
Unsupervised and
Reinforcement Learning

Nupur Chatterji, Kenny Marino,
Colin White

Outline
● Clustering
● Clustering Questions
● PCA
● PCA Questions
● Reinforcement Learning

Clustering
Unsupervised Learning - unlabeled data

● Automatically organize data
● Understand structure in data
● Preprocessing for further analysis

Euclidean k-means Clustering
● Input: a set of n points, x1,x2,...,xn, in Rd , an integer k
● Output: k “centers” c1,c2,..., ck

Try to minimize the distance from each

point xi to its closest center

K-means complexity
● Hard to solve even when k=2 and d=2
● k=1 is easy to solve
● d=1 is easy to solve (dynamic programming)

Lloyd’s initialization
Initialization is very important for Lloyd’s method

● Random initialization
● Farthest-first traversal: iteratively choose farthest point from current set
● d2-sampling (k-means++) iteratively choose a point v with probability

dmin(v,C)2, where C is the list of current centers

Theorem: k-means++ always attains an O(log k) approximation to the optimal
k-means solution in expectation.

K-means runtime
● K-means++ initialization O(nkd) time
● Lloyd’s method: O(nkd) time

Exponential number of rounds in the worst case

Small number of rounds in practice

Expected number of rounds is polynomial time under smoothed analysis

Hierarchical Clustering
● What if we don’t know the right value of k? (often the case)

Often leads to natural solutions

Runtime:
● O(n3) is easy
● Can achieve O(n2 log n)

k-Means%%

● Is this a good
initialization algorithm?

● What are the new centers after one
Lloyd iteration?

Principal Component Analysis

Reinforcement Learning

Reinforcement Learning

Applications

Robotics

Go

Video Games

Reinforcement learning - MDPs
● Set of states S
● Set of actions A
● Transition between states P(st+1|st, at, st-1, at-1, ...)

○ Markov assumption!
○ P(st+1|st, at, st-1, at-1, ...) = P(st+1|st, at)

● Rewards (also Markov assumption)
○ P(rt|st, at)

● Objective, learn a policy Π: S -> A that maximizes
○ E[rt+ ᵛrt+1, + ᵛ2rt+2 + ...], 0 < ᵛ <= 1

Why it’s hard
● Sparse rewards

○ Most practical MDP problems only have rewards for some states
○ Can’t just use a simple supervised technique to learn Π: S -> A for every state s

● Often care about sample efficiency
○ In real-world problem, only have limited number of experiences we can use to learn from

● The attribution problem
○ Agent executes a sequence of actions a1, a2, a3, … aN, and get a bad reward R
○ What action led to the sequence failing?

● Still an active area of research
○ Lots of methods do poorly in practice

Ways to solve
● Model-based methods

○ Assume we have (or can learn) the transition function P(st+1|st, at)
○ Value iteration learning

■ Propagate the value of a state based on value of neighboring states

● Model-free methods
○ Don’t assume we know the transition function
○ Q-learning

■ Directly update values of state, action pairs

● Monte Carlo Methods
○ Lots and lots of methods
○ In a nutshell, at each state st, estimate the average discounted reward we get all of the

times we have been in that state before (roll-out)

Questions?

Answers:

-2: 1/9, -1: 0, 1: 4/9, 3: 4/9. Not a good init method

Circle 3rd image.

