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Outline

* Facts about sets

* Definitions and facts about probability

 Random Variables and Joint Distributions

e Characteristics of distributions (mean, variance, entropy)
* Any other questions




Set Basics

A set is a collection of elements
* Intersection: ANB ={x:x € Aand x € B}
* Union: AUB={x:x€ Aorx € B}

« Complement: A = {x:x ¢ A}




Disjointness, Partitions

* Sets A4, A, ... are pairwise disjoint or mutually exclusive if for all
i:/:j,Ai ﬂA] — @

 Sets A4, A,, ... form a partition of a set § if they are pairwise
disjointandif U;4; = S

Useful facts about partitions:
BNnS=Bn(U;4;)
= U;(BNA4;) by the distributive property

* B N A; are also pairwise disjoint




Probabillity Definitions

 Sample space (): set of possible outcomes
* Event space F: collection of subsets
* Probability measure P: assigns probabilities to events

* Probability space (£, F, P): set of sample space, event space, and
probability measure

Example, rolling a die:

- 0 =1{1,2,3,45,6}

« F={{1}{2},...,{1,2},...,{1,2,3},...{1,2,3,4,5,6}, B}
- P({1}) =3,P({24,6}) =3, etc




Probabllity Axioms

Kolmogorov conditions for a probability space ({, F, P):

* P(A)=0forallAEF

« P(Q) =1

 P(U;4;) = X;P(A;) where {4;}; € F are pairwise disjoint

These imply the following:
« P(A°)=1-P(4)

« P(A) <1

« P(®)=0




Law of Total Probability

B=BNOQO=Bn(AUA) =(BnA)U((BnAY
So P(B)=P(BNA)+P(BnA®

Called “law of total probability”

P(AUB) = P( AU (BN AC)) |

= P(A) + P(B n A%)
= P(4) + P(B) — P(B N A)
< P(A) + P(B)

A similar proof for the union bound




Conditional Probabilities

The conditional probability of A given B:
P(AlB) — P(ANB)

P(B)

l.e., treat B as the entire sample space, and
then find the probability of A.

This implies P(A|B)P(B) = P(A N B)
“chain rule for probabilities”
Given a partition A, A,, ... of (),

P(B)= ) P(BNA) =) P(BIA)P(A)




Conditional Probability Example

Given a die, O = {1,2,3,4,5,6}, F = 2%, P({i}) = 1/6,
A =1{1,2,3,4},i.e,therollis<5,
B = {1,3,5}, i.e., the roll is odd.

« P(A) =2/3

e« P(B)=1/2

. _ P@nB) _ P{13}) _ 2
PUAIB) = P(B)  P(B) 3

. _ P@nB) _ P{13}) _ 1
P(BIA) = P(4) P 2

* Note these quantities are not the same!




Bayes’ Rule

Using the chain rule,
P(A|B)P(B) = P(ANnB) =P(B|A)P(4),

Rearranging gives us Bayes’ rule:
P(A|B)P(B)

P(4)

If B{, B>, ... is a partition of (), we have
P(A|B;)P(B;)

P(B|A) =

P(B;|A) = Y. P(A|B)P(B))

(from Bayes’ rule + Law of Total Probability)
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Independence

A, B are independent if P(AN B) = P(A)P(B)
When P(A) > 0, we can also write this as P(B|A) = P(B)
i.e. rolling two dice, etc

A, B are conditionally independent given C when
P(ANnB|C) = P(A|C)P(B|C).
When P(A) > 0, we can write P(B|A,C) = P(B|C)

i.e., the weather tomorrow is independent of the weather
yesterday, given the weather today.
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Random Variables

A random variable is a function X: Q —» R%,

l.e.
* Roll n dice, X=sum of the numbers

* Indicators of events: X(w) = 1,,, e.g., the indicator of a coin toss

coming up heads.

e Throw a dart at a dartboard, X € R? are the coordinates where

the dart lands.
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Distributions

* By considering random variables, we can think of probability
measures as functions on the real numbers

* The probability measure associated with the random variable is
characterized by its cumulative distribution function (CDF):
Fy(x) = P(X < x). We write X~Fy

* |f two random variables have the same CDF, we call them
identically distributed.
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Discrete Distributions

* If X only has a countable number of values, then we can
characterize it using a probability mass function (PMF) which
describes the probability of each value fy(x) = P(X = x).

 Wehave ),y fx(x) =1 (law of total probability)

 Example: Bernoulli distribution X € {0,1}, fy(x) = 6*(1 — )1~
* Ingeneral, fx(x;) =6;,where };0; =1,6;, = 0.

* General model for binary outcomes
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Continuous Distributions

* When the CDF is continuous, we can look at the derivative
fx(x) = —Fx(x)

* This is called the probability density function (PDF).

* We can compute the probability of an interval (a, b) with
Pla<X<b)= ff fx (x)dx.

* Note the probability of any specific point c,P(X=c)=0

* E.g. Uniform distribution, fy(x) = — ~* 1(a,p) (x)
N2
 E.g. Gaussian distribution, fy(x) = zlm exp((xwi) )
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Multiple Random Variables

 We can also consider multiple functions from the same sample
space, e.g., X(w) = 14(w), Y(w) = 15(w):

* We can represent the joint distribution as a table:
X=0 Xx=1
Y =0 25 15

Y =1 .35 .25

We write the joint PMF or PDF as fy y(x,y)
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Multiple Random Variables

* If fxy(x,¥) = fx(x)fy(¥), then the two random variables are
independent

* Ifthe two RVs are independent and identically distributed, we
denote this as “i.i.d”

2
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Joint Distributions

* Marginalizing: fy(x) = fy fxy(x,y) dy. (Similar to the law of
total probability)

e . fxy(xy) fxy(y)
 Conditioning: xX,Y) =—= = ' :
g leY( ) ) o FxyGoy) dx
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Mean of a Distribution

* Expectation or mean of a distribution:
E(X) = Y xxfx(x) if X is discrete

ffooo X fx(x) dx if X is continuous

* Linearity of Expectation:
E(aX+bY +c)=aEX)+DbE(Y)+c

« E(X*Y)=EMX)E(Y)isonlytrue when fyy = fxfy
- E(E(X)) =EX)
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Variance of a Distribution

e Variance of a distribution: Var(X) = E(X — EX)?
how “spread out” is the distribution?

.« E(X — EX)? = E(X%2 = 2XE(X) + (EX)?)
= E(X2) — 2E(X)E(X) + (EX)?
= E(X?) — (EX)?

What is the variance of a coin toss?
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Example of mean/variance

Given X4, ..., X,, i.i.d, EX; = u, and Var(X;) = o°.

. . . > 1
What is the expectation and variance of X,, = =)/, X; ?

n

_ 1~ 1 1
ERa) =B\, ), Xi)=7), EX)=—«nsp=p

1 o2

— 1 n
var(Xn) = Var (azi_lxi) St = g
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Entropy of a Distribution

Entropy is a measure of uniformity in a distribution

HOO = = ) fx()log fx(x)

Think about the expected number of bits used to send labeled

points
/ :
0
/ /

P(a)=090 P(b) =005 P(c)=003 P(d) =002 P(a)=025 P(bj=025 Plc)=025 P(d) =025

Entropy is the expected depth of the tree (expected number of bits)
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Law of Large Numbers

Recall the example, Yn = % * 1 X; . What happens whenn — o ?

 Weak law of large numbers:
lim P(|X, —p|<e)=1

n—->00
l.e., given any ¢, there exists an n such that |Yn — ,u| <e¢
e Strong law of large numbers:
P(lim X, =u) =1
n—->00

l.e., the mean converges to the expectation as n increases
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Central Limit Theorem

The distribution of )_(n starts to look like a Gaussian distribution

tim iy, = (S
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