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Reminders

• Midterm Exam
– Wed, March 7th

• Recitation
– Tue, March 6th at 6:30-7:30pm

• Homework 3, due today at 5:00 PM
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Midterm Exam
• In-class exam on Wed, March 7th

– 4 problems
– Format of questions:

• Multiple choice
• True / False (with justification)
• Very short derivations
• Short answers
• Interpreting figures

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet 

of notes (front and back)
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Midterm Exam

• How to Prepare
– Attend the midterm recitation session: 

Thu, Oct. 6th at 6:00pm 

– Review this year’s homework problems

– Review prior year’s exams and solutions
(we’ll post them)
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Generalization, Overfitting, and 
Model Selection 



Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Confidence Bounds, Generalization

Confidence for rule effectiveness on future data.

• Our focus so far has been on Algorithm Design. 

• In this module, Generalization Guarantees (not overfiting) – they 

apply to all algorithms we talk about throughout the course.



Labeled Examples  

PAC/SLT models for Supervised Learning

Learning 
Algorithm

Expert / Oracle

Data 
Source

Alg.outputs

Distribution D on X

c* : X ! Y

(x1,c*(x1)),…, (xm,c*(xm))

h : X ! Y
x1 > 5

x6 > 2
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• Algo does optimization over S, find hypothesis ℎ.

• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

– labeled examples - drawn i.i.d. from D and labeled by target c*

– labels 2 {-1,1} - binary classification

h c*

Instance space X

+ +
++

--

-
-

• Realizable: 𝑐∗ ∈ 𝐻. 

𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))

PAC/SLT models for Supervised Learning

• X – feature/instance space; distribution D over X

e.g., X = Rd or X = {0,1}d

Bias: fix hypothesis space H [whose complexity is not too large]

• Agnostic: 𝑐∗ “close to” H. 



• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

Training error: errS h =
1

m
σi I h xi ≠ c∗ xi

True error: errD h = Pr
x~ D

(h x ≠ c∗(x))

• Does optimization over S, find hypothesis ℎ ∈ 𝐻.

PAC/SLT models for Supervised Learning

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over future 
instances drawn at random from D 

• But, can only measure:

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over training 
instances

Sample complexity: bound 𝑒𝑟𝑟𝐷 ℎ in terms of 𝑒𝑟𝑟𝑆 ℎ



Sample Complexity: Finite Hypothesis Spaces

Realizable Case

What if there is no perfect h? 

Agnostic Case

So, if c∗ ∈ H and can find consistent fns, then only need this many 
examples to get generalization error ≤ 𝜖 with prob. ≥ 1 − 𝛿



What if H is infinite?

E.g., linear separators in Rd
+

-

+
+
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-
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E.g., intervals on the real line

a b

+- -

E.g., thresholds on the real line
w

+-



Shattering, VC-dimension

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered (labeled in all possible 
ways ) by H.

Definition:

If arbitrarily large finite sets can be shattered by H, then VCdim(H) = ∞

VC-dimension (Vapnik-Chervonenkis dimension)

To show that VC-dimension is d:

– there is no set of d+1 points that can be shattered.

– there exists a set of d points that can be shattered

Fact: If H is finite, then VCdim(H) ≤ log(|H|).



True complexity of a hypothesis class

E.g., H= Thresholds on the real line

- - - +

In general, can label m points with thresholds only 
in m+ 1 ≪ 2m

Can label 4 points 
with thresholds 
only in 5 ways- - - -

w
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Shattering, VC-dimension

E.g., H= Thresholds on the real line

VCdim H = 1
w

+-

If the VC-dimension is d, that means there exists a set of 
d points that can be shattered, but there is no set of d+1 
points that can be shattered.

E.g., H= Intervals on the real line +- -

VCdim H = 2

E.g., H= linear separators in Rd

VCdim H = d + 1



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

E.g., H= linear separators in Rd

Sample complexity linear in d

Interpretation: if double the number of features, thenwe
only need roughly twice the number of samples to do well.



Sample Complexity: Infinite Hypothesis Spaces

errD h ≤ errS h +
1

2m
𝑉𝐶𝑑𝑖𝑚 𝐻 + ln

1

𝛿
.

Statistical Learning Theory Style

𝑚 ≥
𝐶

𝜖2
𝑉𝐶𝑑𝑖𝑚 𝐻 + log

1

𝛿

labeled examples are sufficient s.t. with probability at least 1 − 𝛿

for all h in H 𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ) ≤ 𝜖

With prob at least 1 − 𝛿 for all h in H

Theorem (agnostic case)



Can we use our bounds for 
model selection?



True Error, Training Error, Overfitting

error

complexity

train error

generalization
error

errD h ≤ errS h +
𝑉𝐶𝑑𝑖𝑚(𝐻)

𝑚
+…

Model selection: trade-off between decreasing training error and 
keeping H simple.



Structural Risk Minimization (SRM)

error 
rate

Hypothesis complexity

empirical error

overfitting

𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 

(E.g., 𝐻𝑖= decision trees of depth i)



What happens if we increase m?

Black curve will stay close to the red curve for 
longer, everything shift to the right…



Structural Risk Minimization (SRM)

error 
rate

Hypothesis complexity

empirical error

overfitting

𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 



Structural Risk Minimization (SRM)

As k increases, errS ෠hk goes down but complex. term goes up.

• 𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 

• ෠hk = argminh∈Hk
{errS h }

• ෠𝑘 = argmink≥1{errS ෠hk + complexity(Hk)}

Output ෠ℎ = ෠ℎ෠𝑘

Claim: W.h.p., errD ෠h ≤ mink∗minh∗∈Hk∗
errD h∗ + 2complexity Hk∗



Techniques to Handle Overfitting

• Cross Validation: 

• Structural Risk Minimization (SRM).

• Regularization:

Minimize gener. bound:

• minimizes expressions of the form: errS h + λ h
2

• E.g., SVM, regularized logistic regression, etc.

• Hold out part of the training data and use it as a proxy for the 
generalization error

෠ℎ = argmink≥1{errS ෠hk + complexity(Hk)}

𝐻1 ⊆ 𝐻2 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 

general family closely related to SRM

• Often computationally hard….

• Nice case where it is possible: M. Kearns, Y. Mansour, ICML’98, “A Fast, Bottom-Up 
Decision Tree Pruning Algorithm with Near-Optimal Generalization” 



What you should know

• Shattering, VC dimension as measure of complexity, 
form of the VC bounds.

• The importance of sample complexity in Machine 
Learning.

• Understand meaning of PAC bounds (what PAC stands 
for, meaning of parameters 𝜖 and δ).

• Model Selection, Structural Risk Minimization.


