
A Qualitative Investigation of Insecure Code
Propagation from Online Forums

Wei Bai
University of Maryland

wbai@umd.edu

Omer Akgul
Univerity of Maryland

akgul@umd.edu

Michelle L. Mazurek
University of Maryland

mmazurek@umd.edu

Abstract—Research demonstrates that code snippets listed on
programming-oriented online forums (e.g., Stack Overflow) –
including snippets containing security mistakes – make their
way into production code. Prior work also shows that software
developers who reference Stack Overflow in their development
cycle produce less secure code. While there are many plausible
explanations for why developers propagate insecure code in this
manner, there is little or no empirical evidence. To address
this question, we identify Stack Overflow code snippets that
contain security errors and find clones of these snippets in
open source GitHub repositories. We then survey (n=133) and
interview (n=15) the authors of these GitHub repositories to
explore how and why these errors were introduced. We find
that some developers (perhaps mistakenly) trust their security
skills to validate the code they import, but the majority admit
they would need to learn more about security before they
could properly perform such validation. Further, although some
prioritize functionality over security, others believe that ensuring
security is not, or should not be, their responsibility. Our results
have implications for attempts to ameliorate the propagation of
this insecure code.

I. INTRODUCTION

Many or even most security vulnerabilities do not arise from
new or unknown problems; they often occur when software
developers make well-known mistakes. For example, insuffi-
cient validation of user input is a well-known problem that can
lead to vulnerabilities ranging from buffer overflows to SQL
injection. Despite the fact that proper checking of user input
is all but axiomatic in the security community, vulnerabilities
related to this issue remain common and serious [1], [2].

There are many possible explanations for the persistence
of security errors that are (in this sense) “solved” problems,
including but not limited to human error, lack of security
education, overly complex APIs, addressing security at the end
of the development lifecycle rather than building it in from the
beginning, and the prioritization of other requirements over
security [3]–[6].

Prior research suggests that one contributing factor is the
presence of insecure code in online forums — such as the
programming Q&A site Stack Overflow — that developers
reference when searching for help [3], [5]. These works have
demonstrated that developers who reference Stack Overflow
tend to produce less secure code, and have found evidence
of insecurities propagating into production code. Prior work,
however, has not explored why or how these effects occur. For
example, do developers fail to recognize that code drawn from

online forums may not be secure, or do they understand this
but reuse it anyway? If they do recognize possible security
concerns, why and how do they overcome them before using
code? Conventional wisdom suggests that perhaps developers
simply prioritize convenience over security [3], [7], but there
are other possible explanations. Without understanding devel-
oper motivations and practices when propagating this code, it
will be difficult to design effective mitigations for this source
of vulnerability.

To address these questions, we designed a qualitative,
descriptive survey and interview study to investigate why
developers propagate insecure code from Stack Overflow. We
identified a set of common cryptography-related errors drawn
from the security literature, then searched for Stack Over-
flow posts containing code snippets that exhibit these errors.
Using the MOSS code-matching tool, we located GitHub
repositories that appear to reuse these snippets. After ranking
these repositories according to both their similarity score
and various popularity-relevant GitHub statistics, we invited
developers of these repositories to take a survey about their
projects (without mentioning the potential vulnerabilities), and
then invited survey participants to a follow-up interview. In
total, 133 developers took the survey, and 15 participated in
interviews.

Many participants were defensive about admitting that
reusing code from Stack Overflow had led to potential vul-
nerabilities. Nonetheless, we find that most participants seem
cognizant that code drawn from online forums raises potential
security concerns. Participants use such code anyway, for
several often overlapping reasons. Some participants said they
did not know enough about security to properly validate code
they encounter, while others trust their own security skills
and believe (evidently not always correctly) that they can
properly vet such code. Some participants explicitly report
prioritizing functionality or convenience over security, and
some feel that security is not (or should not be) their job, but
rather should be outsourced to a security team or a service
provider. Despite the fact that all the projects we identified
include some cryptographic code — which suggests some
level of interest in security — some participants reported that
security was not important to the referenced project.

These results have important implications for how to think
about preventing or mitigating the propagation of insecure
code from Stack Overflow and other online forums into

production code.
The rest of the paper is organized as follows: We describe

related work (II), present the study protocol (III), describe the
participants and their projects(IV), present our findings(V,VI),
and discuss implications from our findings for alleviating
insecure code propagation (VII).

II. RELATED WORK

We briefly discuss related work in two key areas: the
effects of Q&A platforms such as Stack Overflow on software
development in general, and specific investigations of how
these platforms intersect with security.

A. Stack Overflow and software development, broadly
Vasilescu et al. measured how question asking and an-

swering on Stack Overflow relates to committing changes
to open-source repositories‘ [8]. They found that among de-
velopers who actively commit to Github repositories, asking
and answering questions boosts GitHub commits. Using the
same dataset, Wu et al. examined how developers use source
code from Q&A platforms [9]. By manually inspecting 289
source code files that reference Stack Overflow posts, they
conclude that 31.5% of developers who cite Stack Overflow
code modify the code in some way before using it. The authors
also find via a survey (n=380) that the majority of developers
report preferring to reimplement code rather than reusing
code from Stack Overflow directly. The top reason given for
reimplementation is that developers need to fit the code into
their existing code bases. Yang et al. perform quantitative
analysis to find how snippets from Stack Overflow get ported
into GitHub projects [10]. While they find empirical evidence
of copy & pasting behavior, they claim that only a small
portion is exact duplication of code. In this study, we primarily
identify exact or very close matches as candidates for our
survey and interview.

Treude et al. studied the types of questions that are most
commonly asked and answered on Stack Overflow [11], find-
ing that conceptual questions or questions asking for code
reviews have a higher chance of being answered. Relatedly,
Nasehi et al. investigated attributes that make good answers
on Stack Overflow [12]. Via qualitative analysis, they identify
how customized the answer is to the original question as the
most important feature of a high-quality answer. In a similar
study Yang et al. find that question edits are related to a
question’s quality [13].

Yang, et al. use qualitative and quantitative analysis to
investigate how ready-to-use Stack Overflow code snippets
are, finding that snippets in dynamically typed languages are
substantially more likely than in statically typed languages
to be ready to use [14]. In an empirical study, Zhang et al.
find that 58.4% of obsolete answers on Stack Overflow were
probably obsolete when first posted, and only a small portion
of these answers ever get updated [15].

Wang et al. investigate askers and answerers, finding that
most askers ask only one question, most answerers answer
only one question, and a majority of contributors only ask
and never answer [16].

B. Stack Overflow, code misuse, and security

An et al. identified code-license violations (such as Creative
Commons violations) that seem to originate with code posted
to or taken from Stack Overflow [17]. Baltes et al. also note
that many copied code snippets are missing attribution [18].

Nadi, et al. investigated Stack Overflow posts to iden-
tify problems developers encounter when trying to imple-
ment cryptography [6]. They find that a majority of the top
cryptography-related posts are associated with confusing API
documentation, and many relate to confusion when trying
to use symmetric-key encryption. Our participants may have
experienced similar confusion, which led them to the Stack
Overflow posts we flagged.

In a lab study, Acar et al. found that while Stack Overflow
is easier to use than official documentation, it is more likely
to result in insecure code [3]. This paper builds on this finding
by examining how and why developers use security-relevant,
possibly insecure code they may find on Stack Overflow.

Perhaps most closely related to this paper is work by Fischer
et al. measuring how code from Stack Overflow propagates
to Android applications [5]. The authors use a classifier on
program dependency graphs to match security-relevant code
snippets from Stack Overflow with code found in Android
applications, finding that 15.4% of their Android-application
dataset contains security-related code from Stack Overflow,
and 97.9% of these applications contain at least one insecure
code snippet. Our work complements these findings by exam-
ining qualitatively why and how this insecure code propagates
via surveys and interviews with implicated developers.

III. STUDY PROTOCOL

In this study, we first identified security vulnerabilities by
reviewing related literature. We then found a set of Stack
Overflow posts which included these vulnerabilities. Next, we
built a crawler to search for projects on GitHub which reused
code snippets from these Stack Overflow posts entirely or in
part. Finally, we surveyed and interviewed the developers of
these projects to further understand how and why the insecure
code was propagated.

It is important to note that, because we have no control
group, our results obtained from this methodology are de-
scriptive and qualitative. For context, we provide numbers
of participants who provided a given response. Further, for
open-ended responses in particular, a participant failing to
mention a particular idea may not indicate disagreement; it
may simply have been left out. As such, our results are
not necessarily statistically generalizable beyond our sample;
however, we believe they provide useful insights into the
problem of insecure code propagation. See Section III-I for
more details.

Our study protocol was approved by the University of
Maryland’s Institutional Review Board (IRB).

A. Identifying security vulnerabilities

We reviewed literature about popular security vulnerabilities
related to cryptography, and extracted a few common prob-

lems, such as generating insufficiently random numbers, and
implementing encryption/decryption incorrectly.

As an example, one common Java vulnerability is use of
insecure pseudo-random number generation methods (PRNG),
such as java.util.Random(). These pseudo-random
number generators use a seed and a deterministic algorithm
to approximate some properties of truly random number
sequences, but the generated sequences are not cryptograph-
ically secure and may be predictable to attackers in some
situations [19]. As a remedy, Java provides an alternative class,
java.security.SecureRandom(), which complies with statistical
random number generator tests specified by NIST in [20].

Table I list all the vulnerabilities we investigated in this
study, including the sources we drew them from.

B. Identifying insecure Stack Overflow posts

Stack Overflow 1 is a well known Q&A website in the
software development community. On Stack Overflow, devel-
opers can ask questions about the problems they encounter
during development, up- and down-vote answers, and make
comments. These answers, comments and ratings can serve as
a resource for both the asker and for other developers who
may be looking for related answers or topics. However, prior
work has found some correlations between Stack Overflow and
vulnerable code [3], [5]. While Stack Overflow is not the only
such online forum, based on its popularity we chose to use it
as a source of potentially insecure code snippets to investigate.

We searched for answers with insecure code snippets related
to the vulnerabilities listed in Table I. For instance, to search
for code containing ECB mode for encryption, we searched
both Google and Stack Overflow for “How to implement AES
encryption?” and “AES encryption example in Java” (or other
languages). Because prior work we reference focused on Java
and Android, we focused on Java as well, but we also identified
some snippets with similar vulnerabilities in languages such as
PHP, Javascript, and C#. We checked each post we identified
manually and consulted with a security expert to ensure that
each snippet we selected contained a targeted vulnerability.
We then prioritized the selected snippets to focus on the most
viewed and most voted for answers.

The number of Stack Overflow posts we identified for each
vulnerability is listed in Table II.

C. Searching GitHub repositories

For each selected Stack Overflow post, we identified key-
words from the code it contained, which were used to search
projects in GitHub. Table I lists one such keyword example
(i.e., the line of code in one Stack Overflow post) for each
vulnerability. We built a crawler on Amazon Web Services
(AWS) to use the GitHub search API to search for projects
containing these keywords. Table II lists the number of GitHub
repositories we found across all Stack Overflow posts related
to that vulnerability.

For each search result (repository), we extracted the
matched file and used the MOSS tool (Measure Of Software

1https://stackoverflow.com/

Similarity, [23]) to calculate the similarity of this code to the
code snippet from the relevant Stack Overflow post. We then
prioritized our findings based on the MOSS similarity score,
as well as repository attributes like the number of stars, the
number of watchers, the number of forks, the last modification
date, the number of commits, and the number of contributors.
In general, we favored repositories with more popular, and
more recent, activity. Finally, we recorded the developers
responsible for editing these files as potential participants.

D. Recruitment

We sent the identified developers email invitations to par-
ticipate in our initial survey. Some email addresses were listed
on these developers’ GitHub profiles; some were identified in
the repository commit logs. We applied a marketing tool, Mail
Merge2, to send emails in bulk.

The invitation email, which was explicitly designed not to
mention security or vulnerabilities, was as follows:

Hi [username],

We are [institution] researchers conducting a study
of how software developers reuse code across
GitHub and StackOverflow. We are interested in
learning about you and your project [project name]
on GitHub. If you’d like to tell us about it, please
consider taking our survey: [url].

Table II shows how many invitations were sent for each
vulnerability, as well as how many invitees participated.

E. Survey

The survey contained three main sections.
In the first part, we asked about the participant’s software

development practices and experiences, such as how many
years of software development experience they had, whether
they had contributed to open-source software, how often they
engage in code review activities, how they evaluate the quality
of code obtained from online forums, and how often they asked
and answered questions in Stack Overflow or similar websites.

In the second part, we asked participants about their security
background, including how often they handle tasks related
to security, how they evaluate the security aspects of code
obtained from online forums, and whether they have used any
software verification or static analysis tools (e.g., FindBugs,
Pylint).

In the final part, we asked general demographic questions.
The survey took a median of 10 minutes to complete and

was not compensated.

F. Interview

At the end of the survey, we asked respondents if they
were willing to participate in a follow-up interview and if
they were comfortable conducting an interview in English.
We invited willing, English-speaking participants to schedule
a video interview via Skype or Google Hangouts. Interviews

2https://digitalinspiration.com/product/gmail-mail-merge

https://stackoverflow.com/
https://digitalinspiration.com/product/gmail-mail-merge

ID Security Vulnerability Description Code Snippet Keyword Example

1 Using Crypto-insecure Pseudo-Random
Number Generators (RNG) [21]

A Crypto-insecure PRNG increases the attacker’s ability to
predict the random number. E.g., Using the java.util.Random
function instead of java.security.SecureRandom

k += r * random.nextInt(3);

2 Using ECB mode for encryption [21]
ECB block cipher mode for AES is not semantically secure,
i.e., observing the ciphertext can reveal information about the
plaintext.

var decipher =
crypto.createDecipheriv(’aes-128-ecb’,
new Buffer(key, ’hex’), ”);

3 Using Non-random Initialization
Vector (IV) for CBC encryption [21]

Using a non-random IV increases the attacker’s ability to
guess the plaintext.

private String iv =
”fedcba9876543210”;

4 Using constant (hardcoded) encryption
keys [21], [22] Increases the attacker’s ability to recover the encrypted text. String myKey = “ThisIsAStrongPass-

wordForEncryptionAndDecryption”;

5 Using constant salts for
password-based encryption [21]

Makes the ciphertext vulnerable towards dictionary-based
offline attacks byte[] salt = ”DYKSalt”.getBytes()

6 Using fewer than 1000 iterations for
password based encryption [21]

Decreases the average time needed for an attacker to crack the
ciphertext.

PBEParameterSpec pbeParamSpec =
new PBEParameterSpec(salt, 20);

7 Using static seeds to seed RNGs [21] Non-random seeding increases the attacker’s ability to
predict/guess the next number in the sequence.

Random random = new
Random(37461831);

8 Improperly seeding RNGs [22]
Seeding a RNG with a predictable value (e.g., time, process
ID) can increase the attacker’s ability to guess a future
generated number.

init(”123456”);

TABLE I
LIST OF SECURITY VULNERABILITIES CONSIDERED FOR OUR ANALYSIS.

ID Security Vulnerabilities #SO Posts #Repos #Surveys Sent #Surveys Taken #Interview

1 Using Crypto-insecure Pseudo-Random Number Generators (RNG) 8 887 221 7 1
2 Using ECB mode for encryption [21] 6 953 271 11 0
3 Using Non-random Initialization Vector (IV) for CBC encryption [21] 15 1766 426 29 4
4 Using constant (hardcoded) encryption keys [21], [22] 18 953 199 7 4
5 Using constant salts for password-based encryption [21] 14 2576 50 6 1
6 Using fewer than 1000 iterations for password based encryption [21] 41 10521 1062 73 9
7 Using static seeds to seed RNGs [21] 1 394 3 0 0
8 Improperly seeding RNGs [22] 2 45 25 0 0

TABLE II
SECURITY VULNERABILITIES IN DIFFERENT PHASES OF OUR STUDY. VULNERABILITIES WITHOUT PARTICIPANTS ARE GRAYED OUT.

lasted 30 minutes on average (min 18.5 minutes, max 60
minutes), and participants were compensated with a $15 or
equivalent (if in a different currency) Amazon gift card.

In the interview, we first asked about the identified project
and its development broadly, including the goal of the project,
who it was designed for, whether the participant worked alone
or collaboratively, and whether there was a deadline.

Next, we asked specifically about the potentially vulnerable
code we had identified. After asking about its functionality,
we explained the potential vulnerability. If we had identified
other vulnerabilities not taken directly from the matched Stack
Overflow post, we also mentioned these vulnerabilities to the
participant. We then asked whether someone else had com-
mented on this vulnerability before, whether the vulnerability
was important or not, how the problem occurred, and whether
and how the participant intended to fix it. More broadly, we
asked what supports and obstacles were available when the
participant tried to write secure code.

G. Pilot Study

Before conducting the surveys and interviews described
above, we conducted a pilot interview study with nine partici-

pants. For this pilot, we manually searched Stack Overflow for
posts with insecure code snippets and then manually searched
GitHub for code that appeared to include these snippets.
We invited the developers of these projects to an interview
study. These interviews suggested several potential reasons for
reusing insecure code, including lack of expertise and tight
deadlines; responses to these interviews shaped the questions
we included in our final survey and interview protocol.

H. Data Analysis

For closed-item survey questions, we report aggregate de-
scriptive statistics.

To analyze the data from the interviews as well as the two
free response questions from the survey, we used open coding
with two coders. For the two free-response questions in the
survey, the coders initially worked together to code a subset
of answers and develop a codebook, stopping when no new
codes emerged (19 and 20 responses, respectively). The two
coders then independently coded the remaining responses to
each question. After discarding any responses deemed invalid
(unclear or off-topic) by either coder, the two coders achieved
reliability (measured using Cohen’s Kappa) of K = .90

and 0.82 for the two questions respectively. Kappa values
greater than 0.8 are commonly considered “almost perfect
agreement” [24].

For the interviews, we first transcribed the audio record-
ings. Two researchers worked together to open code eight
interviews, stopping when no new codes were being added.
The two then independently coded 3 interviews (20%) and
calculated K = 0.81 (again, “almost perfect”). With sufficient
reliability, one researcher coded the rest of the interviews.

In all cases, having reached sufficient reliability, the authors
resolved all differences for 100% agreement.

I. Limitations

As with most empirical studies, our results should be
considered in the context of our limitations.

Most importantly, we were unable to obtain a control group
of developers who do not produce vulnerable code when using
code from online forums. (It is unclear how such a group could
be identified.) Thus, we can use only descriptive statistics,
and we do not know if the habits and behaviors observed in
this study are specific to developers who produce vulnerable
code or not. Further, we cannot estimate whether the projects
we identified represent our participants’ typical outcomes.
Nonetheless, our findings shed light on the mindsets and
behaviors of developers who do at least sometimes produce
vulnerable code drawn from online forums, and therefore
provide insight into this unfortunate propagation.

Our results exhibit limitations common to self-reported
data, including satisficing, social desirability, and difficulty
remembering. (We discuss some of these in the context of
our results below.) Despite these limitations, our surveys and
interviews produced rich data about developers’ motivations
and practices, as well as the contexts in which they work.

We examined a limited set of vulnerabilities, exclusively
focusing on issues related to misuse of cryptography (Table I).
Further, these issues were not evenly represented in the Stack
Overflow posts or GitHub repositories that we found, and
our participant recruitment is correspondingly unbalanced (Ta-
ble II): most participants were recruited from three individual
vulnerabilities. This limits the generalizability of our findings,
but we believe our results still have value for understanding
how at least some vulnerabilities propagate from online forums
into open-source repositories.

IV. PARTICIPANTS AND THEIR PROJECTS

In this section we describe the participants in our survey and
interview studies; we also describe the projects our participants
contributed to in which we identified security problems.

A. Participants

We received 133 complete survey responses. Of these, 58
expressed interest in follow-up interviews and were comfort-
able using English. We invited 48 of these to interviews; 16 of
these scheduled interviews, and one no-showed, resulting in
15 completed interviews. 10 were not scheduled because we

Gender Male 94.7%
Female 2.3%
Others 0.8%

Age 18-24 10.5%
25-29 33.1%
30-39 33.1%
40-49 13.5%
50+ 2.3%

Education Completed H.S. or below 12.0%
Some college, no degree 7.5%
Associate’s degree 1.5%
Bachelor’s degree 44.4%
Master’s degree or higher 33.8%

Occupation Software developer 54.1%
Faculty member 1.5%
Graduate students 2.3%
Undergraduate student 1.5%

Years of develep- 0-2 9.8%
ment experience 3-4 19.5%

5-9 29.3%
10-14 21.1%
15-24 15.0%
25+ 5.3%

TABLE III
PARTICIPANT DEMOGRAPHICS FOR SURVEY. PERCENTAGES MAY NOT ADD

TO 100% DUE TO “OTHER” CATEGORIES AND ITEM NON-RESPONSE.

had reached saturation in the interviews, with no new themes
emerging.

Demographic information about the survey and interview
participants is summarized in Tables III and IV respectively.

In many respects, our interview participants appear to be a
fairly representative sample of our survey respondents. Among
survey participants, 116 (87%) reported having attended at
least some college, including 59 with a bachelor’s degree
and 45 with a postgraduate degree. Survey participants also
reported an average of 9.2 years (range: 0.5–35 years) of
software development experience and an average of 4.9 years

Fig. 1. Responses to the survey question: “How would you rate your
background in computer security?” Answer choices ranged from “Not
at all knowledgeable” to “Extremely knowledgeable” on a five-point scale.

ID Age Education Job Vuln Action Team
size

Monetary
compensation

Deadline
Pressure

Encption usage

P1 38 MS/PhD G.S. 1 Fixed 2-6 Yes-emp. N.D. File encryption with public key cryptography.
P2 18 HS U.S. 6 N/A 2-6 No N.D. User credential storage on client device.
P3 21 BS Dev. 4 N/A 1 No Somewhat Encryption for client-server communications.
P4 41 CND Dev. 6 Fixed 2-6 Yes-emp. N.D. User credential storage on client device.
P5 - MS/PhD Dev. 6 N/A 1 Yes-emp. N.D. User credential storage on server.
P6 25 BS Dev. 3,4 N/A 1 No Somewhat Encrypting arbitrary strings.
P7 22 MS/PhD Dev. 3,4 Repo Del. 2-6 No Very Enc. for client-server comm. and User data storage.
P8 27 HS Dev. 3 Acc. Del. 2-6 No N.D. Encryption for client-server communications.
P9 28 BS Dev. 3,4 N/A 1 Yes-emp. N.D. Encryption of intellectual property on client device.
P10 20 CND U.S. 5,6 N/A 1 No N.D. User credential storage on client device.
P11 28 CND Dev. 6 N/A 1 Yes-ent Somewhat Unique id generation for client verification.
P12 44 BS Dev. 5,6 N/A 1 Yes-ent N.D. Encryption of software configuration files.
P13 32 BS G.S. 5,6 N/A 2-6 Yes-emp. Extremely FTP functionality integration.
P14 23 BS - 5,6 N/A 1 No N.D. Encryption of data stored in a database.
P15 24 MS/PhD Dev. 5,6 N/A 2-6 No Not at all User data storage in a database.

TABLE IV
DEMOGRAPHICS AND VULNERABLE CODE USE DESCRIPTION OF INTERVIEW PARTICIPANTS. EDUCATION: HS–HIGH SCHOOL; CND–ATTENDED

COLLEGE, NO DEGREE; MS/PHD–POST GRADUATE DEGREE; BS–BACHELOR OF SCIENCE. JOB: DEV.–SOFTWARE DEVELOPER; G.S.–GRADUATE
STUDENT; U.S.–UNDERGRADUATE STUDENT. ACTION INDICATES THE ACTIONS TAKEN BY PARTICIPANTS AFTER OUR INTERVIEW:

FIXED–VULNERABILITY WAS FIXED; REPO DEL.–ENTIRE REPOSITORY WAS DELETED; ACC. DEL.–GITHUB ACCOUNT WAS DELETED; N/A–NO
ACTION. MONETARY COMPENSATION MEANS WHETHER AND HOW DEVELOPERS GOT PAID: YES-ENT.–PAID BY DEVELOPING AND SELLING

SOFTWARE; YES-EMP.–MONETIZED AN ENTREPRENEURIAL EFFORT. N.D.: NO DEADLINE.

(range: 0–18 years) of education in computer science or a
related field.

Similarly, 12 (80%) of the interview participants reported
having attended at least some college: four reported bachelor’s
degrees and six reported postgraduate degrees. Our interview
participants reported an average of 9.4 years of software
development experience (range: 1–35) and 4.2 years (range:
0–11 years) of education.

The majority of survey participants (72, 62%) indicated their
primary occupation was software development. In addition,
seven respondents indicated they were in academia (two fac-
ulty members, three PhD students, and two undergraduates).
Overall, 111 survey participants (83%) reported having been
employed as a software developer in the past year. Eighty-two
survey participants (62%) reported contributing to open-source
software projects in the past year.

The statistics for interview participants were fairly similar:
10 (67%) reported a primary occupation of software devel-
opment, two were undergraduate students, two were graduate
students, and one did not specify. The majority (12, 80%) of
interview participants were employed as a software developer
in the past year, and 10 (67%) reported contributing to open-
source projects in the past year.

The vast majority of survey participants (126, 95%) reported
being male, along with three female, one other, and three who
opted not to answer. Similarly, but unfortunately, all of our
interview participants were male. The average age was 33
years for survey participants (range: 18–55) and 28 years for
interview participants (range: 18–44).

On average survey participants considered themselves
“somewhat knowledgeable” (the middle of five Likert options)
about computer security, as illustrated in Figure 1. Interview
participants were roughly comparable, but reported slightly
less security knowledge overall.

Majorities of both survey and interview participants reported
experience with software verification or static analysis tools.
Among survey respondents, 82 (62%) reported having such
experience, 35 (26%) said they did not, and 10 (8%) did not
recognize the terms. For interview participants, these numbers
were 11 (73%), three (20%), and one (7%) respectively.

B. Participants’ GitHub projects

Here we outline some characteristics of the GitHub projects
in which we identified vulnerable code potentially originating
from Stack Overflow.

Among the 15 projects associated with our interviewees,
four were written for personal use, four for colleagues, and
three aimed at software developers generally. Other projects
(n=3) were written for specific users populations: stock traders,
people who play a specific video game, and students. One was
written for the general population.

Two of our interviewees’ projects were written as course-
work, and one project was created for a job interview. Seven
interviewees reported being compensated for their work on
the indicated project. For nine projects (60%), the interviewee
was the sole author; five (33%) were authored together with
friends or colleagues, and one was written cooperatively by the
open-source community. Similarly, among survey respondents,
80 (60%) worked on the project alone, 42 (32%) worked in
groups of up to five people, two (2%) worked in teams of 6-10
people, two (2%) worked in teams of 11-15 people, and six
(5%) worked in groups of more than 15 people.

More than half of the survey respondents (74, 56%) reported
having a deadline when working on the identified (potentially
vulnerable) project. Similarly, seven interview participants
(47%) reported working under a deadline. The reported pres-
sure associated with these deadlines is illustrated in Figure 2.

In the survey, we asked about the languages and devel-
opment platforms used in the projects we identified. Of 127
respondents with valid answers to this free-response question,
the most common language reported was Java (n=56). The
most commonly mentioned editors were Eclipse (n=17), Visual
Studio (n=11), and Android Studio (n=9). Ten respondents
mentioned Linux, nine mentioned Windows, and three men-
tioned MacOS. Interview participants’ responses were fairly
typical of these trends: they mentioned Java (n=10), Eclipse
(n=3), Android Studio (n=1), and Linux (n=2).

As expected, all interview participants said the potentially
vulnerable code was related to encryption. Short descriptions
of what the encryption was used for can be found in table IV.
None of the interview participants said they had previously
been informed about the vulnerability before we pointed it out.
After the interview, two participants fixed the vulnerabilities.
One deleted that Github repository, and one closed his Github
account. The rest of 11 participants didn’t make changes for
the vulnerabilities we pointed out.

Seven interview participants said the vulnerable code was
not important to the function of the overall program. We
discuss this further in Section VI-G.

V. BEHAVIORS WHEN DRAWING FROM ONLINE SOURCES

Here we discuss how our participants report using online
sources, such as Stack Overflow, during software development.

A. Developers do refer to online sources

The vast majority of both our survey and interview par-
ticipants report referring to online sources when developing
software. We also see that participants report caring about
community feedback that is available from these resources.

Among 111 respondents who had been employed as a
software developer in the past year, two participants (2%)
said they never refer to Stack Overflow during professional
development, and seven (6%) said they rarely refer to it.
Among 82 respondents who reported contributing to open-
source software in the past year, one (1%) and 14 (17%)

Fig. 2. Responses to the survey question: “How pressured did you feel
to complete the project by the deadline?”

said they never or rarely referred to the site during such
development.

We also asked specifically about referring to Stack Overflow
for questions relating to security. Among past-year open-
source contributors, 45 said they never or rarely do so, 28
said they sometimes do so, and 8 said they often or always
do so.

When asked about the vulnerable project specifically, 84
out of all 133 participants (63%) reported they had used online
forums, 57 (43%) had requested help from other collaborators,
and 39 (29%) did both.

These trends are reflected in our interviewees: all reported
they used online forums in context of the vulnerable project.
(Two interviewees reported in the survey that they had not used
online forums for this project, but both did report using such
forums for the project during the interview.) In more detailed
interview questions, 12 interview participants mentioned Stack
Overflow explicitly, including four who mentioned that they
use Google search and then click on Stack Overflow threads
within the results. For example, P5 said “I used Google to
query how to do things, and that normally provides me with
Stack Overflow.”

In line with prior work [16], [25], 96 of 133 survey
respondents reported having asked at least one question on
online programming forums, 98 out of 133 answered at least
one question on them. In addition, we observe that 34 out
of 96 participants asked security related questions; 23 out
of 98 participants answered security related questions on the
aforementioned platforms.

B. Many claim to take precautions when importing code

In the survey, we asked a free-response question about
how respondents evaluate the quality of code drawn from
online forums. (For the rest of Section V, we report only
on the 104 respondents who provided valid answers to this
question.) Respondents generally report skepticism of such
code, describing several strategies for evaluating it before
using it.

Thirty participants (29%) reported checking for good coding
practices, including well-documented or well-written code, as
well as code with correct syntax and good resource manage-
ment. Additionally, 25 respondents (24%) mentioned trying
to understand the snippet via code review, or code-review-
like behaviors, such as tracing the logic of the provided code.
For instance, one survey respondent noted, “I evaluate code
based on software engineering principles. . . It is important to
me that I understand code snippets before I am comfortable
using them in my own software.” Another common strategy
(n=14, 13%) was to write test cases for code the respondent
intended to import. Overall, 54 respondents (52%) mentioned
at least one of these three strategies, all of which reflect some
degree of confidence in their own ability to correctly assess
code they plan to reuse. As we will discuss in Section VI-D,
many participants also reflect this confidence in a security
context.

Fig. 3. Responses to the survey question: “How often do you engage in
the following activities in professional software development? - writing
tests’

Fig. 4. Responses to the survey question: “How often do you engage in
the following activities in open source software development? - Writing
test cases for your code?’

On the other hand, several respondents described strategies
that rely less on their own skills and more on external
validation. Sixteen participants (15%) reported using com-
munity feedback features to evaluate the trustworthiness of
code snippets. Examples include upvotes (n=8), community
comments about the snippet (n=3), and author reputation
(n=3). Further, seven respondents (7%) mentioned searching
for multiple solutions to the same problem and then comparing
them to obtain a consistent answer. As we will discuss below,
a number of participants report relying on external validation
for security code as well, either because they feel they have
insufficient knowledge (Section VI-C) or because security is
or should be someone else’s job (Section VI-F).

C. Others claim they do not copy code

In response to the same free-response question, several
developers (17/104, 16%) claimed to rarely or never use code
from online forums directly. These participants claimed to
gather ideas from online forum answers, but then to modify or
even completely rewrite it before using it. One survey partic-
ipant wrote, “I everything re-parse, re-write in my own code
style that any piece of taken code corresponded same naming
conventions and other code style guidelines. Every class name,

Fig. 5. Responses to the survey question: “How often do you refer to
code snippets relating to computer security on online forums such as
Stack Overflow or others?”

method, property, variable, everything. Even comments could
rewrite that more clearly explained what this code does and
often re-implement some parts if I have better ideas about
them.”

One interviewee (P12), relatedly, claimed copying directly
from forums was an error made primarily by junior program-
mers: “I call it monkey behavior ... it’s a problem of juniors. ...
I advise them not to do this stuff, search Google or whatever,
developer forums, and directly insert code into and run. I think
this is not behavior for professional company.”

As all of our participants were recruited by identifying
code matches with Stack Overflow posts (Section III-C), the
participants who claimed never to engage in such copying raise
interesting questions. Perhaps the matching was incorrect, per-
haps the “modifications” made by the developer were too small
to prevent MOSS matching, or perhaps a collaborator added
that code. It’s also possible, however, that these participants
are exhibiting a social desirability bias, because they believe
that admitting to copying code from online forums would be
embarrassing. We note that we manually checked the code for
all interviewees and found the MOSS matching to be correct
in all cases.

D. Sometimes functionality is all that matters

A large minority of participants (20/104), by contrast, read-
ily admitted in response to the same free response question that
they prioritize code functionality over other concerns. These
participants indicated they would run code found in online
forums and then accept it, as-is, if the desired functionality
was observed. As one survey respondent put it, “I try them
out, if they work, I use them.” This type of behavior can
also be seen in a security context, as we explore further in
Section VI-E.

VI. SECURITY-RELEVANT BEHAVIOR

In this section we describe security relevant practices re-
ported in the survey and interview responses.

A. Introducing security problems

We identified participants because of the overlap between
their code and vulnerable code that we found on Stack
Overflow. When we asked participants how the vulnerability
occurred, however, only five of the 15 interview participants
explicitly blamed an external source. (Three mentioned Stack
Overflow, one mentioned a book, and one did not specify a
source.) The three participants who mentioned Stack Overflow
directly admitted the bug might have been caused by copy &
pasting. P14 said, “I think it’s just copy and paste from another
website . . . I need fast-forward encryption techniques, not how
it works.” Interestingly, P1 blamed the external source while
avoiding mentioning copying code: “In that book, there were
a lot of receipts you have to follow. Maybe the part to create
the random generator was not written in the book. It just says
how to do the encryption.”

The other causes for these security bugs that participants
mentioned included that they weren’t prioritizing security
(n=8), they didn’t know enough to properly do security
evaluation (n=4), they prioritized code efficiency (n=2). Two
participants said they could not remember. We note that these
reasons are not necessarily incompatible with copy & pasting,
but rather may explain why they copy & pasted vulnerable
code. We explore these issues in more detail in the following
subsections.

B. Participants claim to be skeptical about security code

Many participants claimed to be particularly skeptical about
drawing code from online forums in a security context.

We asked survey respondents who are open-source software
developers and reported referring to security code on stack
overflow whether and how they validate such code. Seven
out of 43 participants (16%) said they do not make security
evaluations at all. (We discuss the strategies used by the
other 36 in further subsections). However, only four out of
12 interviewees who said they had used online forums for
the vulnerable projects claimed to have considered security
aspects when using code from these forums.

There are several possible explanations for this disparity:
perhaps our interview sample was not representative of the
survey sample in this respect, or perhaps our interview partic-
ipants typically validate security code found online carefully
but didn’t for the projects we referenced. On the other hand,
the survey responses might reflect a social desirability bias:
developers recognize that they “should” perform additional
validation for security-relevant code, but in practice they either
choose not to or are unable to.

We hypothesize that the propagation of vulnerable code
from online forums to GitHub projects suggests either that
developers do not realize that security-relevant code may
need extra validation, or that they know but either do not
or cannot perform this validation; these results suggest the
latter rather than the former. In the following subsections, we
explore reasons why developers do not or cannot perform this
validation.

C. Insufficient security knowledge

Many participants in both the survey and interview sug-
gested that their security knowledge is insufficient to perform
security-relevant tasks like validating code from online forums
and fixing identified bugs. Several participants suggested that
further reading and education might help them secure their
code.

All but one of the interviewees referenced the importance of
security knowledge during the interview. Four of 15 explicitly
said the security bug we identified originated because they
didn’t know enough about security to properly validate code
they wrote, and eight said that lack of security knowledge
would hinder them from properly integrating security-relevant
code (including that from online forums). Nine participants
said that in order to integrate security-relevant code correctly
and efficiently, they would need educational resources, such
as blogs and articles (n=4) or online forums (n=3). However,
these resources themselves must be vetted for correctness: P5
wanted to find “Well-written articles to explain the problems,
explain the pitfalls, explain mistakes people commonly make.
And I would love to see an article written like that. . . if you do
enough googling, you can find the answer to almost anything.
You just have to get good at choosing which results to believe
and which ones not to believe.”

Further, six interviewees said they would need to learn more
about security before they could avoid future problems similar
to the vulnerability we identified. When asked whether and
how they would fix the code in question, three participants
said they did not know how to fix it but claimed they would
learn about the problem and implement a fix. To explain how
he would fix the bug, P1 said, “The first thing to check is
what is the secure way to do this kind of password encryption
in Java right now.” Interestingly, P1 did eventually fix their
pseudorandom-number-generator problem (Table IV).

As mentioned in Section VI-B above, 36 survey respondents
described specific strategies for validating security-relevant
code found in online forums. Of these, 13 mentioned learning
from information resources, including online forums, blogs,
and articles (n=9) as well as more official sources such
as security-industry organizations or official documentation
for security libraries (n=4). As examples of the latter, one
respondent specifically mentioned the OWASP Top Ten list3

and another mentioned documentation a Java EE security
tutorial4.

D. Developers trust their security skills

In contrast to participants who claim they do not know
enough to implement security correctly, other participants do
trust their own secure-development skills to protect their code.

When asked how they evaluate security aspects of code
they find in online sources, many respondents indicated that
they can evaluate security code sufficiently themselves. Of the
36 respondents who gave specific validation strategies (see

3https://www.owasp.org/index.php/Category:OWASP Top Ten Project
4https://docs.oracle.com/javaee/6/tutorial/doc/bnbwj.html

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://docs.oracle.com/javaee/6/tutorial/doc/bnbwj.html

Section VI-B), 19 said they would try to understand how the
code works, seven said they would write tests or otherwise
try to break the code, and four reasoned that simpler code
would inherently be more secure than complex code. Two
respondents said they simply will not reuse code from online
sources if it deals with user data.

We see a similar theme with our interviewees: seven said
they would try to prevent future vulnerabilities (like the ones
we identified) by trying to understand code drawn from online
forums. Eleven participants reported that they knew enough
to fix the vulnerabilities we identified and provided specific
mechanisms for doing so. (Notably, this was after we had
pointed out and explained the vulnerabilities, many of which
are simple to fix once identified.) For instance, P11 identified
multiple paths to fixing the issue: “I would probably use JWT,
Java Web Tokens. So I might hide the secret with a public key,
maybe even PGP, because this is like a message. Not just fix
one line or two, but to rewrite all the code.”

Two interview participants said that in order to easily
integrate security-relevant code into their projects, they would
rather write their own code instead of using existing li-
braries/frameworks. P6 noted, “It’s not hard to rewrite the code
if the encryption and security aspects is more important than
efficiency, performance. Then writing the function or class by
yourself, means more safety.” This contradicts conventional
wisdom that reusing validated libraries is more secure than
“rolling your own” security software [26].

These responses suggest that in many cases, developers are
confident enough in their own skills that they use (or reuse)
code without referring to external resources or validating it
more formally. The propagation of insecure code from online
forums into GitHub and other production code (as identified
by our work and in prior work such as [5]) suggests that
sometimes this confidence may be misplaced.
Trusting their own skills, or wanting to learn more?
We note that claiming insufficient security knowledge (Sec-
tion VI-D) and trusting one’s own security knowledge to be
sufficient (this subsection) seem at least somewhat contradic-
tory. In the survey data, these two populations seem mostly
disjoint; five participants report validation strategies that fall
into both categories.

In the interview data, however, a majority participants
sometimes indicate that they trust their security skills but
also suggest that they need to learn more. We suspect that
the in-depth interview (in which security flaws are pointed
out) allows participants to reflect more on their processes and
recognize areas where they may want to learn more.

E. Security isn’t the top priority

As previous work has shown, some developers prioritize
other features of software — such as adding functionality or
ensuring computational efficiency — over security [27]. We
found evidence of this trend as well.

Twelve interview participants said they had consulted online
forums when writing the project we identified as vulnerable.
When asked if they considered security aspects when deciding

to use code from these forums, four of the 12 said yes; the
other eight reported that they did not consider security at all.

Two participants who said they did not consider security
explicitly said that they just needed the code to work. When
asked how or why a security problem occurred in their project,
eight indicated that functionality was the highest priority, or
that security was “an afterthought” (P4). According to P12,
“This was an acceptable solution. I did not search again and
again to find the best solution or to find the weakness in my
code. I grabbed it from some forum and oracle developers or
something like that. Just take, use, and go on.”

Two participants explicitly cited efficiency concerns. For
example, P15, who used a hard-coded salt when generating a
key from a password, said that “the hard-coded thing probably
is because it took less time for me to encrypt and decrypt.”

Other participants (n=5) suggested that prioritizing func-
tionality would inhibit the correct integration of security code
in general, not just in the project we identified as potentially
vulnerable. As P6 said, “I usually use the cipher method that
looks simple: encryption stuff comes with it. Use the easiest
way to finish the crypto task. None of my projects are focusing
on the security aspects. I didn’t see any point to get into more
details about encryption stuff.”

F. Security should be someone else’s job

We also found evidence that some developers would rather
not deal with security-relevant programming, by themselves
or at all, and that some consider security not to be a core
aspect of software development but rather someone else’s
responsibility. This result accords with prior work in software
engineering [28],as well as research into end users’ security
decision-making [29].

Five interview participants said they would need security-
oriented code reviews to avoid similar security bugs (to the
ones we pointed out) in the future. P1 said, “When you use
the code into your project, have some[one] to check or give
it to some security department in the company to verify a
little bit.” Two of these five specifically stated they would
refer to mentors for security-oriented code reviews. A sixth
participant cited lack of security-oriented code review as a
factor that might prevent developers from integrating security-
relevant code correctly in general.

Two participants said that to prevent future security prob-
lems, they would want to abstract security-related code using
methods “trusted by the community” (P4, P10). Two others
said they would prefer to completely outsource security-
relevant code to other developers. P11 said he wanted “Some-
one else in a service to do it for me, like some other company,
to offload problems to someone else. I would probably use
some service like Firebase from Google, they have all the
authentication service.”

Two participants wished for automated code analysis tools
to help with integrating security-relevant code: “Being able to
pop this code into whatever editor it was I was using, if the
editor had the ability to highlight potential vulnerabilities I
should focus in on, . . . it would be pretty handy” (P13).

In all of these responses we see that participants are trying
to offload the responsibility of writing secure code to some
degree. This is either done by trying to use “community
trusted methods,” looking for security oriented code reviews,
outsourcing security code completely, or using code analysis
tools. From these responses, we hypothesize that believing
that security is or should be someone else’s responsibility may
align well with a willingness to copy & paste security-relevant
code from an online forum with limited validation.

G. Security is not important in my context
A large minority of our interviewees (n=7) reported that the

potentially vulnerable code we identified was not of concern
in their project. Four said the vulnerability was important,
and three were unsure. P10 argued that the relevance of any
security issue depends on “the scope of the platform, and
the scope of the project,” but refused to answer whether the
particular issue we identified was important in his project.

Four said the potential vulnerability was unimportant be-
cause the code in question is not used by many people. For
example, P3 said, “It’s not used by a lot of audience, so it’s
not very important. But it’s important in a broader sense.” Two
interviewees (P1,P4) argued that because the code was used
only in internal, offline tasks, security was irrelevant.

P4 and P11 claimed that the code in question was not
written for a security-sensitive purpose. P11, for example,
was developing a game cheat program, in which gamers pay
periodic fees to enable the functionality. What we identified
as potentially vulnerable code; is code that used encryption to
create unique identifiers for each subscriber, in order to detect
whether a single subscription was being used by multiple
people or devices. P11 argued that this unique identifier use
does not have important security implications: “It’s not for
password encryption or related. It’s just used as an identifier.
Even if you crack it, you really don’t do anything. It’s just
unique information. Just to warn me . . . if someone is sharing
their subscriptions.”

We note that all participants used cryptographic code in
their potentially vulnerable projects, suggesting that on some
level they believed there was some security-relevant purpose.
(For example, P11 could have used a non-encryption-related
unique identifier if he was not concerned about cheating.)
Denying the relevance of security to their project may arise
from participants’ general defensiveness when asked about the
problems we identified, a kind of social desirability bias.

VII. DISCUSSION

In this section we discuss some of our descriptive findings
and propose different methods of mitigating insecure code
propagation via online forums such as StackOverflow.

We find that by and large, developers are aware that there
are risks associated with importing code (in general, and
security-specific) from online forums. Our results demonstrate
that many participants recognize that they “should” perform
validation via code reviews and tests, checking with exter-
nal resources (including community feedback and “official”
sources), and other strategies.

However, the prevalence of vulnerable code propagation [5]
— in addition to the problems we identified in participants’
own code — indicate that there is a critical gap between
participants recognizing the importance of validation and im-
plementing it. It is straightforward, and not unusual, to blame
developers for prioritizing convenience or functionality over
ensuring security, and indeed we find substantial evidence of
such prioritization. We also, however, find other potentially
important explanations, including participants who feel ill-
equipped to properly conduct such validation and participants
who believe, rightly or wrongly, that security should or will be
handled by others. These differing motivations for propagating
insecure code inform our recommended mitigations.

A. Security-oriented feedback system

In response to participants who do not have confidence in
their ability to vet security-relevant code, as well as partici-
pants who rely on third parties and community feedback to
help them, we suggest extending online forums to explicitly
encourage community feedback on the security aspects of
provided code snippets. (This idea was also suggested in [3].)

For Stack Overflow, this could mean extending the already-
in-place flagging system [30] or duplicate-marking system [31]
to allow flagging or marking for insecure code. Further, Stack
Overflow could provide a commenting option specific to
security-relevant concerns, perhaps highlighted with coloring
or placement on the page. These feedback features might help
developers who want to be skeptical of security-relevant code
to make better choices.

Of course, any such community-feedback system can only
be as useful as the expertise of its contributors. To this end,
Stack Overflow could extend its reputation system to include
security reputation, limiting certain community-feedback func-
tions to those users who have previously demonstrated security
expertise in other threads.

Such a system also has potential to influence developers who
do not prioritize security or do not believe security is their
responsibility. The availability of quasi-expert feedback ad-
dresses some developers’ desire to outsource security decision-
making. Further, forum administrators could use security feed-
back system as a factor in search results or recommendation
systems, which would reduce the likelihood of developers who
prioritize convenience encountering insecure results.

B. Linking to educational material

Another potential response to developers who expressed
a desire to learn more about security in order to properly
evaluate code they encounter is to provide them with educa-
tional resources. In particular, we suggest providing an explicit
mechanism to link from threads on Stack Overflow and similar
forums to related educational materials. The sources for these
materials could be official documentation as well as white-
listed experts and publications.

Users of online forums could be incentivized to link this
material by allowing such linking (and subsequent approval

by the community) to contribute to the user’s reputation. Al-
ternatively, researchers have explored automated mechanisms
for linking forum posts and other documentation sources [32],
[33]. Further, advancements in post deduplication would allow
both community security feedback and links to educational re-
sources to propagate among posts covering similar topics [34]–
[36].

C. Removing problematic posts

For those developers who do not prioritize security, who
do not believe security matters in their context, or who
believe that security is or should be someone else’s job, these
mitigations may not be sufficient. Such developers may be
likely to ignore warnings and links to educational materials in
favor of effortlessly importing code that superficially solves a
problem. To mitigate this, the problematic code snippets will
have to be either made less visible to search algorithms or
even removed altogether.

This goal could potentially be achieved via ranking posts
using the community security-feedback features described
above. If this approach proves insufficient, it might also be
possible for carefully selected parties — for example, the
U.S. Computer Emergency Readiness Team (US-CERT) —
to explicitly request takedowns of problematic code snippets.
Safeguards to prevent abuse would be required, and perhaps
removed posts could be archived in a fashion that allows
them to be accessed, but with sufficient inconvenience to deter
developers searching for a quick fix. This might require a large
resource investment by the trusted organizations, but even an
effort to remove a few of the worst offenders could provide
dividends.

VIII. CONCLUSION

Previous work has shown insecure code propagates from
online programming forums to production code. In this study,
we explore the reasons behind insecure code propagation from
Stack Overflow to open-source GitHub repositories. In partic-
ular, we identified (from prior work) specific cryptography-
related security vulnerabilities and searched for Stack Over-
flow posts that instantiate these vulnerabilities as code snip-
pets. Using MOSS, we matched these snippets to code in
GitHub repositories. We surveyed 133 authors of these reposi-
tories and conducted follow-up interviews with 15 of them. We
find that while developers can articulate a variety of strategies
for properly vetting security-relevant code they encounter in
online forums, this vetting fails in practice for a variety of
reasons, including choosing not to prioritize security, believing
security is or should not be their job, and having insufficient
knowledge or skill to evaluate specific code.

IX. ACKNOWLEDGMENTS

The authors wish to thank Arunesh Mathur, Angel Plane,
Heba Aly, and Ahmed Taha for their help with early versions
of this work. We also thank all our participants, our anony-
mous reviewers, and our shepherd, Shriram Krishnamurthi.
This work was supported in part by the U.S. Department of

Commerce, National Institute for Standards and Technology,
under Cooperative Agreement 70NANB15H330.

REFERENCES

[1] OWASP, OWASP Top Ten Project, 2017. [Online]. Available:
https://www.owasp.org/index.php/Category:OWASP Top Ten Project

[2] M. Corporation, Common Vulnerabilities and Exposures, 2019. [Online].
Available: https://cve.mitre.org/

[3] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information sources
on code security,” in 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 2016, pp. 289–305.

[4] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the Usability of Cryptographic APIs,” in
2017 IEEE Symposium on Security and Privacy (SP), May 2017, pp.
154–171.

[5] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy&paste
on android application security,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 121–136.

[6] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through hoops:
Why do java developers struggle with cryptography apis?” in Proceed-
ings of the 38th International Conference on Software Engineering.
ACM, 2016, pp. 935–946.

[7] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand,
and M. Smith, “Why do developers get password storage wrong?: A
qualitative usability study,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
New York, NY, USA: ACM, 2017, pp. 311–328. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134082

[8] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:
Associations between software development and crowdsourced knowl-
edge,” in 2013 International Conference on Social Computing. IEEE,
2013, pp. 188–195.

[9] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do developers uti-
lize source code from stack overflow?” Empirical Software Engineering,
pp. 1–37, 2018.

[10] D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack overflow in github:
any snippets there?” in 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). IEEE, 2017, pp. 280–290.

[11] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and
answer questions on the web?: Nier track,” in 2011 33rd International
Conference on Software Engineering (ICSE). IEEE, 2011, pp. 804–807.

[12] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming q&a in stackoverflow,” in 2012
28th IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2012, pp. 25–34.

[13] J. Yang, C. Hauff, A. Bozzon, and G.-J. Houben, “Asking the right
question in collaborative q&a systems,” in Proceedings of the 25th ACM
conference on Hypertext and social media. ACM, 2014, pp. 179–189.

[14] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code:
an analysis of stack overflow code snippets,” in Proceedings of the
13th International Conference on Mining Software Repositories. ACM,
2016, pp. 391–402.

[15] H. Zhang, S. Wang, T.-H. P. Chen, Y. Zou, and A. E. Hassan, “An em-
pirical study of obsolete answers on stack overflow,” IEEE Transactions
on Software Engineering, 2019.

[16] S. Wang, D. Lo, and L. Jiang, “An empirical study on developer
interactions in stackoverflow,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing. ACM, 2013, pp. 1019–1024.

[17] L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack overflow: A code
laundering platform?” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017,
pp. 283–293.

[18] S. Baltes, R. Kiefer, and S. Diehl, “Attribution required: Stack overflow
code snippets in github projects,” in Proceedings of the 39th Interna-
tional Conference on Software Engineering Companion. IEEE Press,
2017, pp. 161–163.

[19] O. Docs, Random (Java Platform SE 8), 2018. [Online]. Available:
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html

[20] N. I. of Standards and T. (NIST), FIPS 140-2, Security Requirements
for Cryptographic Modules, 2002. [Online]. Available: https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://cve.mitre.org/
http://doi.acm.org/10.1145/3133956.3134082
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

[21] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An
empirical study of cryptographic misuse in android applications,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, ser. CCS ’13. New York, NY, USA:
ACM, 2013, pp. 73–84. [Online]. Available: http://doi.acm.org/10.1145/
2508859.2516693

[22] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why does
cryptographic software fail?: A case study and open problems,” in
Proceedings of 5th Asia-Pacific Workshop on Systems, ser. APSys ’14.
New York, NY, USA: ACM, 2014, pp. 7:1–7:7. [Online]. Available:
http://doi.acm.org/10.1145/2637166.2637237

[23] S. University, MOSS: A System for Detecting Software Similarity, 2017.
[Online]. Available: https://theory.stanford.edu/∼aiken/moss/

[24] J. Landis and G. Koch, “The measurement of observer agreement for
categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.

[25] StackExchange. (2019) All sites - stack exchange. [Online]. Available:
https://stackexchange.com/sites?view=list#users

[26] B. Schneier, Amateurs Produce Amateur Cryptography, 2015.
[Online]. Available: https://www.schneier.com/blog/archives/2015/05/
amateurs produc.html

[27] R. Balebako and L. Cranor, “Improving app privacy: Nudging app
developers to protect user privacy,” IEEE Security & Privacy, vol. 12,
no. 4, pp. 55–58, 2014.

[28] H. Mouratidis, P. Giorgini, and G. Manson, “When security meets
software engineering: a case of modelling secure information systems,”
Information Systems, vol. 30, no. 8, pp. 609–629, 2005.

[29] E. M. Redmiles, S. Kross, and M. L. Mazurek, “How i learned to be
secure: a census-representative survey of security advice sources and
behavior,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 666–677.

[30] StackExchange. (2019) Privileges flag posts. [Online]. Available:
https://stackoverflow.com/help/privileges/flag-posts

[31] StackExchange. (2019) Why are some questions marked as duplicate.
[Online]. Available: https://stackoverflow.com/help/duplicates

[32] C. Treude and M. P. Robillard, “Augmenting api documentation with
insights from stack overflow,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE, 2016, pp. 392–
403.

[33] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014, pp. 643–652.

[34] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,
“Mining duplicate questions in stack overflow,” in Proceedings of the
13th International Conference on Mining Software Repositories. ACM,
2016, pp. 402–412.

[35] W. E. Zhang, Q. Z. Sheng, J. H. Lau, and E. Abebe, “Detecting
duplicate posts in programming qa communities via latent semantics and
association rules,” in Proceedings of the 26th International Conference
on World Wide Web. International World Wide Web Conferences
Steering Committee, 2017, pp. 1221–1229.

[36] Y. Zhang, D. Lo, X. Xia, and J.-L. Sun, “Multi-factor duplicate question
detection in stack overflow,” Journal of Computer Science and Technol-
ogy, vol. 30, no. 5, pp. 981–997, 2015.

APPENDIX

THE SURVEY
1) I am age 18 or older, and I have read this consent form

and agree to participate in the survey.
Yes
No

2) How many years of software development experience do
you have? numeric free response

3) How many years did you study computer science (or a
related discipline) in school? numeric free response

4) In the past year, have you been employed as a profes-
sional software developer?

Yes
No

[If Yes for question 4]
How often do you engage in the following activities in
professional software development?

a) Writing test cases for your code?
Never - Rarely - Sometimes - Often - Always - N/A

b) Collaborate with others for writing code?
Never - Rarely - Sometimes - Often - Always - N/A

c) Engage in code reviews with others?
Never - Rarely - Sometimes - Often - Always - N/A

d) Refer to code snippets from online forums or
StackOverflow?
Never - Rarely - Sometimes - Often - Always - N/A

5) In the past year, have you contributed code to open source
software?
Yes
No

[If Yes for question 5]
How often do you engage in the following activities in
open source software development?

a) Writing test cases for your code?
Never - Rarely - Sometimes - Often - Always - N/A

b) Collaborate with others for writing code?
Never - Rarely - Sometimes - Often - Always - N/A

c) Engage in code reviews with others?
Never - Rarely - Sometimes - Often - Always - N/A

d) Refer to code snippets from online forums or
StackOverflow?
Never - Rarely - Sometimes - Often - Always - N/A

6) In your own words, please explain how you evaluate the
quality of code from online code snippets. How do you
decide whether to accept or reject the code?
free response

7) Have you ever asked questions on online forums such as
StackOverflow or others?
Yes
No
I don’t remember

8) Have you ever answered questions on online forums such
as StackOverflow or others?
Yes
No
I don’t remember

9) Check all the statements that describe your background
in computer security?
I have never take never taken any courses in computer

http://doi.acm.org/10.1145/2508859.2516693
http://doi.acm.org/10.1145/2508859.2516693
http://doi.acm.org/10.1145/2637166.2637237
https://theory.stanford.edu/~aiken/moss/
https://stackexchange.com/sites?view=list#users
https://www.schneier.com/blog/archives/2015/05/amateurs_produc.html
https://www.schneier.com/blog/archives/2015/05/amateurs_produc.html
https://stackoverflow.com/help/privileges/flag-posts
https://stackoverflow.com/help/duplicates

security
I have taken a course that did not focus on computer

security, but included computer security as a module
I have taken a basic course in computer security
I have taken an advanced course in computer security

10) How would you rate your background in computer secu-
rity?
Not at all knowledgeable
Slightly knowledgeable
Somewhat knowledgeable
Very knowledgeable
Extremely knowledgeable

[Asked If Yes for question 5]
11) In your open source software development routine, how

often do you implement and handle tasks that relate to
computer security?
Never - Rarely - Sometimes - Often - Always - N/A

[Asked if participant does refer to online code snippets]
12) How often do you refer to code snippets relating

to computer security on online forums such as
StackOverflow or others?
Never - Rarely - Sometimes - Often - Always - N/A

[Asked if participant does refer to online code snippets
relating to computer security]

13) When you refer to code from online sources in your
open source development, how do you evaluate the
security aspects of the code?
free response

[Asked if participant has asked questions on stack over-
flow before]

14) Have you ever asked questions relating to computer se-
curity on online forums such as StackOverflow or others?
Yes
No
I don’t remember

[Asked if participant has answered questions on stack
overflow before]

15) Have you ever answered questions relating to computer
security on online forums such as StackOverflow or
others?
Yes
No
I don’t remember

16) Have you previously used any software verification or
static analysis tools (e.g. FindBugs, Pylint)?
Yes
No

I don’t remember
I don’t know what these are

These questions are specific to your project listed on
Github [link to the project]

17) What platform was the project designed on? Please also
list all the tools and software you used.
free response

18) How many other people excluding you worked on the
project?
I worked on the project myself
1 - 5 people
6 - 10 people
11 - 15 people
> 15 people

19) Did you seek help from online forums when working on
this project?
Yes
No
I don’t remember

20) Did you seek help from other collaborators when working
on this project?
Yes
No
I don’t remember

21) Did you have a deadline for completing this project?
I had no deadline to complete this project
I had a self-imposed deadline to complete this project
Someone else imposed a deadline to complete this

project

[Asked if participant had a deadline]
22) How difficult was it for you to meet the aforementioned

deadline for this project?
Not at all difficult
Slightly difficult
Somewhat difficult
Very difficult
Extremely difficult

[Asked if participant had a deadline]
23) How pressured did you feel to complete the project by

by the deadline?
Not at all pressured
Slightly pressured
Somewhat pressured
Very pressured
Extremely pressured

24) In which year were you born?
numeric free response

25) What is the highest level of education that you have
completed?
12th grade or less
Graduated high school or equivalent
Some college, no degree
Associate degree
Bachelor’s degree
Post-graduate degree

26) What is your primary occupation?
free response

27) What is your gender?
Make
Female
Other

28) Would you like to participate in a 20-30 mins follow-up
interview about your project? If you are selected, you will
be compensated with a $15 Amazon Gift Card for your
time.
Yes
No

[if yes to question 28]
29) Are you comfortable holding an online interview in the

English language?
Yes
No

[if yes to question 28]
30) If not, which language would you feel most comfortable

with? Please note we cannot guarantee that we will find
a translator for the language you specify.
free response

[if yes to question 28]
31) Please enter your preferred email address, chat handle,

or other ways to contact you in the box below. We will
only use your contact details to set up the interview and
will not contact you for any other reason.
free response

THE INTERVIEW PROTOCOL:

1) What is the goal of the project? What is its purpose? Who
was it designed for? Was it supposed to work with end
users or other entities?

2) Did you work by yourself on this code? Were you part
of a team working on a broader project or was this a solo
effort?

3) Did you use any help from online forums or other
collaborators to write this code?

4) Did you have a tight deadline while implementing this
project?

5) Did you get any monetary compensation while writing
this project?

6) What is the functionality of this code snippet in
your code? How important is the code to the overall
functioning of the project?

The interviewer will explain to the interviewee the
vulnerability of this code snippet and then ask the
following:

7) Has anyone commented about security aspects of this
code snippet before?

8) Do you think the vulnerability we pointed out is impor-
tant? Why/why not?

9) How/why do you think this security problem occurred?
• If you used online forums, did you consider security

aspects when deciding to use the code?
10) How would you go about fixing this piece of code?
11) Given your existing knowledge, what (if any) measures

would you consider next time you are implementing
a security or cryptography task to avoid this kind of
problem?

12) What would help you easily integrate security-related
code into your tasks correctly and efficiently?

13) What would get in the way of integrating security-related
code correctly?

14) Is there anything else we didn’t discuss that’s important
for considering the risks and consequences of online
security code usage?

15) Any other comments or information you would like to
tell us?

	Introduction
	Related Work
	Stack Overflow and software development, broadly
	Stack Overflow, code misuse, and security

	Study Protocol
	Identifying security vulnerabilities
	Identifying insecure Stack Overflow posts
	Searching GitHub repositories
	Recruitment
	Survey
	Interview
	Pilot Study
	Data Analysis
	Limitations

	Participants and their projects
	Participants
	Participants' GitHub projects

	Behaviors when drawing from online sources
	Developers do refer to online sources
	Many claim to take precautions when importing code
	Others claim they do not copy code
	Sometimes functionality is all that matters

	Security-relevant behavior
	Introducing security problems
	Participants claim to be skeptical about security code
	Insufficient security knowledge
	Developers trust their security skills
	Security isn't the top priority
	Security should be someone else's job
	Security is not important in my context

	Discussion
	Security-oriented feedback system
	Linking to educational material
	Removing problematic posts

	Conclusion
	Acknowledgments
	References
	Appendix

