15-750: Algorithms in the Real World CMU, Spring 2023
HW #3 (out Tuesday Feb 21, 2023) Due: Tuesday March 14, 2023

Please limit yourself to groups of two (or three) people. We adhere to a “whiteboard” collaboration
policy: you should discuss in your group on whiteboards (or equivalents) but then should go away
and write down your solutions yourself. You must not share written work. You must write down
the names of the person(s) with whom you collaborate. In general, you should solve the
homework problems using only to material we refer you to (or put on the course page), and not
books or other online resources. If you have reason to use any resources we point you to (except
the course notes), please cite them.

A word of advice: please try to solve the problem by yourself before working with your group. That
is the way to improve your problem-solving skills.

Homeworks will be due at 11:59pm on the due date on gradescope. Corrections and changes will
appear on the course webpage and on Piazza; please check them regularly.

Problems

1. (A Simple Pairwise Uniform Hash Family.) Recall that a family H of hash functions
{0,1,..., U4 — 1} —» {0,1,...,n — 1} is said to be pairwise uniform (or pairwise independent)
if, for any two distinct items 0 < x # y < U, when you choose h € H uniformly at random,
the pair (h(x), h(y)) is equally likely to be any of the n? possibilities.

Assume U = 2% and n = 2¢ for some integers u,¢ > 0. Here is one way to get a pairwise
uniform family in which each hash function is named using only O(u + ¢) bits.

For a string a € {0, 1}**%~1 let M, denote the ¢ x u matrix formed as follows: Start with
M, empty. Consider the path that travels up the first column of M, (bottom to top), then
takes a right-turn at the top-left entry and travels all along the first row. Fill these entries
of M, with the string a (in that order). Then, fill in each remaining empty entry as follows:
travel “northwest” (diagonally up-left) until you hit an already-filled-in-entry, and copy that.
For example, if £ = 3,u =5 and a = 0110110 then M, would be

10110
11011
01101

Finally, for b € {0,1}", define the hash function hap by
hep(x) = Mz + b (mod 2),

where x is treated as a base-2 length-u bitstring.
Prove that H = {hgy : a € {0,1}*7~1 b € {0,1}*} is pairwise uniform.

2. Faster Approximate Matrix Multiplication By “Preconditioning”. Part 1. Matrix
multiplication is a very common primitive, but is an expensive operation. It turns out that
we can do these multiplications faster if we are happy with approximate answers! We will
now use the randomized dimension reduction procedure (the “JL Lemma”) to do this. In a
nutshell, we want to show that the random K x D matrix S used in the JL Lemma is very

likely to ensure
AB ~ ASTSB (1)

http://www.cs.cmu.edu/~15750

and moreover that the product on the right can be computed much faster than the one on the
left (because S has few rows). The reason (1) will be true is: matrix multiplications can be
viewed as a whole bunch of dot products, so if we show that the JL. Reduction approximately
maintains dot products, we are in good shape.

You may use the following version of the JL. Lemma, which we mostly proved in class:

Theorem 1 (JL Lemma.). Let C be a set of n vectors in RP. For some K = O(log‘i%), the
following holds: Suppose we pick a random K X D matriz where each entry is independently
+1 with probability 1/2 each, then we multiply this matriz by 1/ K and call the result S.
Then

Pr[S “c-preserves” the length of x for allx € C] > 1 — .
Here we say that S “c-preserves the length of x”7 if (1 — ¢e)||z| < ||Sz| < (14 ¢)||z|.

(a) Suppose that in the setting of the above Theorem, we also wanted to e-preserve all
pairwise distances (so (1 —¢)llz — y|| < [[Sz — Sy|| < (1 + ¢)flz — y|| for all pairs
x,y € C). Why are basically still okay (“up to constant factors”)? What if we wanted
to also e-preserve the lengths of x + y for all pairs z,y € C7 What if we also wanted to
e-preserve the length of H%H + ﬁ for all pairs z,y € C?

(b) Suppose u,v € RP are unit vectors (|lu|| = ||v|| = 1), and that the lengths of u, v, u + v, u — v
are all e-preserved by matrix S. Show that their dot product is also O(e)-preserved; i.e.,
for some constant ¢ we have

u-v—ce < (Su)-(Sv) <u-v+ce.

(You might like to remember some basic tricks like ||w||? = w - w and u - v = uTv when
u, v are column vectors.)

3. Faster Approximate Matrix Multiplication By “Preconditioning”. Part 2.

(a) Let A be a matrix with D columns and at most n rows. Let B be a matrix with D rows
and at most n columns. Note that the ij-entry of AB is the dot product between two
D-dimensional vectors (not necessarily unit-length). Show that for any fixed pair i,
and for K = O(log(n/d)/e?), when we pick S at random,

Pr([(AB)i; — (ASTSB)ij| < el|Aiclll| Bijll] = 1 =6,

where A;, (respectively, B,;) is the ith row of A (respectively, jth column of B).
(b) Complete the argument by showing that

Pr ||AB — ASTSB||r <e||A||r||Bllr| >1-56.

where || M || p denotes the “Frobenius norm” of matrix M, defined by [|M|[r = /> ;; MZQJ

(¢) Assuming we use the standard basic matrix multiplication method, what is the runtime
of computing AB versus ASTSB? Take note of why the improvement is considerable if
n,D>K.

4. (Discovering A Projection Matrix.) Let A be a D x D symmetric matrix. We say that
A is a projection matriz if all of its eigenvalues are either 0 or 1. We further say it is a rank-K
projection matriz if it has exactly K eigenvalues that are 1. As you may convince yourself,
this geometrically means that there is some certain K-dimensional subspace, and A’s action
on a vector v is to project it into that subspace.

Given as input a D x D symmetric matrix A that happens to be a rank-K projection matrix,
describe and analyze an O(K D?)-time algorithm for discovering an orthonormal basis of the
relevant K-dimensional subspace (in other words, some K orthogonal unit eigenvectors of A
with corresponding eigenvalues equal to 1). Your algorithm should be able to do this without
knowing what K is (but ignore the case K = 0).

(Don’t worry about “numerical accuracy” at all in this problem; just assume that you can
do basic mathematical operations on numbers (like computing square-roots, or testing if a
number is 0) in time O(1). Also, you may assume that: (i) you can pick a Gaussian random
variable in time O(1); (ii) if you pick D Gaussians independently and stack them into a
vector u, then w is “rotationally symmetric”; (iii) in particular, if you fix in advance any
particular subspace H of dimension less than D, and then you choose u, the probability that
u lands exactly in H is literally 0.)

