
15-750: Algorithms in the Real World CMU, Spring 2023
HW #6 (out Tuesday April 11, 2023) Due: Sunday April 30, 2023, no extensions

Please limit yourself to groups of two (or three) people. We adhere to a “whiteboard” collaboration
policy: you should discuss in your group on whiteboards (or equivalents) but then should go away
and write down your solutions yourself. You must not share written work. You must write down
the names of the person(s) with whom you collaborate. In general, you should solve the
homework problems using only to material we refer you to (or put on the course page), and not
books or other online resources. If you have reason to use any resources we point you to (except
the course notes), please cite them.

A word of advice: please try to solve the problem by yourself before working with your group. That
is the way to improve your problem-solving skills.

Homeworks will be due at 11:59pm on the due date on gradescope. Corrections and changes will
appear on the course webpage and on Piazza; please check them regularly.

Problems

1. Here is an online algorithms problem. Tomorrow, you will have 1 hour of server time. Today,
a sequence of jobs will arrive at your doorstep. They come with some known runtimes,
r1, r2, r3, . . . , rT which are real numbers between 0 and 1. As each job comes in, you have
to decide to either “keep it” or “pass on it”. The total runtime of the jobs you keep cannot
exceed 1, and your goal is to get it as close to 1 as possible, so as to not waste your server
time. Once you decide to keep a job, you can’t later to decide throw it away after all.

(Incidentally, it doesn’t really matter whether or not you “know” T , the number of jobs that
will pass by today; let’s assume you don’t necessarily know it.)

We will analyze potential algorithms in terms of “competitive ratio”, but note that this is a
maximization problem, so the “competitive ratio” on an input sequence I, namely

CR(I) = total runtime your algorithm keeps on input I
largest total runtime a psychic knowing all of I in advance could keep

,

will be a number that is ≤ 1, and you’re happy the closer it is to 1.

(a) Prove that for every number c > 0, there does not exist a deterministic algorithm with
competitive ratio at least c.

(b) The above fact is pretty disappointing! Let’s help you out a little. Suppose that, at the
very beginning of the day, a genie comes to you and grants you one yes-or-no question
about the incoming sequence r1, r2, . . . , rT . You decide to ask, “Will there be at least
one job with runtime at least 1/2?” Show that once you get the truthful answer to that
question, you can design an algorithm with competitive ratio at least 1/2.

2. Here is a variation on the deterministic Weighted-Majority algorithm, designed to make it a
bit more adaptive.

• As usual, each expert begins with weight 1.

• As usual, we predict based on the weighted-majority vote of the experts.

1

http://www.cs.cmu.edu/~15750

• If an expert makes a mistake, we penalize it by multiplying its weight by 1/2, but only
if its weight was at least 1/4 of the average weight of experts.

Prove that in any contiguous block of days (e.g., the 51st day through the 77th day), the
number of mistakes made by the algorithm is at most O(M +logN), where M is the number
of mistakes made by the best expert in that block, and N is the number of experts. Note that
in our original Weighted-Majority algorithm, we proved this result only for contiguous blocks
that include the first day.

3. Recall the setting of the Hedge (/Multiplicative Weights) problem, where there are N “slot
machines” (aka experts), the algorithm plays a probability distribution pt1, . . . , p

t
N on each

day, and the Adversary assigns losses ℓt1, . . . , ℓ
t
N (between −1 and +1) each day. Actually,

in class we thought of the algorithm as just outputting the numbers pt1, . . . , p
t
N , but in this

problem lets use the interpretation that the algorithm actually uses this probability to pick a
random slot machine It to play on the tth day. Recall from class that we proved the following
fact: Given a small parameter ε > 0, the Hedge algorithm’s expected total loss is at most

min
1≤i≤N

(T∑
t=1

ℓti

)
+ εT +

lnN

ε
.

Let’s now consider a new variant (relevant when using Hedge as a meta-algorithm to switch
between various algorithms in a system). In this new variant, there is a switching cost of K
to the algorithm. That is, whenever the algorithm chooses It ̸= It−1, it experiences an extra
loss of K on the tth day. (You can assume there is no switching cost on the 1st day.) So an
algorithms expected total loss is

T∑
t=1

E
[
ℓtIt +KSt

]
,

where St is the random variable which is 1 if It ̸= It−1, and is 0 if It = It−1.

In this problem you will show how to choose It so that the new switching costs are not too
painful. You will do this in two steps. First, you’ll show that the distributions pt−1 and pt

that Hedge produces on consecutive days are reasonably “close”, for all t. Then you’ll show
how to sample from these distributions in a way that makes It usually equal to It−1.

(a) Suppose you run the Hedge algorithm (with parameter ε ≤ 1/4). Show that

∥pt − pt+1∥1 :=
N∑
i=1

|pti − pt+1
i | ≤ O(ε)

∑
i

ptj |ℓtj |.

(b) Now let’s decide how It should be chosen. What we won’t do is simply pick It according
to the probability distribution pt using “fresh random bits”. Instead, we will pick it in a
way that makes it correlated with the previous It−1. Well. . . except for on the first round
when t = 1 and p1i = 1/N for all i; in this round we will simply pick I1 to be uniformly
random from {1, 2, . . . , N}.
As for t > 1, explain why, after defining pt1, . . . , p

t
N , the algorithm can choose some

“probability redistribution values” xij ≥ 0 such that xii = min(pt−1
i , pti) for all i, and∑

j xij = pt−1
i , and

∑
i xij = ptj . (You might like to illustrate your explanation with a

small example, say with N = 3.)

2

(c) Having defined the xij ’s, suppose the algorithm actually selects its It value by choosing j
with probability xIt−1j/p

t−1
It−1

. Show that this indeed causes It to equal j with probability

ptj , as it is supposed to be.

(d) Show that for each t,
Pr[It ̸= It+1] ≤ ∥pt − pt+1∥1.

(e) Conclude that if δ > 0 is a small given parameter, if we run the above algorithm with
ε = δ/K, the expected total loss is at most

min
1≤i≤N

(T∑
t=1

ℓti

)
+O(δT) +

O(K lnN)

δ
.

4. (a) Write code in your favorite programming language that implements the “Zero Sum Game
solver” described in Lecture 21. It should take as input: (i) the payoff matrix M ; (ii) the
Hedge parameter ε (between 0 and 1); (iii) a number of rounds T to play for. Rather
than insisting that the payoffs be between −1 and +1, you should allow for any payoffs,
but you should require that ε be smaller than the largest magnitude payoff.

Given this input, your program should output: (i) the average mixed strategy (p1, . . . , pN1
)

for Alice (this is the average over t = 1 . . . T of all the vectors (pt1, . . . , p
t
N1

) Alice played);
(ii) the mixed strategy defined empirically by Bob’s play (that is, the vector (q1, . . . , qN2

)
where qi is the fraction of times Bob played action i); (iii) the expected loss in the game
when Alice plays with p and Bob plays with q. For this problem, put your source code
into your submission document.

(b) The Zero Sum Game of Underwhelm is played as follows: On the count of three, Alice
and Bob each show some number of fingers between 1 and 5. Say Alice shows a and Bob
shows b. If |a− b| ≠ 1, then whoever played the smaller number gets that many dollars
from the other person (with no money changing hands if a = b). On the other hand,
if |a− b| = 1, then whoever played the larger number gets a+ b dollars from the other
person.

For example, if Alice plays 3 and Bob plays 5, then Bob pays Alice 3. If Alice plays 4
and Bob plays 1, then Alice pays Bob 1. If Alice plays 3 and Bob plays 4, then Alice
pays Bob 7. Note that Underwhelm is a symmetric game; Alice and Bob have the same
number of actions and the payoffs work the same for both players.

Using your code from part (a) (and trying to set ε very small and T very large), “solve”
Underwhelm, coming up with your best approximation to p = q.

(If you have the enthusiasm for it, try to figure out how things change if the players can
play any number between 1 and N , where N > 5. Trying playing the game yourself in
person with your friend, with N = 5 or N = 10100.)

3

