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Motivation

- Generative Classifiers (like Naive Bayes)
- Assume some functional form for P(X, Y) or for P(X|Y) and P(Y)
- Estimate P(X|Y) and P(Y) from the training data
- Calculate P(Y | X) using Bayes' Rule
- WHY NOT LEARN P(Y|X) DIRECTLY?
- Discriminative Classifiers (like Logistic Regression)
- Assume some functional form for P(Y | X) or for decision
boundary
- Estimate parameters of P(Y | X) directly from training data



Functional Form

1 exp(wg + 2 wiXj)

P(Y = 1|X) = -
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Logit/Sigmoid Function

1- - Large weights lead to

overfitting in the model

- How can we prevent
overfitting?
- Penalize high
5 weights




Linear Decision Boundary

- P(Y=1|X)>P(Y=0]|X)
- The boundary has the
equation
- w,+2wX. =0
- Then we classify points
based on the question
- w,+2wX. >0




Conditional Log Likelihood

- Goal is to choose parameters w to maximize conditional likelihood of training data
- Do so by maximizing the conditional log likelihood function

- No closed form, which is problematic

- But I(w) is concave so we can easily find a unique maximum
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Gradient Ascent (slide from Tom Mitchell)
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Gradient ascent algorithm: iterate until change < ¢
For all i, repeat
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M(C)LE and M(C)AP

- Know how to handle M(C)LE

- Defining priors on w helps to avoid overfitting (due to large
weights)

- Make sure to refer back to lecture slides for exact
derivations

- Next slides from Tom Mitchell



« Maximum conditional likelihood estimate
W — argmax InJ] P(YY X', W)
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« Maximum a posteriori estimate with prior W~N(0,ol)
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called a “reqularization” term

* helps reduce overfitting, especially when training
data is sparse

* keep weights nearer to zero (if P(W) is zero mean
Gaussian prior), or whatever the prior suggests

» used very frequently in Logistic Regression




Main Takeaways

1. Logistic Regression is a linear classifier
2. The decision rule that is generated is a hyperplane

3. Optimize Logistic Regression by conditional likelihood
a. No closed form solution
b. Butsince itis a concave function, we can use Gradient Ascent/Descent
c. M(C)AP corresponds to regularization



Any Questions?




