(1) … 
s(k) for some k, 1 ≤ k ≤ N.

• Key step: if there exists some location sout ∉ S with 
higher priority than some location sin ∈ S, then we can 
show that F(S) ≤ max(F(S U {sout}), F(S \ {sin})). 

• Theorem: LTSS holds for expectation-based scan 
statistics in any exponential family.
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(Speakman et al., 2015)



Constrained fast subset scanning
LTSS is a new and powerful tool for exact combinatorial optimization 
(as opposed to approximate techniques such as submodular function 

optimization).  But it only solves the “best unconstrained subset” 
problem, and cannot be used directly for constrained optimization.

Many of our recent papers have focused on how LTSS can be extended to 
the many real-world problems with (hard or soft) constraints on our search.

+ Proximity constraints  Fast spatial scan (irregular regions)
+ Multiple data streams  Fast multivariate scan
+ Connectivity constraints  Fast graph scan
+ Group self-similarity  Fast generalized subset scan

30

(Neill, JRSS-B, 2012) (Speakman et al., JCGS, 2015) (McFowland et al., JMLR, 2013)
(Neill et al., Stat. Med., 2013)



Constrained fast subset scanning
LTSS is a new and powerful tool for exact combinatorial optimization 
(as opposed to approximate techniques such as submodular function 

optimization).  But it only solves the “best unconstrained subset” 
problem, and cannot be used directly for constrained optimization.

Many of our recent papers have focused on how LTSS can be extended to 
the many real-world problems with (hard or soft) constraints on our search.

+ Temporal dynamics  Spreading contamination in water supply
+ Hierarchical scanning  Prostate cancer in digital pathology slides
+ Scalable GP regression  Predicting and preventing rat infestations

31
(Speakman et al., ICDM 2013) (Somanchi & Neill, DMHI 2013) (Flaxman et al., 2015;

Neill et al., in preparation)
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Fast subset scan with spatial 
proximity constraints

• Maximize a likelihood ratio statistic over all subsets of the 
“local neighborhoods” consisting of a center location si and 
its k-1 nearest neighbors, for a fixed neighborhood size k. 

• Naïve search requires O(N · 2k) time and is 
computationally infeasible for k > 25.

• For each center, we can search over all subsets of its local 
neighborhood in O(k) time using LTSS, thus requiring a 
total time complexity of O(Nk) + O(N log N) for sorting the 
locations.

• In Neill (2012), we show that this approach dramatically 
improves the timeliness and accuracy of outbreak 
detection for irregularly-shaped disease clusters.



Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.



Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

(Score = 7.5)
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…



Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!



Multivariate fast subset scan
• The LTSS property allows us to 

efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!

(Neill, McFowland, and Zheng, 2013)
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!

• Converges to local maximum: we 
do multiple random restarts to 
approach the global maximum.

• For general datasets, a similar 
approach* can be used to jointly 
optimize over subsets of data 
records and attributes. *McFowland, Speakman, and Neill, JMLR, 2013
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Multivariate event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED

d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

Outbreak detection

(etc.)

Main goals: 

Detect any emerging events.

Pinpoint the affected subset of 
locations and time duration.

Characterize the event, e.g., by 
identifying the affected streams.

Compare hypotheses:

H1(D, S, W)

D = subset of streams                           
S = subset of locations                         

W = time duration

vs. H0: no events occurring



Multidimensional event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED

d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

(etc.)

Additional goal: identify any differentially affected 
subpopulations P of the monitored population.

Gender (male, female, both)
Age groups (children, adults, elderly)

Ethnic or socio-economic groups
Risk behaviors: e.g. intravenous drug 

use, multiple sexual partners

More generally, assume that we have a set 
of additional discrete-valued attributes 

A1..AJ observed for each individual case.

We identify not only the affected streams, 
locations, and time window, but also a 

subset of values for each attribute.

Outbreak detection



• Our MD-Scan approach (Neill and Kumar, 2013) 
extends LTSS to the multidimensional case:  
• For each time window and spatial neighborhood 

(center + k-nearest neighbors), we do the following:

1. Start with randomly chosen subsets of locations S, 
streams D, and values Vj for each attribute Aj (j=1..J).

2. Choose an attribute (randomly or sequentially) and use 
LTSS to find the highest scoring subset of values, 

locations, or streams, conditioned on all other attributes.

3. Iterate step 2 until convergence to a local maximum of 
the score function F(D,S,W, {Vj}), and use multiple                     

restarts to approach the global maximum.

Multidimensional LTSS



• Original approach: compute separate baselines for 
each tensor cell (e.g., by 28-day moving average).
• Statistical challenge: data sparsity leads to increasingly 

poor baseline estimates. 
• Computational challenge: very large tensor, often with 

dozens of modes, so need sparse representation.
• We don’t really believe that any baselines are zero!

• Solution: tensor decomposition!
1) How to efficiently decompose?
2) How to efficiently compute baselines?

MD-Scan challenges and solutions



• PARAFAC decomposition: approximate tensor by 
sum of outer products, 
X = ∑r=1..R (a(r) ◦ b(r) ◦ c(r) ◦ …)
or equivalently, xijk… = ∑r=1..R (ai

(r) bj
(r) ck

(r)…)

• Very large, sparse, high-order tensors: we want to 
run in time proportional to # of non-zero elements 
and independent of tensor size (product of arities).

Efficient factorization

# vectors = R * # modes
Each vector is of length =
arity of that mode (or # of 
values of that attribute).



• Given PARAFAC representation, the aggregate 
baseline of subset S = S1 x S2 x … SM is: 
B = ∑r=1..R ∏m=1..M ∑i ∈Sm ui,m

(r), 
where ui,m

(r) is the ith value of the mth-mode vector 
of the rth PARAFAC component. 

• Example of why this works, for three modes:
B = ∑i ∈ S1 ∑j ∈ S2 ∑k ∈ S3 bijk

= ∑i ∈ S1 ∑j ∈ S2 ∑k ∈ S3 ∑r=1..R ui
(r) vj

(r) wk
(r)

= ∑r=1..R (∑i ∈ S1 ui
(r)) (∑j ∈ S2 vj

(r)) (∑k ∈ S3 wk
(r))

• By writing the sum of products as a product of 
sums, we can compute in time proportional to |S1| 
+ |S2| + … + |SM| rather than |S1| x |S2| x … x |SM|.

Computing baselines



• We evaluated the detection performance of MD-
Scan for detecting disease outbreaks injected 
into real-world Emergency Department data 
from Allegheny County, PA.

• We considered outbreaks with various types 
and amounts of age and gender bias.

• Shown here: preliminary eval with comparisons 
to multivariate linear-time subset scan.

• Additional comparisons, and application to 
detecting patterns of near-repeat crimes in data 
from the Cambridge PD, are in progress.

Empirical evaluation



1) Identifying affected subpopulations
By the midpoint of the outbreak, MD-Scan is able to correctly 

identify the affected gender and age deciles with high 
probability, without reporting unaffected subpopulations. 

Proportions of correct and incorrect groups reported vs. time since start of outbreak.
Solid lines: affected gender and/or age deciles.  Dashed lines: unaffected.

Blue lines: outbreaks with differential effects by both age and gender (easier).
Red lines: outbreaks with differential effects by age or gender only (harder). 



2) Characterizing affected streams
As compared to the previous state of the art (multivariate linear-

time subset scanning), MD-Scan is better able to characterize the 
affected spatial locations and subset of the monitored streams.

Left: overlap coefficient between true and detected subsets of spatial locations.
Right: Proportions of correct and incorrect streams reported vs. day of outbreak.

Blue lines: outbreaks with differential effects by both age and gender (easier).
Red lines: outbreaks with differential effects by age or gender only (harder).

Green lines: MLTSS, ignoring age and gender information 



3) Timeliness of outbreak detection
MD-Scan achieved significantly more timely detection for 

outbreaks that were sufficiently biased by age and/or gender.

For outbreaks with strong age and 
gender biases, time to detection 

improved from 5.2 to 4.0 days at a 
fixed false positive rate of 1/month.

Smaller biases in age or gender were 
sufficient for significant improvements; even 
when no age/gender signal is present, MD-

Scan performs comparably to MLTSS.



This talk will focus on how we can scale up
event and pattern detection to address the                                  

size and complexity of real-world data:

1) New computational methods based on fast 
multidimensional subset scanning make            

pattern detection in massive datasets both 
computationally feasible and very fast.

2) New statistical approaches to modeling 
complex structure (online social networks) 

allow us to address important real-world 
problems ranging from rare outbreak         

detection to prediction of civil unrest.



Event Detection from Social Media
Protest in Mexico, 7/14/2012 2012 Washington D.C. Traffic Tweet Map for 2011 VA Earthquake

(Chen and Neill, KDD 2014)

Social media is a real-time “sensor” of large-scale population 
behavior, and can be used for early detection of emerging events...

… but it is very complex, noisy, and subject to biases.

We have developed a new event detection methodology: 
“Non-Parametric Heterogeneous Graph Scan” (NPHGS)

Applied to: civil unrest prediction, rare disease outbreak detection, 
and early detection of human rights events. 



Technical Challenges
Integration of multiple 

heterogeneous 
information sources!



Technical Challenges

Hashtag “#Megamarch” 
mentioned 1,000 times

Influential user “Zeka” 
posted 10 tweets

Mexico City has  
5,000 active users 

and 100,000  tweets

Tweets that have been 
re-tweeted 1,000 times

A specific link (URL) 
was mentioned                        

866 times 

Keyword “Protest” 
mentioned 5,000 times

One week before Mexico’s 2012 presidential election:
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Twitter Heterogeneous Network



"#MexicoExigeDemocracia“ 
http://t.co/MdG5T3z0 Twitterers help 
me with a RT?. See you on Saturday at 
15:00  in the #MegaMarcha.

"#MexicoExigeDemocracia""http://t.co/MdG5T3z
0 Twitterers help me with a RT?. See you on 
Saturday at 15:00

Ready to march, tweeting or filming 
tomorrow #MegaMarcha vs imposición. 
Hopefully many say #Vamon

#MexicoExigeDemocracia
http://t.co/MdG5T3z0 

Veracruz, Jalapa, Mérida, Tepotzotlan
add to the #MegaMarcha vs imposición. 
Tambien Los Ángeles. Who else says

imposición

# MegaMarchaSee you on Saturday at
15:00 in the #MegaMarcha

Mexico city

Benito Juarez

Ciudad

#Vamon

Twitter Heterogeneous Network



Twitter Heterogeneous Network



Nonparametric Heterogeneous Graph Scan
1) We model the heterogeneous social network as a sensor network.

Each node senses its local neighborhood, computes multiple 
features, and reports the overall degree of anomalousness.

2) We compute an empirical p-value for each node: 
• Uniform on [0,1] under the null hypothesis of no events.
• We search for subgraphs of the network with a higher than 

expected number of low (significant) empirical p-values.

3) We can scale up to very large heterogeneous networks: 
• Heuristic approach: iterative subgraph expansion (“greedy 

growth” to subset of neighbors on each iteration).
• LTSS can efficiently find the best subset of neighbors, 

ensuring that the subset remains connected, at each step.

(Chen and Neill, KDD 2014)



empirical

calibration

empirical

calibration

Sensor network modeling

Object Type Features

User # tweets, # retweets, # followers, #followees, 
#mentioned_by,  #replied_by, 
diffusion graph depth, diffusion graph size

Tweet Klout, sentiment, replied_by_graph_size, reply_graph_size, 
retweet_graph_size, retweet_graph_depth

City, State, Country # tweets, # active users

Term # tweets

Link # tweets

Hashtag # tweets

Each node reports an empirical p-value measuring the current 
level of anomalousness for each time interval (hour or day). 

Individual p-value 
for each featureFeatures

Minimum 
empirical p-

value for 
each node

Overall p-value 
for each node

min



Nonparametric scan statistics
Subgraph

Berk-Jones (BJ) statistic:

Kullback-Liebler divergence:

Significance level
Number of nodes in S

Number of nodes in S with p-values ≤α.

p

p

f(p)

f(p)

0

0

1

1

α

H0

H1



Nonparametric graph scanning
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We propose an approximate algorithm with time cost O(|V| log |V|).



NPHGS evaluation- civil unrest
Country # of tweets News source*
Argentina 29,000,000 Clarín; La Nación; Infobae
Chile 14,000,000 La Tercera; Las Últimas Notícias; El Mercurio

Colombia 22,000,000 El Espectador; El Tiempo; El Colombiano
Ecuador 6,900,000 El Universo; El Comercio; Hoy

Gold standard dataset: 918 civil unrest events between July and December 2012.

We compared the detection performance of our NPHGS approach 
to homogeneous graph scan methods and to a variety of state-of-
the-art methods previously proposed for Twitter event detection. 

Example of a gold standard event label:
PROVINCE = “El Loa” COUNTRY = “Chile”
DATE = “2012-05-18” LINK = “http://www.pressenza.com/2012/05/...”

DESCRIPTION = “A large-scale march was staged by inhabitants of the 
northern city of Calama, considered the mining capital of Chile, who 
demanded the allocation of more resources to copper mining cities”



NPHGS results- civil unrest

NPHGS outperforms existing representative techniques for both event 
detection and forecasting, increasing detection power, forecasting 

accuracy, and forecasting lead time while reducing time to detection.

Similar improvements in performance were observed on a second task: 

Early detection of rare disease outbreaks, using gold standard data 
about 17 hantavirus outbreaks from the Chilean Ministry of Health.



Temuco and Villarrica, Chile

Detected Hantavirus 
outbreak, 10 Jan 2013

First news report: 
11 Jan 2013

Locations
Users

Keywords
Hashtags

Links
Videos



Conclusions
Real-world problems at the societal scale require new computational 

methods to deal with both the size and the complexity of data.

massive
high-dimensional

multiple sources

unstructured text

network structure

Fast subset scanning (with constraints) can serve as a fundamental 
building block for efficient, scalable pattern detection in massive data.

Practical solutions to societal challenges also require an understanding 
of complex data (text, networks, images, streams, …), leading to new 

statistical and algorithmic tools for extracting relevant patterns.



Future work
Three broad areas, one application-driven and two methods-driven:
1. Addressing critical real-world problems in collaboration with 

public sector organizations (public health, police, city leaders, …)
2. Expanding the scope of problems that detection can address.
3. Expanding the scale of problems that detection can address.
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Safer
Cities

Cleaner
Cities

Healthier
Cities

Integrating geographic, 
subgroup, and individual-

level crime prediction. 

Integrating precisely targeted 
policing with non-punitive 

interventions by city and county.

Incorporating many data sources: 
911 and 311 calls, incident reports, 
criminal justice, human services…

Analyzing social media to 
identify causal mechanisms 

leading to outbreaks of violence.

RK Mellon Foundation funded project on crime prediction and prevention:



Future work
Three broad areas, one application-driven and two methods-driven:
1. Addressing critical real-world problems in collaboration with 

public sector organizations (public health, police, city leaders, …)
2. Expanding the scope of problems that detection can address.
3. Expanding the scale of problems that detection can address.

Safer
Cities

Cleaner
Cities

Healthier
Cities

Computational public health and epidemiology (NSF Expeditions, CDC, …)

Asyndromic and pre-syndromic surveillance
Combining detection and simulation approaches

Sensing and monitoring individual health:
“Your cell phone should know whether you’re sick”

Sensing and monitoring population health:
“Distributed, privacy-preserving outbreak detection”



Future work
Three broad areas, one application-driven and two methods-driven:
1. Addressing critical real-world problems in collaboration with 

public sector organizations (public health, police, city leaders, …)
2. Expanding the scope of problems that detection can address.
3. Expanding the scale of problems that detection can address.

DETECT4: Using detection as a building block for other problems

Detection for prediction (key component of CrimeScan and CityScan)
Causal inference (estimation of heterogeneous treatment effects)

Classifier model validation and refinement (“boosting systematic errors”)
Active learning for subsets (noisy oracle, crowdsourcing/citizen science)

Graph structure learning from unlabeled data

Incorporating more complex data types and more flexible constraints
Tensors, text, massive images (e.g., satellite data), social media, …

Irregularly shaped spatial regions (StarScan, Support Vector Subset Scan)
Soft constraints (from element-wise to pairwise and subset-based penalties)



Future work
Three broad areas, one application-driven and two methods-driven:
1. Addressing critical real-world problems in collaboration with 

public sector organizations (public health, police, city leaders, …)
2. Expanding the scope of problems that detection can address.
3. Expanding the scale of problems that detection can address, via 

parallelization, sampling, hierarchy, and real-world graph structure.
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Scaling up to even bigger data…
Currently the fast subset scan scales 
to datasets with millions of records.

Spatial constraints (FSS)
Similarity constraints (FGSS)

Soft constraints (PFSS)

But enforcing certain hard 
constraints (e.g., graph connectivity) 

dramatically impacts scalability.

GraphScan: 250 nodes
Additive Graphscan : 25K nodes

How to scale up to 
larger graphs with 
millions of nodes?

How to scale up to 
datasets with billions 
or trillions of records?

ongoing
EPD Lab
research

Many possible answers!

Parallelization

Sampling

Randomization Hierarchy
Summarization

Problem Partitioning
Sublinear-Time Algorithms

Locality-Sensitive Hashing
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Idea #1: Massive parallelization
For example, what if we have a trillion records but a million processors?

Certain aspects of fast subset scan are trivially parallelizable:
 Randomization testing, to determine statistical significance.
 Scanning over many local neighborhoods (with proximity constraints).
 Scoring many subsets (but not exponentially many!).

For unconstrained subset scan, we have the necessary pieces:
 Parallel sorting (merge sort, sample sort): O(log N) with N processors.
 “Scan” (accumulate sums of top-k elements by priority): O(log N).

To incorporate spatial proximity or more general similarity constraints:
 Locality-sensitive hashing neighborhoods of similar elements. 

With more general constraints (e.g., graphs), we must develop new ways 
to partition the search space and merge solutions to sub-problems.
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Idea #2: Incorporate hierarchy
Subsampling the raw data can miss a 
arbitrarily strong signal that affects a small 
enough proportion of the dataset.

Possible solution: summarization.
Represent the data hierarchically, maintain 
summary statistics at each level of hierarchy, 
and search over coarse and fine resolutions.

Goal: find the most interesting subsets while 
only looking at a small fraction of the raw data.

Challenge 1: building the hierarchy may be 
expensive (though parallelizable). 

Challenge 2: how to search the hierarchy, so 
that we are unlikely to miss small areas?

Example: image data
digital pathology slides, 

satellite images, etc.

Hierarchical Linear-
Time Subset Scanning

(Somanchi & Neill, DMHI 2013)
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Idea #2: Incorporate hierarchy

Example: image data
digital pathology slides, 

satellite images, etc.

Hierarchical Linear-
Time Subset Scanning

(Somanchi & Neill, DMHI 2013)

HLTSS has been successfully 
applied to detect regions of 
interest in digital pathology 

slides, and works surprisingly 
well to detect prostate cancer!
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Idea #2: Incorporate hierarchy

Better
Better

HLTSS improves both the accuracy of detecting which pixels 
within a slide are cancerous (left panel) and the ability to 

differentiate cancerous from non-cancerous slides (right panel).
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Thanks for listening!

More details on our web site: 
http://epdlab.heinz.cmu.edu

Or e-mail me at:
neill@cs.cmu.edu
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Case study: Crime prediction in Chicago

From the Chicago Sun-Times, February 22, 2011:
“It was a bit like “Minority Report,” the 2002 movie that featured
genetically altered humans with special powers to predict crime. The
CPD’s new crime-forecasting unit was analyzing 911 calls and produced
an intelligence report predicting a shooting would happen soon on a
particular block on the South Side. Three minutes later, it did…”

Since 2009, we have been working with the 
Chicago Police Department (CPD) to predict 

and prevent emerging clusters of violent crime.

Our new crime prediction methods have 
been incorporated into our CrimeScan

software, run twice a day by CPD and used 
operationally for deployment of patrols.



Case study: Crime prediction in Chicago

“CrimeScan was set up to run daily, completely autonomously.  Predictions 
were sent to police analysts, and messages were compiled into detailed 
intelligence reports disseminated through the chain of command.  Based 
upon deployment suggestions indicated in the reports, important arrests 

were affected, weapons were seized, and crimes were prevented.”

Since 2009, we have been working with the 
Chicago Police Department (CPD) to predict 

and prevent emerging clusters of violent crime.

Our new crime prediction methods have 
been incorporated into our CrimeScan

software, run twice a day by CPD and used 
operationally for deployment of patrols.



CrimeScan
The key insight of our method is to use detection for prediction:

We can detect emerging clusters of various leading indicators 
(minor crimes, 911 calls, etc.) and use these to predict that a 

cluster of violent crime is likely to occur nearby.

Some advantages of the CrimeScan approach:
• Advance prediction (up to 1 week) with high accuracy.
• High spatial and temporal resolution (block x day). 
• Predicting emerging hot spots of violence, as opposed 
to just identifying bad neighborhoods.

How to detect leading indicator clusters?
How to use these for prediction?
Which leading indicators to use? 



Model-based prediction results

In our preliminary evaluation on 2011-2013 data, the latest version 
of CityScan predicts 83% of clustered shootings/homicides 

and 57% of all shootings/homicides at a 15% false positive rate.  

(Keep in mind that only 15% would be predicted by chance at this false positive rate!)



CrimeScan

How to detect leading indicator clusters?
How to use these for prediction?
Which leading indicators to use? 

The fast subset scanning approaches described above 
enable early and accurate detection of emerging clusters.

The key insight of our method is to use detection for prediction:

We can detect emerging clusters of various leading indicators 
(minor crimes, 911 calls, etc.) and use these to predict that a 

cluster of violent crime is likely to occur nearby.



CrimeScan

How to detect leading indicator clusters?
How to use these for prediction?
Which leading indicators to use? 

The fast subset scanning approaches described above 
enable early and accurate detection of emerging clusters.

Proximity to detected clusters  features in a predictive model.
We use scalable Gaussian process regression to model                           

spatial correlation and improve prediction accuracy.

The key insight of our method is to use detection for prediction:

We can detect emerging clusters of various leading indicators 
(minor crimes, 911 calls, etc.) and use these to predict that a 

cluster of violent crime is likely to occur nearby.



CrimeScan

How to detect leading indicator clusters?
How to use these for prediction?
Which leading indicators to use?

The key insight of our method is to use detection for prediction:

We can detect emerging clusters of various leading indicators 
(minor crimes, 911 calls, etc.) and use these to predict that a 

cluster of violent crime is likely to occur nearby.

“Kitchen sink” penalized regression does not work so well.
Correlation-based LI selection is confounded by                           
purely spatial and purely temporal correlations.

Our solution is a new bivariate “kernel space-time 
independence” test that identifies space-time interactions 

between LI types while controlling for space and time.



From CrimeScan to CityScan…
We have been working with city leaders in Chicago, 
Pittsburgh, and Baltimore to predict emerging spatial 

patterns of 311 calls (non-emergency service requests).
By providing support for precisely targeted interventions, 

we will enable cities to respond proactively and 
effectively to emerging challenges and citizen needs. 

Indicators of 
neighborhood decay 
(graffiti, abandoned 

buildings, etc.)

Health and sanitation 
issues, particularly 
focusing on rodent 

prevention.



Top 30 Call Types- Pittsburgh
Potholes 38,893
Weeds/Debris 31,697
Snow & Ice Control 13,042
ABDV (on public property) 9,093
Building Violation – Res. 8,488
Overgrowth (public property) 7,635
Miscellaneous 7,117
Signs – Replacement 6,477
Vacant and Open (squatters) 5,557
ES / Violations 5,508
Street Light 5,377
Tree – Removal 5,193
Parking 5,092
Street Resurfacing 5,062

Dumping (public & private) 4,901
ES / Missed Pickup 4,686
Tree – Pruning 4,407
Patrol (suspicious persons) 4,383
Clean (low income, weeds/debris) 4,257
Sign Request 4,238
Sewers 4,001
Street Cleaning 3,575
Drug Enforcement (sent to police) 3,260
Debris (public property) 3,233
Rodent Control (private property) 3,055

Sidewalk - Snow covered only 2,987
Graffiti (sent to police) 2,956
Traffic 2,831
County Property Reassessment 2,492



We are currently performing a controlled 
experiment with Chicago’s Dept. of Streets 
and Sanitation, with the goal of predicting 

and preventing rodent infestations.
- Measured by “rodent complaint” 311 calls.
- Other 311 call types as leading indicators.

“Treatment” garbage districts:
We predict rodent complaints using 
CityScan and use predictions to direct 
the city’s preventative rat baiting crews. 

“Control” garbage districts:
Preventative baiting performed as usual.

Featured in Chicago Business Journal and Baltimore Sun-Times: 
“Carnegie Mellon smells a rat, and Chicago is grateful”

CityScan: Preventing rat infestations



Rodent Prediction- Pittsburgh
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ROC curve for rodent prediction Out-of-sample prediction results
(7 days in advance):
40% TPR at 10% FPR
27% TPR at 5% FPR
15% TPR at 1.4% FPR
These results suggests large 
potential returns to a small but 
precisely targeted preventative 
rodent abatement program.

Predictors used in model: spatial (KDE), temporal (month, weekend),
lagged weekly rodent counts, lagged weekly leading indicator counts.

Leading indicators (10): Sanitation (Partial Pickup, Early Set Out), 
Dead Animal, Building Violation (Commercial and Residential), Tree 
Removal, Weeds/Debris, Vacant and Open, Overgrowth, Litter Can



Rodent Prediction- Baltimore
Out-of-sample prediction results
(7 days in advance):
45% TPR at 10% FPR
31% TPR at 5% FPR
15% TPR at 1.5% FPR
These results suggests large 
potential returns to a small but 
precisely targeted preventative 
rodent abatement program.

Predictors used in model: spatial (KDE), temporal (month, weekend),
lagged weekly rodent counts, lagged weekly leading indicator counts.

Leading indicators (7): Animals, Sanitation Property, Dumping, Food 
Facility Complaint, Vacant Building, Dirty Alley, Dirty Street
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