Clustering and PCA Recitation

Nupur Chatterji, Kenny Marino, **——** Colin White

Clustering

Unsupervised Learning - unlabeled data

- Automatically organize data
- Understand structure in data
- Preprocessing for further analysis

Applications (Clustering comes up everywhere ...)

Cluster news articles or web pages or search results by topic.

- Cluster protein sequences by function or genes according to expression profile.
- · Cluster users of social networks by interest (community detection).

Objective Based Clustering

Input: A set S of n points, also a distance/dissimilarity measure specifying the distance d(x,y) between pairs (x,y).

E.g., # keywords in common, edit distance, wavelets coef., etc.

Goal: output a partition of the data.

- k-means: find center pts $c_1, c_2, ..., c_k$ to minimize $\sum_{i=1}^n \min_{j \in \{1,...,k\}} d^2(\mathbf{x}^i, \mathbf{c}_j)$
- k-median: find center pts $c_1, c_2, ..., c_k$ to minimize $\sum_{i=1}^n \min_{j \in \{1,...,k\}} d(x^i, c_j)$

- K-center: find partition to minimize the maximum radius

Euclidean k-means Clustering

- **Input:** a set of n points, x¹,x²,...,xⁿ, in R^d, an integer k
- **Output:** k "centers" c₁,c₂,..., c_k

Try to minimize the distance from each

point xⁱ to its closest center

$$\sum_{i=1}^{n} \min_{j \in \{1,\ldots,k\}} \left| \left| \mathbf{x}^{i} - \mathbf{c}_{j} \right| \right|^{2}$$

K-means complexity

- Hard to solve even when k=2 and d=2
- k=1 is easy to solve
- d=1 is easy to solve (dynamic programming)

Common Heuristic in Practice: The Lloyd's method

[Least squares quantization in PCM, Lloyd, IEEE Transactions on Information Theory, 1982]

Input: A set of n datapoints $x^1, x^2, ..., x^n$ in \mathbb{R}^d

Initialize centers $c_1, c_2, ..., c_k \in \mathbb{R}^d$ and clusters $C_1, C_2, ..., C_k$ in any way.

Repeat until there is no further change in the cost.

- For each j: $C_j \leftarrow \{x \in S \text{ whose closest center is } c_j\}$
- For each j: c_j ←mean of C_j

Holding $c_1, c_2, ..., c_k$ fixed, pick optimal $C_1, C_2, ..., C_k$ Holding $C_1, C_2, ..., C_k$ fixed, pick optimal $c_1, c_2, ..., c_k$

Lloyd's initialization

Initialization is very important for Lloyd's method

- Random initialization
- Farthest-first traversal: iteratively choose farthest point from current set
- d^2 -sampling (k-means++) iteratively choose a point v with probability $d_{min}(v,C)^2$, where C is the list of current centers

Theorem: k-means++ always attains an O(log k) approximation to the optimal k-means solution in expectation.

K-means runtime

- K-means++ initialization O(nkd) time
- Lloyd's method: O(nkd) time

Exponential number of rounds in the worst case

Small number of rounds in practice

Expected number of rounds is polynomial time under *smoothed analysis*

Hierarchical Clustering

• What if we don't know the right value of k? (often the case)

Often leads to natural solutions

Bottom-Up (agglomerative)

Have a distance measure on pairs of objects. d(x,y) - distance between x and y

E.g., # keywords in common, edit distance, etc

- Single linkage: $dist(C, C') = \min_{x \in C, x' \in C'} dist(x, x')$
- Complete linkage: $dist(C, C') = \max_{x \in C, x' \in C'} dist(x, x')$
- Average linkage: $dist(C, C') = avg_{x \in C, x' \in C'} dist(x, x')$

Single Linkage

Bottom-up (agglomerative)

- · Start with every point in its own cluster.
- Repeatedly merge the "closest" two clusters.

Single linkage: dist(C, C') = $\min_{x \in C, x' \in C'} dist(x, x')$

Runtime:

- O(n³) is easy
- Can achieve O(n² log n)