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Perceptron Algorithm
● Set t=1, start with the all zero vector ᬔ1
● Given example ᬕ, predict positive iff ᬔᬑ ⋅ ᬕ ≥ 0 
● On a mistake, update as follows:

○ Mistake on positive, then update ᬔᬑ+1 ← ᬔᬑ + ᬕ 
○ Mistake on negative, then update ᬔᬑ+1 ← ᬔᬑ − ᬕ



Perceptron Algorithm: Example
Point Label

(1, 2, -1) +

(2, 0, 0) -

(1, 3, 4) +

(0, -2, -1) -



Bayes’ Rule

● P(A) is known as the “prior”
● P(A|B) is known as the 

“posterior”



Other Forms of Bayes’ Rule

● Law of 
Total 
Probability



Using Bayes’ Rule
A = you finished your homework

B = you are tired

P(A) = 0.3

P(B | A) = 0.55

P(B | ~A) = 0.45

What is P(you finished your homework | you are tired) = P(A | B)?



Motivation + Problem + Solution
● Learning P(Y|X) instead of F: X → Y

○ Joint Distribution Tables
● Requires more data than we have available
● Solution

○ Estimate probabilities from sparse data SMARTLY
○ Maximum Likelihood Estimates (MLE)
○ Maximum A Posteriori Estimates (MAP)



Random Variables and Joint Distributions
Temperature Mood Go To Classes Probability

High Happy Yes 0.25

High Happy No 0.024

High Sad Yes 0.042

High Sad No 0.012

Low Happy Yes 0.33

Low Happy No 0.097

Low Sad Yes 0.13

Low Sad No 0.115



Joint Distribution
● With M variables, we have 2M rows
● Inference (making a query)

○ Sum over rows (the probabilities) that match the 
event



Main Ideas
● MLE

○ Choose parameters θ that maximize P(Data | θ)
● MAP

○ Choose parameters θ that maximize P(θ | Data)



Maximum Likelihoood Estimate (MLE)
● Assume i.i.d 

○ What does this mean?
○ What does this allow us to do?

● We saw an example with Bernoulli Variables in class
● Look at Binomial Variables

○ B(n, p)
○ n = number of trials
○ p = probability of success



Binomial MLE
● p(X = k|p) =  C(n,k)  pk (1 − p)n−k

● argmaxp L(p) = argmaxp [p
k (1 − p)n−k]

● argmaxp L(p) = argmaxp[klog(p) + (n-k) log(1-p)]
● Setting derivative to 0
● p = k/n 



High Probability Bound



Maximum A Priori Estimate (MAP)
● Used when we have some sort of prior knowledge of the data
● Choose parameters θ that are the most probable given observed data 

and prior beliefs



Binomial MAP
● Let p(p|a, b) = 1/B(a, b) pa-1 (1 − p)b-1

● p(X = k|p) =  C(n,k)  pk (1 − p)n−k

● argmaxp p(D|p)p(p) = argmaxp log[p(D|p)p(p)]
● argmaxp p(D|p)p(p) = argmaxp[(k+a-1)log(p) + (n-k+b-1) log(1-p)]
● Setting derivative to 0
● p = (k+a-1)/(n+a+b-2)



Any other questions?


