
15-750: Algorithms in the Real World CMU, Spring 2023
HW #5 (out Tuesday March 28, 2023) Due: Tuesday April 11, 2023

Please limit yourself to groups of two (or three) people. We adhere to a “whiteboard” collaboration
policy: you should discuss in your group on whiteboards (or equivalents) but then should go away
and write down your solutions yourself. You must not share written work. You must write down
the names of the person(s) with whom you collaborate. In general, you should solve the
homework problems using only to material we refer you to (or put on the course page), and not
books or other online resources. If you have reason to use any resources we point you to (except
the course notes), please cite them.

A word of advice: please try to solve the problem by yourself before working with your group. That
is the way to improve your problem-solving skills.

Homeworks will be due at 11:59pm on the due date on gradescope. Corrections and changes will
appear on the course webpage and on Piazza; please check them regularly.

Problems

1. Given a set of points in the 2D plane, there are several ways to perform “regression”, meaning
trying to fit a line y = mx + b to the points. Generally you want to minimize the “error”
(badness of fit), but this depends on how you define “error”.

Suppose x⃗ = {x1, x2, . . . , xn} and y⃗ = {y1, y2, . . . , yn} are the x- and y-coordinates of the set
of points (so (xi, yi) is the coordinate of the ith point). One possible model is “L2 regression”,
in which the goal is to find m, b minimizing

err2(m, b) =
n∑

i=1

(yi −mxi − b)2.

In this case, there is simply a closed-form solution for the best m, b; it’s literally

m =
(
∑n

i=1 xiyi)− nx̄ȳ

(
∑n

i=1 x
2
i)− nx̄2

,

b = ȳ −mx̄,

where x̄ denotes the average of the xi’s (similarly ȳ). You might enjoy proving that, but
you don’t have to. The fact that this closed form exists is the main reason L2 regression is
popular.

Two more possibilities are “L1 regression” and “L∞ regression”. In these, the goal is to find
m, b minimizing

err1(m, b) =

n∑
i=1

|yi −mxi − b|

and
err∞(m, b) =

n
max
i=1

|yi −mxi − b|,

respectively. For each of these two problems, L1 and L∞ regression, show how to find the
optimum m, b using a linear program with at most O(n) variables and constraints. In both
cases, it is sufficient to write a correct LP and give a short (two or three sentence) explanation
of why it gives the optimal result.

1

http://www.cs.cmu.edu/~15750

2. Consider the following task: The input is a list of subsets S1, S2, . . . , Sm ⊆ {1, 2, 3, . . . , n},
and also a positive integer k ≤ m. The challenge is to pick k of the subsets so that their union
is as large as possible; that is, we want to find a list L = (i1, i2, . . . , ik) of numbers (between
1 and m) so that |UL| is as large as possible, where

UL = Si1 ∪ Si2 ∪ · · · ∪ Sik .

(Technically, the indices i1, i2, . . . , ik in L do not have to be distinct, although it can never
hurt to make them distinct.)

This task is NP-hard! So we don’t expect any polynomial-time algorithm can always find the
optimal solution. In this problem we’ll develop an efficient randomized algorithm that gives
a good “approximation ratio”.

(a) Given an input instance, consider the following linear program (LP) with variables
x1, . . . , xm and y1, . . . , yn:

maximize

n∑
j=1

yj

subject to
m∑
i=1

xi = k∑
i such that j∈Si

xi ≥ yj for all 1 ≤ j ≤ n

0 ≤ xi ≤ 1 for all 1 ≤ i ≤ m

0 ≤ yj ≤ 1 for all 1 ≤ j ≤ n

Suppose we turn the above into an integer linear program (ILP) by adding the constraint
that the xi’s and yj ’s all have to be integers. Explain why the resulting ILP exactly cor-
responds to the optimal solution. (Of course, we aren’t able to solve ILPs in polynomial
time!) Add a sentence reminding the reader why this means that if the LP’s optimum
value is α, and the true optimum value is β, then α ≥ β.

(b) Suppose we solve the above LP (in polynomial time). Of course, the resulting xi and yj
values need not be integers. Let pi = xi/k for each 1 ≤ i ≤ m; note that these values
form a probability distribution, because they are nonnegative and they must add up
to 1 (by the first LP constraint). Suppose we pick a random index i1 according to this
distribution (meaning the probability of i1 being i is pi). Show that, for any j between
1 and n, the probability that Si1 contains j is at least yj/k.

(c) Consider the algorithm that — after solving the LP — produces a candidate list L by
picking k indices i1, . . . , ik independently at random from the probability distribution
defined by the pi’s. Explain why for each j, we have Pr[j ∈ UL] ≥ 1− (1− yj/k)

k.

(d) Put yourself in the mindset of calculus. Defining f(y) = 1 − (1 − y/k)k and g(y) =
(1 − 1/e)y, prove that f(0) ≥ g(0) and f(1) ≥ g(1) (you will need that e−t ≥ 1 − t for
all t). In fact, f(y) ≥ g(y) for all 0 ≤ y ≤ 1. (If you really enjoy calculus, you can
finish proving that — hint, show that f is concave. You might also enjoy “proving” it
to yourself by plotting the two functions. But I don’t insist on this.)

(e) Deduce that the expected value of |UL| produced by this randomized rounding algorithm
is at least (1 − 1/e)α ≥ (1 − 1/e)β. (This means this algorithm gets 1 − 1/e ≈ 63% of
the optimal solution, in expectation.)

2

3. The eternal dilemma is: buy now, or rent for a little longer? Assume it costs $B to buy skis,
and $1 per day to rent. In class we saw a deterministic algorithm with competitive ratio
2− 1/B. Let’s investigate the optimal randomized algorithm.

Suppose you develop any kind of randomized algorithm for deciding each day whether to
rent or buy. You might imagine simulating this algorithm a bunch of times; every time you
simulate it, you end up buying on some certain day J (or possibly never). There is some
probability J will be 1, some probability J will be 2, etc. So in a sense, your whole algorithm
is defined by a list of probabilities p1, p2, p3, . . . that add up to 1, and the meaning is that
with probability pJ you do

“the day-J strategy”: rent for the first J − 1 days, and buy on the Jth day.

On the other hand, the possible number of days you end up skiing is any integer I ≥ 1. You
might think of the Devil as selecting this number I.

Recall that once you fix an algorithm — meaning probabilities p1, p2, p3, . . . — we are inter-
ested in its competitive ratio, which is

max
I

{
E[cost of algorithm for I days of skiing]

optimal cost for I days of skiing

}
.

You can think of there being a 2-player game between you and the Devil. First, you commit to
using the randomized algorithm defined by p1, p2, p3, Then the Devil selects the worst I.
Then we study your expected cost for I days, divided by the optimal cost for I days. Here
your expected cost is p1 times the cost of using the “day-1 strategy”, plus p2 times the cost
of using the “day-2 strategy”, plus p3 times the cost of using the “day-3 strategy”, etc.

(a) Given positive integers I, J , define the “pain” RIJ to be this ratio: the cost of doing the
day-J strategy for I days of skiing, divided by the optimal cost for I days of skiing. Let
R be the “pain” matrix, whose rows I correspond to the Devil’s possible choices, and
whose columns J correspond to the different day-J strategies. Write down the expression
for RIJ .

(b) This matrix has an infinite number of row and columns, which is annoying. Let’s add one
more row, called “row∞” for the scenario that we ski for all eternity. Argue that without
loss of generality, we can assume the Devil chooses only values I ∈ {1, 2, . . . , B − 1} or
I = ∞. Formally, argue that for any finite I ≥ B we have RIJ ≤ R∞J for all J .

(c) Now that the matrix has just B rows, argue that it’s never in your best interest to use the
day-J strategy for any J > B. Formally, argue that for any J > B we have RIJ ≥ RIB

for I ∈ {1, 2, . . . , B − 1,∞}.
(d) Thus we may as well only consider a B × B pain matrix. Write down this matrix for

B = 2, 3, 4, and then give a formula for RIJ in the general case.

4. We now continue on to investigate the optimal randomized algorithm!

(a) Suppose we fix a particular B, which in turn fixes the B×B pain matrix R. Recall that
the randomized algorithm is defined by the probabilities p1, p2, . . . , pB. Show that there
is a linear program with either B or B+1 variables (depends a little how you choose to
do it) whose solution yields the randomized algorithm with smallest competitive ration
for this particular B.

3

(b) Determine the optimal competitive ratio for a randomized algorithm in the case B = 2.
(The answer should be a nice number smaller than 2− 1/B = 3/2.)

(c) (BONUS, up to 3 points.) Get a computer program to set up and solve the LP for
various values of B. Explain how you do this, and show some results. Maybe plot the
optimal competitive ratio for increasing values of B and compare against e

e−1 . Maybe
plot the optimal pJ values for various values of B. Maybe try guessing — for each B
— a set of pJ values that works “pretty well” (though guessing an exact formula for
the optimal pJ ’s is pretty hard!). I was able to guess a formula for some pJ values (for
each B) that let me show the optimal competitive ratio is no worse than 5/3. Can you
do the same? See what you can work out!

4

