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Generalization

e The ability to generalize beyond the training set is the essence of machine
learning

e Assume the training and test data both come from the same fixed
distribution

Under-fitting Appropriate-fitting Over-fitting




PAC/SLT models for Supervised Learning
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PAC/SLT models for Supervised Learning

 Algo sees training sample S: (x;,c*(x;)),-.., (Xn.€* (X)), X; i.i.d. from D

Does optimization over S, find hypothesis h € H.

Goal: h has small error over D.

True error: errp(h) = PrD(h(x) 20 )
ol

How often h(x) # c*(x) over future
instances drawn at random from D

* But, can only measure:
Training error: errg(h) = ézil(h(xi) (%))

How often h(x) # c*(x) over training
instances

Sample complexity: bound err,(h) in terms of errs(h)




Sample Complexity: Realizable Case

e First, assume there exists h in H consistent with the sample

Theorem: m > é ['”(‘HD tin (%)]

labeled examples are sufficient s.t. with prob >1-5, all heH

with err, (h)>e have err(h)z0

e What does this tell us?



Sample Complexity: Agnostic Case

e Whatif there is no hin H consistent with the sample?

1 2
Theorem: m> 5.2 [ln(IHI) +1In (3)1
labeled examples are sufficient s.t. with prob >1-5, all heH
satisfy |err,(h)-errc.(h)|<&

e What does this tell us?



But what if our hypothesis class is infinite??

e Many hypothesis classes we've seen are infinite.
e Linear separators
e Thresholds on arealline

VC Dimension! Measures the complexity of the hypothesis class

Under-fitting Appropriate-fitting Over-fitting




VC Dimension

Definition: H shatters S if |H[S]| = 2.

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2/5! possible ways, all possible ways of
classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = oo



VC Dimension Bounds

Theorem: m=0O G [Vodim(H) o G) g (%)D

labeled examples are sufficient s.t. with prob >1-5, all heH

with err, (h)>e have err(h)z0

e Examples??



Examples of VC dimension

1. Let H be the concept class of thresholds on the real number line. Clearly samples of size
1 can be shattered by this class. However, no sample of size 2 can be shattered since it is
impossible to choose threshold such that z; is labeled positive and x5 is labeled negative for
x1 < z3. Hence the VCdim(H) = 1.

2. Let H be the concept class intervals on the real line. Here a sample of size 2 is shattered, but
no sample of size 3 is shattered, since no concept can satisfy a sample whose middle point is
negative and outer points are positive. Hence, VCdim(H) = 2.

3. Let H be the concept class of k£ non-intersecting intervals on the real line. A sample of
size 2k shatters (just treat each pair of points as a separate case of example 2) but no
sample of size 2k + 1 shatters, since if the sample points are alternated positive/negative,
starting with a positive point, the positive points can’t be covered by only k intervals. Hence
VCdim(H) = 2k.



Examples of VC dimension

4.

D.

Let H the class of linear separators in R2. Three points can be shattered, but four cannot;
hence VCdim(H) = 3. To see why four points can never be shattered, consider two cascs.
The trivial case is when one point can be placed within a triangle formed by the other three;
then if the middle point is positive and the others are negative, no half space can contain
only the positive points. If however the points cannot be arranged in that pattern, then label
two points diagonally across from each other as positive, and the other two as negative In
general, one can show that the VCdimension of the class of lincar separators in R™ is n + 1.

The class of axis-aligned rectangles in the plane has V Uy = 4. The trick here is to note that
for any collection of five points, at least one of them must be interior to or on the boundary
of any rectangle bounded by the other four; hence if the bounding points are positive, the
interior point cannot be made negative.



Examples of VC Dimension

What is the VC dimension of f(x) = sin(ax), for all a ?



Training Error vs Test Error
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