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Motivation
- Generative Classifiers (like Naive Bayes)

- Assume some functional form for P(X, Y) or for P(X|Y) and P(Y)
- Estimate P(X|Y) and P(Y) from the training data
- Calculate P(Y|X) using Bayes’ Rule 

- WHY NOT LEARN P(Y|X) DIRECTLY?
- Discriminative Classifiers (like Logistic Regression)

- Assume some functional form for P(Y|X) or for decision 
boundary

- Estimate parameters of P(Y|X) directly from training data



Functional Form



Logit/Sigmoid Function
- Large weights lead to 

overfitting in the model

- How can we prevent 
overfitting?
- Penalize high 

weights



Linear Decision Boundary
- P(Y = 1|X) > P(Y = 0|X)
- The boundary has the 

equation
- w0 + ΣwiXi = 0

- Then we classify points 
based on the question
- w0 + ΣwiXi > 0



Conditional Log Likelihood
- Goal is to choose parameters w to maximize conditional likelihood of training data
- Do so by maximizing the conditional log likelihood function

- No closed form, which is problematic
- But l(w) is concave so we can easily find a unique maximum



Gradient Ascent (slide from Tom Mitchell)



M(C)LE and M(C)AP
- Know how to handle M(C)LE
- Defining priors on w helps to avoid overfitting (due to large 

weights)
- Make sure to refer back to lecture slides for exact 

derivations
- Next slides from Tom Mitchell







Main Takeaways
1. Logistic Regression is a linear classifier
2. The decision rule that is generated is a hyperplane
3. Optimize Logistic Regression by conditional likelihood

a. No closed form solution
b. But since it is a concave function, we can use Gradient Ascent/Descent
c. M(C)AP corresponds to regularization



Any Questions?


