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Model Selection

Aim: to find a hypothesis function that has the lowest error rate over the
distribution

What does realizable mean?
What does agnostic mean?

Note: we want the true error to be as low as possible, but we CANNOT
measure that, so we bound the error of the distribution by the error of the
sample
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Linear Regression

Aim: to construct a predictor that minimizes error (based on how you choose
to quantify error)

Univariate Case: fit a line of the form f(x) = a + bx to the data

Multivariate Case: fit f(x) = Xb, where X = [x., x,, ..x Jand b =[b., b,...b 1T



Practice Questions for Linear Regression

3 Linear and Logistic Regression [20 pts. + 2 Extra Credit|

3.1 Linear regression

Given that we have an input z and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx + b + ¢, where w and b are
real-valued parameters we estimate and € represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(z1,41),...,(Zn,yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

arg min ; — (wz; + b))2.
g1 ;(y ( )

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
cach of the altered data sets S™" plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) | (b) | (c) | (d) | (e)

Regression line
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(a) Adding one outlier to the
original data set.
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(¢) Adding three outliers to the original data
set. Two on one side and one on the other
side.

s

Figure 1: An observed data set and its associated regression line.
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(a) Old and new regression lines.
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(b) Old and new regression lines. (c) Old and new regression lines.

Figure 2: New regression lines for altered data sets S™".




(b) Adding two outliers to the original data
set.
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(d) Duplicating the original data set.

Figure 1: An observed data set and its associated regression line.

— Original regression it |l1 Original regrassion fi1
(a) Old and new regression lines. (b) Old and new regression lines. () Old and new regression lines.

Figure 2: New regression lines for altered data sets S™%.




+ ¥
) + 4+ ‘
. 4 + ¢+ R
¢.
> + 4 +
+ + »
o + + +
+¥ o

+F
ot +
o AR g " — Figure 1: An observed data set and its associated regression line.

(e) Duplicating the original data set and

adding four points that lie on the trajectory e —— gl = p——r
. . . . New regression ft | ur-wn"l New regression fit
of the original regression line. / / /
(a) Old and new regression lines. (b) Old and new regression lines. () Old and new regression lines.

Figure 2: New regression lines for altered data sets S™%.




4.1 Equivalence of maximizing conditional log-likelihood and minimizing squared-
error loss. [6 pts.]

Given a dataset of inputs € R? and real-valued outputs y € R, regression assumes each output y is a
deterministic function f of input x, plus some zero-mean Gaussian noise e:

y = f(x) + ¢, where ¢ ~ N(0,0?). (1)

This relationship means that y itself follows a Gaussian distribution N'(f(z),0?).
Now consider learning the following specific function:

f(zi) = wo + wizi1 + waxi2 (2)

where z; ; denotes the j-th feature of the i-th example.

As discussed in class, calculating the parameter vector w = [wg, w;, w2 that maximizes the conditional
data likelihood [[; p(yi|zi,w) is equivalent to calculating the w that minimizes the sum of squared errors
over the data. The derivation below proves this fact. In this derivation, provide a short justification for
why each line follows from the previous one:
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4.2 Other Forms of Regression. [5 pts.]

The above question shows that choosing regression parameters to maximize the conditional data likelihood
is equivalent to choosing parameters that minimize the sum of squared errors for a particular function
f(@i) = wo + wyx41 + waxy 2. Here we explore whether this generalizes to other functions.

(a) [1 pt. ] Suppose we wish instead to learn the following function:
(i) = wo +wiziy + wamiz + wawiz (1)

Can we derive a sum of squared objective corresponding to the maximum conditional likelihood estimate
in this case? Answer by either giving the correct sum of squares objective to be optimized, or by
explaining why we cannot do so in this case.

(b) [4 pt. | Suppose we wish instead to learn the following function, where y is no longer a linear function
of @

f(@i) = wo + wimi) + womio + w3z 1 @i + umx?,, (5)

Can we derive a sum of squared objective corresponding to the maximum conditional likelihood estimate
in this case? Answer by either giving the correct sum of squares objective to be optimized, or by
explaining why we cannot do so in this case.



Practice with Model Complexity

Error

Model Complexity

On the graph,

Curve of the training error?
Curve of the test error?
Optimal model complexity?
Region of underfitting?
Region of overfitting?

What happens when we double the dataset?



