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Outline
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• Facts about sets

• Definitions and facts about probability

• Random Variables and Joint Distributions

• Characteristics of distributions (mean, variance, entropy)

• Any other questions



Set Basics
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A set is a collection of elements

• Intersection: 𝐴 ∩ 𝐵 = 𝑥: 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵

• Union: 𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵}

• Complement: 𝐴C = {𝑥: 𝑥 ∉ 𝐴}



Disjointness, Partitions
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• Sets 𝐴1, 𝐴2, … are pairwise disjoint or mutually exclusive if for all 
𝑖 ≠ 𝑗, 𝐴𝑖 ∩ 𝐴𝑗 = ∅.

• Sets 𝐴1, 𝐴2, … form a partition of a set 𝑆 if they are pairwise 
disjoint and if  𝑖 𝐴𝑖 = 𝑆

Useful facts about partitions:

𝐵 ∩ 𝑆 = 𝐵 ∩ (  𝑖 𝐴𝑖)

=  𝑖(𝐵 ∩ 𝐴𝑖) by the distributive property

• 𝐵 ∩ 𝐴𝑖 are also pairwise disjoint



Probability Definitions
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• Sample space Ω: set of possible outcomes

• Event space 𝐹: collection of subsets

• Probability measure 𝑃: assigns probabilities to events

• Probability space (Ω, 𝐹, 𝑃): set of sample space, event space, and 
probability measure

Example, rolling a die:

• Ω = 1,2,3,4,5,6

• 𝐹 = { 1 , 2 , … , 1,2 ,… , 1,2,3 , … 1,2,3,4,5,6 , ∅}

• 𝑃 1 = 1
6

, 𝑃 2,4,6 = 1
2

, etc



Probability Axioms
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Kolmogorov conditions for a probability space (Ω, 𝐹, 𝑃):

• 𝑃(𝐴) ≥ 0 for all 𝐴 ∈ 𝐹

• 𝑃 Ω = 1

• 𝑃( 𝑖 𝐴𝑖) =  𝑖 𝑃(𝐴𝑖) where {𝐴𝑖}𝑖 ∈ 𝐹 are pairwise disjoint

These imply the following:

• 𝑃 𝐴𝐶 = 1 − 𝑃(𝐴)

• 𝑃(𝐴) ≤ 1

• 𝑃 ∅ = 0



Law of Total Probability
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𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 ∪ 𝐵 ∩ 𝐴𝐶

= 𝑃 𝐴 + 𝑃(𝐵 ∩ 𝐴𝐶)

= 𝑃 𝐴 + 𝑃 𝐵 − 𝑃(𝐵 ∩ 𝐴)

≤ 𝑃 𝐴 + 𝑃(𝐵)

A similar proof for the union bound

𝐵 = 𝐵 ∩ Ω = 𝐵 ∩ 𝐴 ∪ 𝐴𝐶 = (𝐵 ∩ 𝐴) ∪ (𝐵 ∩ 𝐴𝐶)

So 𝑃 𝐵 = 𝑃 𝐵 ∩ 𝐴 + 𝑃(𝐵 ∩ 𝐴𝐶)

Called “law of total probability”



Conditional Probabilities
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The conditional probability of 𝑨 given 𝑩:     

𝑃 𝐴 𝐵 = 𝑃(𝐴∩𝐵)
𝑃(𝐵)

I.e., treat 𝐵 as the entire sample space, and 
then find the probability of 𝐴.

This implies 𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃(𝐴 ∩ 𝐵)

“chain rule for probabilities”

Given a partition 𝐴1, 𝐴2, … of Ω,

𝑃 𝐵 = 
𝑖
𝑃 𝐵 ∩ 𝐴𝑖 = 

𝑖
𝑃 𝐵 𝐴𝑖 𝑃(𝐴𝑖)



Conditional Probability Example
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Given a die, Ω = {1,2,3,4,5,6}, 𝐹 = 2Ω, 𝑃 𝑖 = 1/6,

𝐴 = {1,2,3,4}, i.e., the roll is < 5,

𝐵 = 1,3,5 , i.e., the roll is odd.

• 𝑃 𝐴 = 2/3

• 𝑃 𝐵 = 1/2

• 𝑃 𝐴 𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
=
𝑃( 1,3 )

𝑃(𝐵)
=
2

3

• 𝑃 𝐵 𝐴 =
𝑃(𝐴∩𝐵)

𝑃(𝐴)
=
𝑃( 1,3 )

𝑃(𝐴)
=
1

2

• Note these quantities are not the same!



Bayes’ Rule
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Using the chain rule,

𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴),

Rearranging gives us Bayes’ rule:

𝑃 𝐵 𝐴 =
𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃(𝐴)

If 𝐵1, 𝐵2, … is a partition of Ω, we have

𝑃 𝐵𝑖 𝐴 =
𝑃 𝐴 𝐵𝑖 𝑃(𝐵𝑖)

 𝑖 𝑃 𝐴 𝐵𝑖 𝑃(𝐵𝑖)

(from Bayes’ rule + Law of Total Probability)



Independence
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𝐴, 𝐵 are independent if 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃(𝐵)

When 𝑃 𝐴 > 0, we can also write this as 𝑃 𝐵 𝐴 = 𝑃(𝐵)

i.e. rolling two dice, etc

𝐴, 𝐵 are conditionally independent given 𝑪 when
𝑃 𝐴 ∩ 𝐵 𝐶 = 𝑃 𝐴 𝐶 𝑃 𝐵 𝐶 .

When 𝑃 𝐴 > 0, we can write 𝑃 𝐵 𝐴, 𝐶 = 𝑃(𝐵|𝐶)

i.e., the weather tomorrow is independent of the weather 
yesterday, given the weather today.



Random Variables
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A random variable is a function 𝑋: Ω → ℝ𝑑, 

i.e.

• Roll 𝑛 dice, 𝑋= sum of the numbers

• Indicators of events: 𝑋 𝜔 = 1𝜔 , e.g., the indicator of a coin toss 
coming up heads.

• Throw a dart at a dartboard, 𝑋 ∈ ℝ2 are the coordinates where 
the dart lands. 



Distributions
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• By considering random variables, we can think of probability 
measures as functions on the real numbers

• The probability measure associated with the random variable is 
characterized by its cumulative distribution function (CDF):
𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥 .We write 𝑋~𝐹𝑋

• If two random variables have the same CDF, we call them 
identically distributed.



Discrete Distributions
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• If 𝑋 only has a countable number of values, then we can 
characterize it using a probability mass function (PMF) which 
describes the probability of each value 𝑓𝑋 𝑥 = 𝑃 𝑋 = 𝑥 .

• We have  𝑋 𝑓𝑋 𝑥 = 1 (law of total probability)

• Example: Bernoulli distribution 𝑋 ∈ 0,1 , 𝑓𝑋 𝑥 = 𝜃
𝑥(1 − 𝜃)1−𝑥

• In general, 𝑓𝑋 𝑥𝑖 = 𝜃𝑖 , where  𝑖 𝜃𝑖 = 1, 𝜃𝑖 ≥ 0.

• General model for binary outcomes 



Continuous Distributions
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• When the CDF is continuous, we can look at the derivative 

𝑓𝑋 𝑥 =
𝑑

𝑑𝑥
𝐹𝑋 𝑥 .

• This is called the probability density function (PDF).

• We can compute the probability of an interval (𝑎, 𝑏) with 

𝑃 𝑎 < 𝑋 < 𝑏 =  𝑎
𝑏
𝑓𝑋 𝑥 𝑑𝑥.

• Note the probability of any specific point 𝑐, 𝑃 𝑋 = 𝑐 = 0

• E.g. Uniform distribution, 𝑓𝑋 𝑥 =
1

𝑏−𝑎
∗ 1 𝑎,𝑏 (𝑥)

• E.g. Gaussian distribution, 𝑓𝑋 𝑥 =
1

2𝜋𝜎
exp(

(𝑥−𝜇)2

2𝜎2
)



Multiple Random Variables
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• We can also consider multiple functions from the same sample 
space, e.g., 𝑋 𝜔 = 1𝐴(𝜔), 𝑌 𝜔 = 1𝐵(𝜔):

• We can represent the joint distribution as a table:

We write the joint PMF or PDF as 𝑓𝑋,𝑌(𝑥, 𝑦)

𝑿 = 𝟎 𝑿 = 𝟏

𝑌 = 0 .25 .15

𝑌 = 1 .35 .25



Multiple Random Variables
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• If 𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋(𝑥)𝑓𝑌(𝑦), then the two random variables are 
independent

• If the two RVs are independent and identically distributed, we 
denote this as “i.i.d”



Joint Distributions
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• Marginalizing: 𝑓𝑋 𝑥 =  𝑦 𝑓𝑋,𝑌(𝑥, 𝑦) 𝑑𝑦. (Similar to the law of 

total probability)

• Conditioning: 𝑓𝑋|𝑌 𝑥, 𝑦 =
𝑓𝑋,𝑌(𝑥,𝑦)

𝑓𝑌(𝑦)
=

𝑓𝑋,𝑌(𝑥,𝑦)

 𝑋 𝑓𝑋,𝑌(𝑥,𝑦) 𝑑𝑥
.



Mean of a Distribution
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• Expectation or mean of a distribution:

𝐸 𝑋 =  𝑋 𝑥𝑓𝑋(𝑥) if 𝑋 is discrete

 −∞
∞
𝑥𝑓𝑋(𝑥) 𝑑𝑥 if 𝑋 is continuous

• Linearity of Expectation:
𝐸 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐸 𝑋 + 𝑏𝐸 𝑌 + 𝑐

• 𝐸 𝑋 ∗ 𝑌 = 𝐸 𝑋 𝐸(𝑌) is only true when 𝑓𝑋,𝑌 = 𝑓𝑋𝑓𝑌

• 𝐸 𝐸 𝑋 = 𝐸(𝑋)



Variance of a Distribution
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• Variance of a distribution: 𝑉𝑎𝑟 𝑋 = 𝐸(𝑋 − 𝐸𝑋)2

how “spread out” is the distribution?

• 𝐸(𝑋 − 𝐸𝑋)2 = 𝐸(𝑋2 − 2𝑋𝐸 𝑋 + (𝐸𝑋)2)

= 𝐸 𝑋2 − 2𝐸 𝑋 𝐸 𝑋 + (𝐸𝑋)2

= 𝐸 𝑋2 − (𝐸𝑋)2

What is the variance of a coin toss?



Example of mean/variance
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Given 𝑋1, … , 𝑋𝑛 i.i.d, 𝐸𝑋𝑖 = 𝜇, and 𝑉𝑎𝑟 𝑋𝑖 = 𝜎
2.

What is the expectation and variance of 𝑋𝑛 =
1

𝑛
 𝑖=1
𝑛 𝑋𝑖 ?

𝐸 𝑋𝑛 = 𝐸
1

𝑛
 
𝑖=1

𝑛

𝑋𝑖 =
1

𝑛
 
𝑖=1

𝑛

𝐸(𝑋𝑖) =
1

𝑛
∗ 𝑛 ∗ 𝜇 = 𝜇

𝑉𝑎𝑟 𝑋𝑛 = 𝑉𝑎𝑟
1

𝑛
 
𝑖=1

𝑛

𝑋𝑖 =
1

𝑛2
∗ 𝑛 ∗ 𝜎2 =

𝜎2

𝑛



Entropy of a Distribution
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Entropy is a measure of uniformity in a distribution

𝐻 𝑋 = − 
𝑋
𝑓𝑋 𝑥 log 𝑓𝑋(𝑥)

Think about the expected number of bits used to send labeled 
points

Entropy is the expected depth of the tree (expected number of bits)



Law of Large Numbers
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Recall the example, 𝑋𝑛 =
1

𝑛
 𝑖=1
𝑛 𝑋𝑖 . What happens when 𝑛 → ∞ ?

• Weak law of large numbers:

lim
𝑛→∞
𝑃 𝑋𝑛 − 𝜇 < 𝜀 = 1

I.e., given any 𝜀 , there exists an 𝑛 such that 𝑋𝑛 − 𝜇 < ε

• Strong law of large numbers:

𝑃 lim
𝑛→∞
𝑋𝑛 = 𝜇 = 1

I.e., the mean converges to the expectation as 𝑛 increases



Central Limit Theorem
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The distribution of  𝑋𝑛 starts to look like a Gaussian distribution

lim
𝑛→∞
𝐹𝑋𝑛 𝑥 = 𝜙

𝑥 − 𝜇

𝑛𝜎


