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Kernel Overview

- What if data is not linearly separable?
- Switch to a more complicated class of functions
- Use a Kernel!

- Kernels are a “legal definition” of a dot product: there
exists @ such that K(x,y)=®(x) &(y)



Key Ideas

- By using the kernel we move into a higher dimension space
- Imperative to think of the Kernel Function IMPLICITLY
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Why think about ® implicitly?

- Feature space can grow rapidly
- Avoid computing actual values of coordinates in the
feature space
- “KERNEL TRICK"
- Just take inner products
- Computationationally cheaper than explicitly
calculating values



Common Kernels and Commonly Kernelizable Algos

Linear: K(x,z) =x-z - Perceptron
- SVM
Polynomial: K(x,z) = (x-z)d or K(x,z) = (1+x-2)¢ - Linear Regression
- Ridge Regression
_M - K-Means

Gaussian: K(x,z) = exp

2 g2

—ZII

Laplace Kernel: K(x,z) = exp[ llx=z]|



Margins

- Having a large margin will prevent overfitting
- Why not directly search for a large margin classifier?

SVM

- Optimize for the maximum margin separator
- Most stable under noise
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- Support Vector Machines attempt to directly learn the linear
separator with the largest margin
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Support Vector Machine

linearly separable data
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Maximizing the margin

Margin = Distance of
closest examples
from the decision line/

hyperplane
- = margin =y = a/llwll
= max y = a/llwll
w,b
= - s.t. (W'x;+b) y, 2 a Vj

Note: ‘a’is arbitrary (can normalize
equations by a)




Support Vector Machine

min w'w
w,b
s.t. (Wx;+b) y; 21 V]

Solve efficiently by quadratic
- programming (QP)
— Well-studied solution
- - algorithms

Linear hyperplane defined
by “support vectors”




Any Questions?




