15-750: Algorithms in the Real World CMU, Spring 2023
HW #2 (out Tuesday Feb 7, 2023) Due: Tuesday Feb 21, 2023

Please limit yourself to groups of two (or three) people. We adhere to a “whiteboard” collaboration
policy: you should discuss in your group on whiteboards (or equivalents) but then should go away
and write down your solutions yourself. You must not share written work. You must write down
the names of the person(s) with whom you collaborate. In general, you should solve the
homework problems using only to material we refer you to (or put on the course page), and not
books or other online resources. If you have reason to use any resources we point you to (except
the course notes), please cite them.

A word of advice: please try to solve the problem by yourself before working with your group. That
is the way to improve your problem-solving skills.

Homeworks will be due at 11:59pm on the due date on gradescope. Corrections and changes will
appear on the course webpage and on Piazza; please check them regularly.

Problems

1. Targeted Shortest Path. This problem describes a variant on Dijkstra’s algorithm for
finding the shortest path between a source s € V and a target t € V in a connected graph G =
(V, E) with nonnegative edge-lengths ¢, for each e € E. It is not asymptotically faster in the
worst case, but it can be a lot faster on many real-world instances, as it often explores much
less of the graph. It is the kind of heuristic that is used in road-mapping software for finding
shortest driving routes.

Recall that Dijkstra’s algorithm maintains an (over)estimate d(v) of the shortest s — v path
length for each vertex v € V. This is initially d(s) = 0 and d(v) = oo for all v # s. The
algorithm then repeatedly picks the unmarked vertex u with the lowest d(u) value, marks it,
and “updates” all of u’s unmarked neighbors v by replacing d(v) with min{d(v), d(u) + Cyy}.

Suppose we have certain target-estimates hy(v) > 0, which are supposed to be estimates of the
shortest-path distances from each vertex v to the target ¢. (For now, don’t be concerned with
where these come from; just imagine we have them somehow.) Then the “targeted-Dijkstra”
algorithm is the variation where at each step the unmarked vertex u with lowest value of
d(u) + hi(u) is picked (and processed as before). (The algorithm may also stop once it has
marked t.)

Remark: If h(v) magically equalled the shortest-path distance from v to ¢, then it’s not hard
to see that the algorithm will make a beeline for ¢t. On the other hand, if h;(v) = 0 for all v,
then targeted-Dijkstra simply turns into the usual Dijkstra’s algorithm.

(a) Give an example showing that if the target-estimates are chosen poorly, the algorithm
might not correctly compute shortest

(b) Call a target-estimate function h : V. — R sensible if h(v) < £y, + h(w) for all edges
(v,w) € E. Prove that with a sensible target-estimate function, the targeted-Dijkstra
algorithm is correct, in that once a node u is marked, d(u) is the correct shortest-path
distance from s to u.

(c) We now know that as long as we have sensible target-estimates, we will get a correct
algorithm. But how should we get these? Think back to the setting of software that is

http://www.cs.cmu.edu/~15750

used to find shortest driving routes in a fixed large graph (like the road network of a
state or a country). Suppose do the following:

i. Fix a few dozen “landmarks” L C V in the graph.

ii. For each vertex u € V, precompute and store the exact shortest distance D(u,a)
from u to a for each landmark a € L.

Now when we are tasked with finding the shortest path s — ¢, and we need a target-
estimate function h;, we use h;(v) = max,er{D(v,a) — D(t,a)}. Show that these target-
estimates are sensible.

(Hint: first try the case when |L| =1.)

By precomputing and storing these few dozen numbers for each vertex, the result is a correct
shortest s — t path algorithm that is often much more efficient in practice than plain Dijkstra.
Here are some pictures I found that give an example meant to illustrate how much the search-
space is reduced; the red diamonds are the landmarks.

Start

. On the Up and Up. Madeline likes to jump upwards on platforms. The input to this
problem is a sequence of n positive integers p1, pa, ..., p, (not necessarily distinct), represent-
ing the heights of a succession of platforms. Madeline starts to the left of all platforms at
height 0. She would like to jump on as many platforms as she can, but the rules are that each
jump can only go forwards (as far as she likes) and she can never go downward in height. So
if the input sequence p is

3,6,17,3,9,2,19,13,4,2

then one optimal plan for Madeline is to jump on the first 3, then on the next 3, then on the
9, and then on the 19, for a total of four jumps. (In this example there are several equally
good 4-jump plans, such as 3,6,17,19, or 3,3,9,13.)

(a) Describe an algorithm that uses O(nlogn) time and O(n) extra space (beyond the input
array) that finds the maximum number of jumps Madeline can do. You don’t have to
output an optimal plan, just the optimal number of jumps. (Here and in all future
problems, when I say “Describe” I mean give the algorithm, and justify its correctness
and time/space analysis.)

(b) (Extra credit.) Given the same kind of input sequence, suppose there are two people,
Madeline and Badeline, who both jump according to the preceding rules, but who hate
each other and so they cannot be on a platform the other has used (even at different
times). Describe an algorithm that uses O(nlogn) time and O(n) extra space that

computes the highest possible combined number of jumps the two can do. You don’t have
to output the plans, or even the number of jumps done by each, just the highest possible
combined jump-total. (In the above example, the answer is 7, which can be achieved by
having Madeline jump on the first 3 followed by 6,17,19, and having Badeline jump on
the second 3 followed by 9, 13.)

(¢) (Extra credit.) Back to just Madeline: Solve problem (a) but with an algorithm that
uses O(n'?logn) time and only O(y/n) extra space (beyond the input array).

3. Counting Unique Elements. In the algorithmic paradigm known as “streaming”, we
imagine that the inputs are arriving one by one in a “stream”, and we want to use extremely
little time and space to process each one, while still being able to come up with a good answer
about the whole stream in the end.

In this problem, the elements streaming in are strings si, s2,...,s,. What you would really
like to know is how many distinct strings are in the sequence. Since you really want to use
extremely little time and space, you are willing to tolerate a somewhat inaccurate count.
In fact, imagine you initially have in mind a fixed positive integer K (assumed even), and
you just want to know if the number of distinct strings in the stream is “Low” (meaning at
most K/2) or “High” (meaning at least 2K).

Here’s your method. Initially, you select a hash function h : {all strings} — {0,1,2,...,2K — 1}.
You may assume “SUHA”. Now when a string s; comes in, you compute h(s;). But actually
you won’t even allocate a hash table, you’ll just use a single bit of memory: if ever you see

a string that hashes to 0 you will output “High”, and if you never see a string that hashes
to 0 you will output “Low”. (Note that you do not know in advance what “n” will be; once
elements stop arriving is when you give your output.)

(a) Show that if the number of distinct elements is indeed “Low” (at most K/2), then
Pr[you wrongly output “High”] < 1/4.

(b) Show that if the number of distinct elements is indeed “High” (at least 2K), then
Prlyou wrongly output “Low”] < 0.4.

(You may use that 1 —2 <1 —z +2%/2! — 23/3! + 2%/4! — ... for all z > 0.)

(¢) We can summarize the above by saying that the “error” probability is at most 0.4. (It’s
actually noticeably smaller on the “false-High” side, but never mind.) That’s actually
a pretty high error rate, so let’s try to make it smaller as follows: We will instead
run m copies of the above algorithm in parallel, using m “independent” hash functions
hi,...,hy and m bits of storage. (Assume m is an odd positive integer.) Then at the
end, we output whatever the majority answer is among the m answers these runs would
give. Prove that now the overall error probability is exponentially small in m; say, at
most O(0.98™). (Hint: One elementary way to do this involves reasoning through the
following: for k > m/2, the value (7;) (0.4)k(0.6)™* only gets smaller the larger k is
(why?) and also () < 2™ (why?) and 2v/.4v.6 < 0.98...)

4. TLS/SSL Certificate Revocations. A common problem that web browsers face is checking
if a certificate has been revoked. Let U be the set of all possible TLS Certificates and let R C U
be the set of certificates that have been revoked. The set of revoked certificates changes over
time, so your goal is to periodically broadcast the current set to all web browsers. Ideally,

you would like to represent R using a data structure D that is both compact and fast at
answering membership queries. Compactness is important for minimizing network traffic and
speed is important for efficiency on the browser side.

Bloom filters are a natural choice for storing R, but we need a way to handle false positives
(i.e., certificates that are identified as revoked even though they are not). Assuming we have
access to both R and U, one idea is to store all the false positives from the first Bloom filter
B in a second Bloom filter By, and then storing all the false positives from Bs in a sorted
array L. More precisely, By stores the set of certificates in U \ R for which B returns true
and L stores the set of certificates in R for which By returns true.

For this problem, you may operate at the same level of rigor that we did in lecture; that is,
you may assume SUHA, that 1 + z ~ e® for tiny z, and that fraction of bits set to 0 in a
Bloom filter is equal to its expectation. Also, you may assume that the parameters k, &/, m, m/
are all integers (just for the simplicity of not having to write ceilings and floors), and that
computing hash functions takes constant time.

(a) State an algorithm that, given u € U, checks whether u € R using the multi-level Bloom
filter described above. Your algorithm should have no false positive or false negatives,
and should do the sensible Algorithms 101 thing when it accesses L. You do not have
to analyze the algorithm further here; just stating it is sufficient.

(b) Let r = |R|, n = |U| and s = n — r. For the remaining parts of this problem, suppose
the Bloom filter B; uses k = logy(s/r) hash functions and an array of m = % bits.
Determine (as a function of r, n, and s) the probability of a false positive in Bj; that is,

the probability for uw € U \ R that By will return true on u.
(c) Let v’ be the number of certificates stored in By. Determine the expected value of 7.

(d) The number of revoked certificates is usually much smaller than the total number of
certificates, so henceforth assume r = O(y/s). Also suppose we pick parameters for
Bj so that it uses k' = k = logy(s/r) hash functions with an array of m’ = ﬂ% bits.
Determine the expected size of L, and also show that the running time of your algorithm
from part (a) is O(logr). (Hint: you may need that the average of a log is at most the

log of an average; it’s basically the upside-down version of this.)

https://www.youtube.com/watch?v=10xgmpG_uTs

