Kernels, SVM

Kenny Marino, Colin White and _____ Nupur Chatterji

Kernel Overview

- What if data is not linearly separable?
 - Switch to a more complicated class of functions
 - Use a Kernel!

Kernels are a "legal definition" of a dot product: there exists Φ such that K(x,y)=Φ(x) Φ(y)

Key Ideas

- By using the kernel we move into a higher dimension space
- Imperative to think of the Kernel Function **IMPLICITLY**

Why think about **Φ** implicitly?

- Feature space can grow rapidly
- Avoid computing actual values of coordinates in the feature space
 - "KERNEL TRICK"
 - Just take inner products
- Computationationally cheaper than explicitly calculating values

Common Kernels and Commonly Kernelizable Algos

Linear: $K(x, z) = x \cdot z$

Polynomial: $K(x, z) = (x \cdot z)^d$ or $K(x, z) = (1 + x \cdot z)^d$

Gaussian:
$$K(x, z) = \exp\left[-\frac{||x-z||^2}{2\sigma^2}\right]$$

Laplace Kernel: $K(x, z) = \exp\left[-\frac{||x-z||}{2\sigma^2}\right]$

- Perceptron
- SVM
- Linear Regression
- Ridge Regression
- K-Means

- Having a large margin will prevent overfitting
- Why not directly search for a large margin classifier?

- Optimize for the maximum margin separator
- Most stable under noise

- Support Vector Machines attempt to directly learn the linear separator with the largest margin

Support Vector Machine

Any Questions?

Slides taken from Tom Mitchell, Nina Balcan, Oxford University