
Artifact Meta-Models for Composable Simulation

Li Han Christiaan J. J. Paredis
Department of Electrical and Computer Engineering and

Institute for Complex Engineered Systems and
Carnegie Mellon University

Pittsburgh, PA 15213
{lihan, cjp}@cs.cmu.edu

Keywords: artifact models, composable
modeling, function hierarchy, attribute grammar

Abstract
This paper presents our artifact meta-models designed for
facilitating artifact selection and composable simulation. In
particular, meta-models incorporate function and form
attributes to explicitly describe external characteristics and
inter-connection requirements of artifacts. In addition,
artifact meta-models are associated with behavior models,
so that a user can choose artifacts with desired function and
form features and then use their behavior models in
simulation studies.

Our artifact-models are developed in an object-oriented
fashion and are specified in extensible markup language
(XML). To manage the complexity associated with a large
number of artifact attributes, the function and form
attributes are organized in a hierarchical fashion. The paper
discusses our methodologies developed for designing
artifact attribute hierarchy and the research issues that need
to be addressed in future work.

1. OVERVIEW

 Advanced computer modeling and simulation technology
has been playing an increasingly important role in complex
system analysis and design. With the rapid advancing
computer technology, it is generally faster and cheaper to
create, revise and test computer models than physical
mockups. Recent research efforts aimed at further
improving modeling efficiency have led to modular and
object-oriented modeling paradigms and techniques, which
use models of components to form system-level models.
Such a compositional modeling paradigm distributes
complexity associated with complex system modeling to
individual components and facilitates reuse of high-fidelity
component models, which are expensive and time-
consuming to obtain in general.

 For the success of compositional modeling paradigms,
component models need to follow syntax suitable for model
composition and include appropriate information required
for component selection. Research in the first problem has
made much progress, leading to international standards and
various modeling methodologies and platforms in support
of development and maintenance of composable models.
The information included in component models has so far
focused on what is needed for carrying out simulation
studies such as behavior equations and geometric CAD
models. This kind of technical information, however, is not
informative for component selection, since the overall
effects of components (such as component functions)
cannot be easily inferred from behavior equations but are
usually used for specifying requirements for desired
components. Therefore, it is important to further augment
component models with some high-level descriptions of
component attributes suitable for component selection. This
kind of information may also be used for organizing,
indexing and retrieving components from component
repositories.

 Since component composition and selection may be
conducted through both human interactions and automatic
computer operations, it would be desirable to describe
component attributes in an interpretable computer language.
To manage the complexity associated with a potentially
huge, if not infinite, number of component attributes, it is
essential to organize component attributes in a structured
fashion. This is feasible since component attributes have a
naturally hierarchical structure. For example, an attribute
“conversion efficiency” will exist for a component of
function “converting energy” but not for a component of
function “generating rotational motion”. Component
attributes from multiple perspectives, such as function, form
and behavior, are interdependent, and thus, this dependency
information needs to be reflected in component attribute
descriptions as well.

This paper will present component meta-models designed
to address these issues. Briefly, a component meta-model

cparedis
L. Han, C.J.J. Paredis, "Meta-models for Composable Simulation and Design," in Proceedings of the Advanced Simulation Technologies Conference, San Diego, CA, April 14-18, 2002.

includes component attributes from various perspectives,
with attributes organized into a hierarchical structure and
inter-dependency between attributes explicitly expressed.
The attributes are specified in extensible markup language
(XML), which is accessible over the Internet and is
interpretable for both humans and computers.

2. RELATED WORK

 A physical artifact is typically characterized by its form,
function, and behavior [1, 2]. The form is a description of
the physical embodiment of an artifact, while function is the
purpose of the artifact—the (external) effect that is achieved
by the artifact through its behaviors. (While there are
various definitions for artifact function, we will adopt the
one that defines artifact function as a relation between the
input and output of energy, material and information flows.)
As is illustrated in Figure 1, the actual behavior of an
artifact depends on its form and determines its function.
More specifically, artifact behaviors are governed by
physical laws, which can be expressed (possibly through
simplification) as mathematical equations with certain
parameters determined by the artifact’s form; and the
external effect of artifact behavior on its environment is
summarized as the mapping between input flows and output
flows, i.e. the artifact function.

 With this three-facet view of artifacts, the design problem
amounts to determining an artifact form that achieves
required function through satisfactory behavior at input and
output level. Design is generally conducted through a
process of decomposition and composition. High-level
functions are hierarchically decomposed into functions for
subsystems; these sub-functions are then mapped to
physical components that are in turn recomposed into a
complete system. This is the so-called configuration design
process, which leads to designs specified in terms of

components and their interconnections with each other.
Such a design representation parallels the hierarchical
modeling paradigm of a system: models of components are
connected to each other via interaction models (describing
the dynamics of the component interactions) to form a
model of the system. Both representations are based on
hierarchical composition: composition of form in design
and behavioral models in simulation [3, 4].

 By taking advantage of the parallelism between
composition in configuration design and composition in
system modeling, a designer may simultaneously specify
designs and create their models that can be used to verify
proper functioning of the design alternatives. This is
already common practice in several single-domain
simulations such as electrical systems [5-7] and mechanical
systems [8, 9]. The current trend is to extend this approach
to multi-domain simulation [10-12].

 The software design methodology of object-oriented
programming has been applied to systems modeling as well,
with the benefits of simplified model creation and
maintenance [13-19]. An important principle of object-
oriented programming is that of information hiding or
encapsulation: only the public interface of an object affects
its interconnections with other objects. The same principle
can be applied to modeling by making a clear distinction
between the physical interactions of an object with its
environment (interface) and its internal behavior
(implementation)[20, 21]. The advantage of encapsulation is
that a system can be modeled by composing (connecting)
the interfaces of its sub-systems, independently of the future
implementations of these subsystems [4, 21, 22].

To take full advantage of composable simulation, it is
also essential to equip composable artifact models with
information suitable for artifact selection. As more
researchers and engineers adopt composable modeling
paradigms in their model development, more composable
artifact models will become publicly available. To avoid re-
inventing the wheel and reduce modeling costs, it is
desirable to reuse developed artifact models whenever
possible. While the artifact selection problem involves
various information management and database issues such
as artifact organization, storage, search, selection and
retrieval, this paper will only consider the information
representation issue: what information needs to be included
and how the information should be organized so that it is
easy to check whether an artifact provides a required
function, form and/or behavior.

 Note that artifact selection requirements are usually
specified in terms of desired attributes for artifact function,

Form
Synthesis

Modeling &
Analysis

BehaviorFunction

Evaluation

Form
Synthesis

Modeling &
Analysis

BehaviorFunction

Evaluation

Figure 1. The relation between form, function, and
behavior in the context of virtual prototyping

form and/or behavior. For example, an artifact selection task
may be specified as finding an artifact that can covert
electrical energy to mechanical energy with a conversion
efficiency of more than 80% and weighing less than 0.5
pounds. Traditional artifact models, developed to support
computer modeling, consist of geometric CAD models and
mathematical behavioral models. These data-intensive CAD
and behavior models, however, cannot be readily used in
model selection, since it is very difficult to infer artifact
information from them. This indicates the need for
augmenting artifact models with explicit information about
its function, behavior and form.

 Engineering function and form [1, 23-32] have been a
research topic in several fields such as AI and engineering
design. While previous research in this area has led to
inclusion of some additional information other than CAD
and behavior models in artifact models, the additional
information is usually specified in textual format, which is
not convenient for search. Some other work studied
information structures for artifact attributes, but usually did
so without including modeling information. It is our
objective to derive information representation schema that
organize artifact attributes in a structured fashion and
express inter-relationship between artifact attributes and
simulation models.

3. COMPOSABLE BEHAVIOR MODELS

 To facilitate simulation-based design, our group has been
working on a composable simulation and design paradigm.
Similar to traditional artifact models developed for
computer simulation studies, our initial artifact models
included only CAD and behavior models. The behavior
models are designed in an object-oriented fashion with
public behavior interfaces separated from their internal
implementations. To support artifact selection, the initial
artifact models have been expanded to artifact meta-models
with artifact function and form attributes organized in a
hierarchical structure.

 Both our behavior models and artifact meta-models are
defined in extensible markup language (XML) and are
processed by Java codes. XML is similar in appearance to
the Hypertext Markup Language (HTML), but allows for
the development of user-defined tags, various types of
references and other mechanisms. Its simplicity and
flexibility has led to its widespread adoption in the
information technology world and expected support in
upcoming releases of several commercial web browsers,
which will make XML-based models readily accessible
across computer platforms. In addition, our meta-model

design strategy follows the same strategy as for our
behavior models.

 There are three major types of identities in our
composable behavior models: behavior interface, behavior
implementation and behavior instance. The behavior
interface of an artifact consists of ports and parameters. The
parameters completely specify the information needed to
model the artifact, and the behavior ports model the
exchange of energy, mass, or signals between the artifact
and its environment. While behavior interfaces provide
information required for using artifacts in system modeling,
behavior implementations specify physical laws underlying
the artifact’s internal behaviors in the form of mathematical
equations and composition of behavior models. Since an
artifact can be modeled with different levels of detail, a
behavior interface can be mapped to multiple behavior
implementations. A behavior instance is the binding of a
behavior interface to a particular behavior implementation
with behavior parameter values assigned.

 Figure 2 shows the major schema definition for behavior
models. Following the terminologies used for context free
grammars and extensible markup language, the notations in
the behavior schema can be explained as follows. An
equation with assignment symbol “:=” defines a production
rule for generating the element on the left hand side from its
sub-elements specified between the parentheses on the right
hand side. An suffix after a sub-element indicates the
cardinality of its occurrence: “?” for 0 or 1 time, “*” for 0

behavior-interface := (port*, parameter*)
Attribute (behavior-interface) = (name)
Attribute (port) = (name, type)
Attribute (parameter) = (name, type, default-value?)

behavior-implementation :=
 (behavior-instance*, equations)
Attribute (behavior-implementation) =
 (name, of-behavior-interface)

equations := (equation | connect)+
Attribute (equation) = (formula)
Attribute(connection) = (from-port, to-port)

behavior-instance := (bound-behavior-interface, bound-
behavior-implementation, parameter-binding)
Attribute(behavior-instance) = (name)
Attribute(bound-behavior-interface) = (name)
Attribute(bound-behavior-implementation) = (name)
Attribute(parameter-binding) = (name, value)

Figure 2. Behavior Model Schema

or more times, and “+” for 1 or more times. The comma
between sub-elements defines a required sequence of sub-
elements, while the vertical bar “|” between sub-elements
indicates that an author can choose between the sub-
elements. Besides the equations for defining the production
rules, the other type of equations in our model schema is
used to define XML attributes associated with elements. For
those readers who are familiar with XML, it is
straightforward to convert our behavior model schema to an
XML document type definition (DTD) where the (sub)
elements and attributes will be defined as XML (sub)
elements and attributes. Both XML elements and XML
attributes are attributes of artifact meta-models. In the
following discussion, we will use the term “XML
attributes” explicitly to mean XML attributes, while the
term “attributes” without attributive prefixes means meta-
model attributes. Figure 3 includes a self-explanatory
behavior interface for a transformer as an example of a valid
behavior interface under our behavior model schema.

4. ARTIFACT META-MODELS

 As discussed in previous sections, one major objective of

developing artifact meta-models is to incorporate function
and form information with behavior model. This allows
users to choose artifacts of desired function and form
attributes and then use their behavior models in simulation
studies. Following the methodology used to define behavior
models, our artifact meta-models are defined with the
following three types of entities: artifact interface, artifact
configuration, and artifact instance. An artifact interface
describes the external effect of the artifact in terms of its
function and form attributes as well as possible connections
with other artifacts. A configuration describes sub-
components and their interconnections used to build the
artifact. Each artifact interface may be associated with
multiple configurations, reflecting the possibility of
achieving the same external effect with different sub-
components and/or different inter-connections.

 Since the attributes of artifact functions and forms are
included in artifact interfaces, this paper will focus on
artifact interfaces. Other related topics such as using artifact
configurations to encode various types of design
information, like function decomposition and physical
decomposition, will be addressed in future papers.

4.1 Interfaces of Artifact Meta-Models

 An artifact interface includes artifact ports, function and
form attributes, as well as correspondence between artifact
interface and behavior interfaces. Figure 4 shows
definitions of major elements in artifact interfaces.

 In contrast to behavior ports that have name and type
attributes, artifact ports only have name attributes. This is
because the function and form attributes of ports, which,
roughly speaking, define artifact port types, are specified in
the function and form parts of artifact interfaces. Artifact
port names are mainly used as reference labels to establish
the correspondence between ports and their attributes.

 Artifact functions are specified in terms of function types,
flows and related functional parameters, where flows are
characterized by flow types and flow parameters. For
example, the function of a transformer is to “transform”
(function type) input energy flow to output energy flow
with a transformation efficiency (functional parameter) of
0.8. In general, function types define appropriate flows and
functional parameters. For example, a transformation
function must have both input flow and output flow as well
as a parameter for transformation efficiency, while an ideal
sink function may have only an input flow. Moreover,
function types and flow types can be further refined to their
subtypes, which may introduce additional parameters. To
help manage the huge number of function related attributes

artifact-interface := (artifact-port*, function*, form*,
 behavior-interface-binding*)
Attribute (artifact-interface) = (name)

Attribute (artifact-port) = (name)

function := {function-type, flows,
 appropriate-function-parameters}
…
form := {geometry-type, location-information,
 material-type, appropriate-form-parameters}
…
behavior-interface-binding := (bound-behavior-interface,
behavior-port-binding, behavior-parameter-binding)
Attribute(bound-behavior-interface) = (name)
Attribute(behavior-port-binding) =
 (artifact-port-name, behavior-port-name)
Attribute(behavior-parameter-binding) =

(artifact-parameter-name, behavior-parameter-name)

Figure 4. Artifact Interface Schema

<behavior-interface name= “transformer-interface”>
 <port name= “input-port”, type = “energy-port”/>
 <port name= “output-port”, type = “energy-port”/>
 <parameter name = “transform-efficiency”,

 type = “real”/>
</behavior-interface>

Figure 3. Behavior Interface: Transformer

and to reflect their hierarchical structures, we have
developed methodologies for organizing functional
attributes and will discuss our methodologies as well as
their XML implementation in the next sub-section.

 Artifact form attributes include artifact geometry (shape
and location, etc.) and material. Similar to artifact function
attributes, form attributes are hierarchical. For example, an
artifact of shape “round” has a form parameter “radius”
while another artifact of shape “cubic” has a form parameter
“length”. We have developed similar organizational
methodologies for form attributes as those for functional
attributes; but due to space constraints, we will not discuss
organization schemes for form attributes in this paper.

 In function and form attributes, flows and port forms are
related to artifact ports: flows specify what type of entities
such as energy, material, or signal the artifact will inter-
change with other artifact through the ports; and port forms
describe port-related form attributes. The XML attribute

“refers-to-port” is used in flow and port-form attributes to
indicate corresponding artifact ports. Consequently, the
properties of artifact ports are specified by those flow and
port-form attributes. For example, the input-port of the
transformer in Figure 5 may accommodate input energy
flow with up to 2.0 Watts of power and has a round shape.

 In summary, an artifact meta-model organizes function
and form attributes in hierarchical structures with the
relationships between attributes of different perspectives
explicitly represented. This makes a meta-model a graph
instead of a tree. In addition to describing artifact
properties, the hierarchical function and form structures can
also be used to represent design specifications. Then, for a
given design specification, an artifact may be selected if its
function and form attribute graph includes the same pattern
as that of the design specification. This essentially
formulates the artifact selection problems as a graph-
matching problem.

4.2 Function Attribute Hierarchy

 To facilitate artifact indexing, selection and organization,
artifact models need to use standard function and form
terminologies and satisfy relationship constraints agreed
upon by all relevant parties. There have been considerable
efforts in developing standard function representations [31,
32]. While our function attribute hierarchy incorporates
some results developed in this community, the main
objectives of our work in this area are to develop
methodologies for designing the hierarchical structures of
function attributes and gain insights for future research in
standard function representation.

 As discussed briefly in the previous section, function
attributes consist of function types, flows and functional
parameters. Function types impose different constraints on
flows. For example, the function “convert” should have
input and output flows of different types, while the function
“amplify” should have input and output flows of a same
type. Assuming that functions and flows have a semantic
attribute called “type” and functions have a semantic
attribute called “valid”, the above observation can be
written in the format of attribute grammar as follows.

function :=(“amplify” |“convert”|..., input-flow, output-
flow)
 (1)
valid (function) :=
((type (function)== “amplify”) and
 (type(input-flow) == type(output-flow))) or
((type(function)== “convert”) and
 (type(input-flow) != type(output-flow)))

<artifact-interface name= “transformer-interface”>
 <artifact-port name= “input-port”/>
 <artifact-port name= “output-port”/>

<function>
 <transformation-function>
 <input-flow refers-to-port = “input-port”>
 <energy-flow>
 <max-power name= “max-power1”
 unit= “W” value= “2.0”/>
 </energy-flow>
 </input-flow>
 <output-flow refers-to-port = “output-port”>
 <energy-flow/>
 </output-flow>
 <efficiency name= “transform-efficiency”
 value= “0.8” type= “parameter”/>
 </transformation-function>
</function>

<form>
 <port-form refers-to-port = “input-port”>
 <shape>
 <round/>
 </shape>
 </port-form>
</form>
<behavior-interface-binding> …
</behavior-interface-binding>

</artifact-interface>

Figure 5. Artifact Interface: Transformer

 Although XML is well suited for defining context-free
grammar, it does not provide mechanisms for specifying
semantic attribute grammar. Nevertheless, there are two
ways to incorporate semantic information underlying the
attribute grammar in our system. One way is to hand-encode
this information in Java code used for processing XML files
of artifact meta-models and then use the JAVA code to
enforce the attribute grammar. The major drawback with
this approach is that the Java code needs to be updated as
additional attribute grammar rules are introduced, for
instance when meta-modes are generalized to cover more
aspects of artifact information such as cost and
manufacturing process. The other way is to translate the
attribute grammar to a context-free grammar. For example,
the attribute grammar as listed above can be translated to
the following:

function := (“amplify-function” |“convert-function”|...)
amplify-function := (elec-elec-flow-pair | mech-mech-flow-
pair | ...)

convert-function := (elec-mech-flow-pair | mech-elec-flow-
pair | ...)

Essentially, such an approach enumerates all valid choices
under an attribute grammar, which can lead to a very large
context-free grammar and corresponding XML DTD.

 If neither of the above approaches is adopted, i.e., our
function DTD just specifies the production rule as in
formula (1) and the Java code does not include hand-code
for attribute grammar, our system will not prevent the
generation of semantically-incorrect artifact meta-models
(such as an artifact that “amplifies” electrical energy to
mechanical energy). This kind of semantically incorrect
models, even if generated by mistakes, will likely not find
similar models in artifact repositories. This can alert the
modeling engineer that there is a possible mistake in the
model definition. We are in the process of exploring the
possibility of using more powerful markup languages for
meta-models that provide mechanisms for specifying
semantic attribute grammar, such as XML Schema or
DAML.

 As for function parameters, it is possible to define a
generic parameter element where an author can specify
parameter name, unit, value and other information. But
there is no way to control generic parameter specifications
in a function hierarchy, which may cause an inappropriate
parameter value being associated with function or flow
types. For example, a direct-current (DC) flow may be
associated with a generic parameter that defines a

“frequency” parameter, which is not proper for DC. So we
propose to use as many explicit parameter tags as possible,
but use generic parameter tags as a back up. Also we
propose to move parameters to as high positions as possible
in hierarchy, to reflect the natural hierarchy structures. For
example, a “maximum power” parameter can be associated
with an energy flow before the energy flow is further
refined to electrical energy flow (which may have a
parameter called “maximum current”).

 Our function and flow type hierarchy follows NIST’s
function and flow hierarchy [31, 32]. But our function and
flow schema are different. For example, our functions and
flows have specific parameters while NIST functions and
flows only use generic parameters. In addition, for a
compound artifact, the NIST schema associate flows with
sub-components, from which the flows of compound
artifacts need to be derived. But our flows are associated
with artifact ports, which can be further associated with
ports of sub-components. This approach frees us from the
task of deriving flows for compound artifacts and makes
artifact interfaces more informative without introducing
dependencies on artifact configurations.

4.3 Behavior Interface Binding

In addition to specifying artifact ports and function/form
attributes, artifact interfaces include correspondence
between artifact ports/parameters and behavior
ports/parameters. This correspondence ensures that a
behavior model of an artifact can be instantiated and used in
system modeling after the artifact is used in a system
configuration.

While behavior parameters are explicitly defined as one

group in behavior interfaces, artifact parameters are
embedded in function and form attribute hierarchies. This is
because parameters are an integrate part of function and
form descriptions. Note that function and form parameters
may be different from behavior parameters. For example,
function parameters of a controller may be specified in
terms of control stability criteria while behavior parameters
are control parameters required for achieving the desired
stability performance. Therefore, there usually exists a
mathematical relationship between artifact parameters and
behavior parameters. This relationship needs to be specified
as part of behavior interface binding of an artifact interface
and may be represented in various ways, such as through a
Microsoft Excel spreadsheet. For simplicity, the data
schema in Figure 4 only includes parameter mapping for the
simplest case where there is a one-to-one correspondence
between artifact parameters and behavior parameters.

 As for ports, depending on the modeling strategies for
artifact interfaces and behavior interfaces, there might exist
a one-to-many and many-to-one mapping between artifact
ports and behavior ports [33], an issue beyond the scope of
this paper. Figure 4 shows again the simplest case for
behavior-port binding where there is one-to-one
correspondence between behavior ports and artifact ports.
The artifact ports and parameters of the transformer shown
in Figure 5 have the same names as their corresponding
behavior ports and parameters in Figure 3; the behavior-
interface-binding part is omitted in Figure 5

 From an implementation point of view, the behavior-
interface-binding part can be specified outside artifact
interface and as a two-tuple mapping an artifact interface to
a behavior interface. This will leave the artifact interface
definition independent of the behavior interface
development and allow artifact interfaces to be associated
with behavior interfaces that are developed after artifact
interfaces, without changing artifact interfaces.

 The correspondence between artifact parameters and
behavior parameters makes it possible to instantiate a
behavior interface. With the correspondence between
artifact ports and behavior ports, connections between two
artifacts can be mapped to connections between their
corresponding behavior models (with possibly additional
operations for non-bijective port mapping). One subtle yet
critical point to notice here is that inter-connections between
artifacts usually involve non-trivial interaction behaviors
such as rolling motion between two gears. Therefore, it is
important to include appropriate interaction behavior
models in the behavior modeling of connecting artifacts[19,

34]. Figure 6 shows a Motor-Pulley configuration and its
behavior model with an appropriate interaction model
between the motor and the pulley.

5. SUMMARY

 This paper has presented our artifact meta-models
designed for facilitating artifact selection and composable
modeling. In particular, meta-models incorporate function
and form attributes to explicitly describe external
characteristics and inter-connection requirements of
artifacts. In addition, artifact meta-models are associated
with behavior models, so that a user can choose artifacts
with desired function and form features and then use their
behavior models in simulation studies.

 Our artifact meta-models are developed in an object-
oriented fashion, with artifact public interfaces and internal
configurations separated. This will allow association of
multiple artifact configurations with one artifact interface
reflecting the phenomena of achieving a same public
interface (external effect) with different components and
their inter-connections. Further, our artifact meta-models, as
well as our composable behavior models, are defined in
extensible markup language, which can be accessed across
computer platforms and interpretable for both human beings
and computer agents.

 To manage the complexity associated with large number
of artifact attributes, the function and form attributes are
organized in a hierarchical fashion. We have discussed our
methodologies used for designing artifact attribute hierarchy
and the implementations of the hierarchy in extensible
markup language. As discussed in the paper, XML is
suitable for specifying context-free grammar; but function
and form attributes follow attribute grammar. So we will
explore other representation languages such as DAML. We
are also interested in incorporating more aspects of artifact
information into meta-models such as cost model, statistical
model, and manufacturing/assembly process. Another part
of ongoing research in our group is meta-model-based
artifact indexing, organization and selection.

ACKNOWLEDGEMENTS
 We would like to thank other members of the
Composable Simulation Group at Carnegie Mellon
University, especially, Vei-Chung Liang, Rajarishi Sinha
and Boris Kaminsky, for sharing their insights in
simulation-based design and virtual prototyping.

Motor-Pulley Configuration
B

olt_4

B
olt_1

B
olt_3

B
olt_2

Shaft-Pulley
Interaction

AC
Motor

Shaft-PulleyShaft-Pulley

Wire_1

Wire_2

Shaft-Pulley
Interaction

Shaft-PulleyShaft-Pulley

Pulley

Shaft-Pulley
Interaction

Shaft-Pulley
Interaction
Shaft-PulleyShaft-Pulley

B
eh

av
io

r
 M

o
d

el

AC MotorAC Motor PulleyPulleyPulleyAC Motor

Motor-Pulley Configuration
B

olt_4

B
olt_1

B
olt_3

B
olt_2

Shaft-Pulley
Interaction

AC
Motor

Shaft-PulleyShaft-Pulley

Wire_1

Wire_2

Shaft-Pulley
Interaction

Shaft-PulleyShaft-Pulley

Pulley

Shaft-Pulley
Interaction

Shaft-Pulley
Interaction
Shaft-PulleyShaft-Pulley

B
eh

av
io

r
 M

o
d

el

B
olt_4

B
olt_1

B
olt_3

B
olt_2

Shaft-Pulley
Interaction

AC
Motor

Shaft-PulleyShaft-Pulley

Wire_1

Wire_2

Shaft-Pulley
Interaction

Shaft-PulleyShaft-Pulley

Pulley

Shaft-Pulley
Interaction

Shaft-Pulley
Interaction
Shaft-PulleyShaft-Pulley

B
eh

av
io

r
 M

o
d

el

AC MotorAC Motor PulleyPulleyPulleyAC MotorAC MotorAC Motor PulleyPulleyPulleyPulleyPulleyPulleyAC Motor

Figure 6. Artifact Configuration and Behavior

Model Composition

 This research was funded in part by DARPA under
contract ONR # N00014-96-1-0854, by the National
Institute of Standards and Technology, by the National
Science Foundation under grants # CISE/115/KDI 98 73005
and # EIA-97 29827, by the Pennsylvania Infrastructure
Technology Alliance, and by the Institute for Complex
Engineered Systems at Carnegie Mellon University.

REFERENCES

[1] G. Pahl and W. Beitz, Engineering design: A systematic

approach, 2nd ed. London, U.K.: Springer-Verlag,
1996.

[2] S. B. Shooter, W. Keirouz, S. Szykman, and S. J.
Fenves, "A model for the flow of design information,"
presented at ASME DETC 2000, 12th International
Conference on Design Theory and Methodology,
Baltimore, MD, 2000.

[3] A. Sydow, "Hierarchical Concepts in Modeling and
Simulation," in Progress in Modeling and Simulation,
F. E. Cellier, Ed. London: Academic Press, 1982.

[4] G. Zhang and B. P. Zeigler, "The system entity
structure: Knowledge representation for simulation
modeling and design," in Artificial Intelligence,
Simulation and Modeling, L. E. Widman, K. A.
Loparo, and N. R. Nielsen, Eds. New york: Wiley,
1989, pp. 47-73.

[5] J. Keown, Orcad Pspice and Circuit Analysis, 4th ed:
Prentice Hall, 2000.

[6] IEEE, 1076-1993 IEEE Standard VHDL Language
Reference Manual: IEEE, 1993.

[7] IEEE, 1076.1 Working Group: Analog and mixed-
signal extensions for VHDL: IEEE, 1999.

[8] A. Shabana, "Flexible multibody dynamics: review of
past and recent developments," Multibody System
Dynamics, vol. 1, pp. 189-222, 1997.

[9] W. Schiehlen, "Multibody system dynamics: roots and
perspectives," Multibody System Dynamics, vol. 1, pp.
149-188, 1997.

[10] Aubert and Garcia-Sabiro, "VHDL-AMS, an unified
language to describe multi-domain, mixed-signal
designs, mechatronic applications," presented at FDL
1999: 2nd Forum on Design Languages, France, 1999.

[11] R. Lutz, R. Scrudder, and J. Graffagnini, "High Level
Architecture Object Model Development and
Supporting Tools," Simulation, vol. 71, pp. 401-409,
1998.

[12] H. Elmqvist, F. Boudaud, J. Broenink, D. Brück, T.
Ernst, P. Fritzon, A. Jeandel, K. Juslin, M. Klose, S. E.
Mattsson, M. Otter, P. Sahlin, H. Tummescheit, and H.
Vangheluwe, Modelica - A Unified Object-Oriented
Language for Physical Systems Modeling, 1997.

[13] H. Elmqvist, S. E. Mattsson, and M. Otter, "Modelica:
The new object-oriented modeling language," presented
at The 12th European Simulation Multiconference,
Manchester, UK, 1998.

[14] B. P. Zeigler, Object-oriented simulation with
hierarchical, modular models: Academic Press, 1990.

[15] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems, 2nd ed:
Academic Press, 2000.

[16] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A.
W. Westerberg, "ASCEND: An object oriented
computer environment for modeling and analysis. 1 -
The modeling language," Computers and Chemical
Engineering, vol. 15, pp. 53-72, 1991.

[17] P. A. Fishwick, "Integrating Continuous And Discrete
Models With Object Oriented Physical Modeling,"
presented at 1997 Western Simulation Multiconference,
Phoenix, Arizona, 1997.

[18] M. Anderson, "Object-oriented modeling and
simulation of hybrid systems," in Department of
Automatic Control. Lund, Sweden: Lund Institute of
Technology, 1994.

[19] R. Sinha, C. J. J. Paredis, V.-C. Liang, and P. K.
Khosla, "Modeling and Simulation Methods for Design
of Engineering Systems," ASME Journal of Computing
and Information Science in Engineering, vol. 1, pp. 84-
91, 2001.

[20] F. E. Cellier, "Object-oriented modeling: means for
dealing with system complexity," presented at 15th
Benelux Meeting on Systems and Control, Mierlo,
Netherlands, 1996.

[21] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla,
"Reconfigurable Models: A Modeling Paradigm to
Support Simulation-Based Design," presented at 2000
Summer Computer Simulation Conference, Vancouver,
Canada, 2000.

[22] B. P. Zeigler and C.-J. Luh, "Model based management
for multifacetted systems," ACM Transactions on
Modeling and Computer Simulation, vol. 1, pp. 195-
218, 1991.

[23] W. Rodenacker, Methodishes Konstruieren: Springer,
Berline, 1971.

[24] B. Chandrasekaran, "Functional representation: A brief
historical perspective," Applied Artificial Intelligence,
vol. 8, pp. 173-197, 1994.

[25] B. Chandrasekaran and Josephson, "An Explication of
Function," presented at AAAI-96 Workshop on
Modeling and Reasoning about Function, Portland, OR,
1996.

[26] P. A. Fishwick, "A functional/declarative dichotomy
for characterizing simulation models," presented at

1992 Artificial Intelligence, Simulation and Planning in
High Autonomy Systems, Perth, Australia, 1992.

[27] M. Pegah, J. Sticklen, and W. Bond, "Functional
Representation and Reasoning About the F/A-18
Aircraft Fuel System," IEEE Expert, pp. 65-71, 1993.

[28] M. Schulte, C. Weber, and R. Stark, "Functional
Features for Design in Mechanical Engineering,"
Computers in Industry, vol. 23, pp. 15-24, 1993.

[29] M. Sasajima, Y. Kitamura, M. Ikeda, and M.
Mizogochi, "Representation Language for Behavior
and Function: FBRL," Expert systems with
applications, vol. 10, pp. 471-479, 1996.

[30] Y. Iwasaki, A. Farquhar, R. Fikes, and J. Rice, "A web-
based compositional modeling system for sharing of
physical knowledge," presented at International Joint
Conference on Artificial Intelligence, 1997.

[31] S. Szykman, J. W. Racz, and R. D. Sriram, "The
Representation of Function in Computer-Based
Design," presented at 1999 ASME Design Engineering
Technical Conferences - Design Theory and
Methodology, Las Vegas, Nevada, 1999.

[32] S. Szykman, J. Senfaute, and R. D. Sriram, "The use of
XML for describing functions and taxonomies in
computer-based design," presented at 19th
DETC/Computers and Information in Engineering
Conference, Las Vegas, Nevada, 1999.

[33] L. Han, C. J. J. Paredis, and P. K. Khosla, "Object-
Oriented Libraries of Physical Components in
Simulation and Design," presented at 2001 Summer
Computer Simulation Conference, Orlando, FL, 2000.

[34] R. Sinha, C. J. J. Paredis, and P. K. Khosla, "Modeling
of Component Interactions in Configuration Design,"
Carnegie Mellon University, Pittsburgh, PA, Technical
Report 2001.

