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Abstract 
This paper presents our artifact meta-models designed for 
facilitating artifact selection and composable simulation. In 
particular, meta-models incorporate function and form 
attributes to explicitly describe external characteristics and 
inter-connection requirements of artifacts. In addition, 
artifact meta-models are associated with behavior models, 
so that a user can choose artifacts with desired function and 
form features and then use their behavior models in 
simulation studies.  
 
Our artifact-models are developed in an object-oriented 
fashion and are specified in extensible markup language 
(XML). To manage the complexity associated with a large 
number of artifact attributes, the function and form 
attributes are organized in a hierarchical fashion.  The paper 
discusses our methodologies developed for designing 
artifact attribute hierarchy and the research issues that need 
to be addressed in future work. 
  
1. OVERVIEW 
  
    Advanced computer modeling and simulation technology 
has been playing an increasingly important role in complex 
system analysis and design. With the rapid advancing 
computer technology, it is generally faster and cheaper to 
create, revise and test computer models than physical 
mockups. Recent research efforts aimed at further 
improving modeling efficiency have led to modular and 
object-oriented modeling paradigms and techniques, which 
use models of components to form system-level models. 
Such a compositional modeling paradigm distributes 
complexity associated with complex system modeling to 
individual components and facilitates reuse of high-fidelity 
component models, which are expensive and time-
consuming to obtain in general. 

 
    For the success of compositional modeling paradigms, 
component models need to follow syntax suitable for model 
composition and include appropriate information required 
for component selection. Research in the first problem has 
made much progress, leading to international standards and 
various modeling methodologies and platforms in support 
of development and maintenance of composable models. 
The information included in component models has so far 
focused on what is needed for carrying out simulation 
studies such as behavior equations and geometric CAD 
models. This kind of technical information, however, is not 
informative for component selection, since the overall 
effects of components (such as component functions) 
cannot be easily inferred from behavior equations but are 
usually used for specifying requirements for desired 
components. Therefore, it is important to further augment 
component models with some high-level descriptions of 
component attributes suitable for component selection. This 
kind of information may also be used for organizing, 
indexing and retrieving components from component 
repositories. 
 
    Since component composition and selection may be 
conducted through both human interactions and automatic 
computer operations, it would be desirable to describe 
component attributes in an interpretable computer language. 
To manage the complexity associated with a potentially 
huge, if not infinite, number of component attributes, it is 
essential to organize component attributes in a structured 
fashion. This is feasible since component attributes have a 
naturally hierarchical structure. For example, an attribute 
“conversion efficiency” will exist for a component of 
function “converting energy” but not for a component of 
function “generating rotational motion”.   Component 
attributes from multiple perspectives, such as function, form 
and behavior, are interdependent, and thus, this dependency 
information needs to be reflected in component attribute 
descriptions as well. 
 

This paper will present component meta-models designed 
to address these issues. Briefly, a component meta-model 
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includes component attributes from various perspectives, 
with attributes organized into a hierarchical structure and 
inter-dependency between attributes explicitly expressed. 
The attributes are specified in extensible markup language 
(XML), which is accessible over the Internet and is 
interpretable for both humans and computers.   
 
2. RELATED WORK 
 
    A physical artifact is typically characterized by its form, 
function, and behavior [1, 2].  The form is a description of 
the physical embodiment of an artifact, while function is the 
purpose of the artifact—the (external) effect that is achieved 
by the artifact through its behaviors. (While there are 
various definitions for artifact function, we will adopt the 
one that defines artifact function as a relation between the 
input and output of energy, material and information flows.) 
As is illustrated in Figure 1, the actual behavior of an 
artifact depends on its form and determines its function. 
More specifically, artifact behaviors are governed by 
physical laws, which can be expressed (possibly through 
simplification) as mathematical equations with certain 
parameters determined by the artifact’s form; and the 
external effect of artifact behavior on its environment is 
summarized as the mapping between input flows and output 
flows, i.e. the artifact function. 

 
    With this three-facet view of artifacts, the design problem 
amounts to determining an artifact form that achieves 
required function through satisfactory behavior at input and 
output level.  Design is generally conducted through a 
process of decomposition and composition.  High-level 
functions are hierarchically decomposed into functions for 
subsystems; these sub-functions are then mapped to 
physical components that are in turn recomposed into a 
complete system.  This is the so-called configuration design 
process, which leads to designs specified in terms of 

components and their interconnections with each other. 
Such a design representation parallels the hierarchical 
modeling paradigm of a system:  models of components are 
connected to each other via interaction models (describing 
the dynamics of the component interactions) to form a 
model of the system.  Both representations are based on 
hierarchical composition: composition of form in design 
and behavioral models in simulation [3, 4].  
 
    By taking advantage of the parallelism between 
composition in configuration design and composition in 
system modeling, a designer may simultaneously specify 
designs and create their models that can be used to verify 
proper functioning of the design alternatives.  This is 
already common practice in several single-domain 
simulations such as electrical systems [5-7] and mechanical 
systems [8, 9]. The current trend is to extend this approach 
to multi-domain simulation [10-12].  
 
    The software design methodology of object-oriented 
programming has been applied to systems modeling as well, 
with the benefits of simplified model creation and 
maintenance [13-19]. An important principle of object-
oriented programming is that of information hiding or 
encapsulation: only the public interface of an object affects 
its interconnections with other objects. The same principle 
can be applied to modeling by making a clear distinction 
between the physical interactions of an object with its 
environment (interface) and its internal behavior 
(implementation)[20, 21]. The advantage of encapsulation is 
that a system can be modeled by composing (connecting) 
the interfaces of its sub-systems, independently of the future 
implementations of these subsystems [4, 21, 22]. 
 

To take full advantage of composable simulation, it is 
also essential to equip composable artifact models with 
information suitable for artifact selection. As more 
researchers and engineers adopt composable modeling 
paradigms in their model development, more composable 
artifact models will become publicly available. To avoid re-
inventing the wheel and reduce modeling costs, it is 
desirable to reuse developed artifact models whenever 
possible. While the artifact selection problem involves 
various information management and database issues such 
as artifact organization, storage, search, selection and 
retrieval, this paper will only consider the information 
representation issue:  what information needs to be included 
and how the information should be organized so that it is 
easy to check whether an artifact provides a required 
function, form and/or behavior. 

 
    Note that artifact selection requirements are usually 
specified in terms of desired attributes for artifact function, 
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Figure 1. The relation between form, function, and 
behavior in the context of virtual prototyping 



form and/or behavior. For example, an artifact selection task 
may be specified as finding an artifact that can covert 
electrical energy to mechanical energy with a conversion 
efficiency of more than 80% and weighing less than 0.5 
pounds. Traditional artifact models, developed to support 
computer modeling, consist of geometric CAD models and 
mathematical behavioral models. These data-intensive CAD 
and behavior models, however, cannot be readily used in 
model selection, since it is very difficult to infer artifact 
information from them. This indicates the need for 
augmenting artifact models with explicit information about 
its function, behavior and form.  
 
    Engineering function and form [1, 23-32] have been a 
research topic in several fields such as AI and engineering 
design.  While previous research in this area has led to 
inclusion of some additional information other than CAD 
and behavior models in artifact models, the additional 
information is usually specified in textual format, which is 
not convenient for search. Some other work studied 
information structures for artifact attributes, but usually did 
so without including modeling information. It is our 
objective to derive information representation schema that 
organize artifact attributes in a structured fashion and 
express inter-relationship between artifact attributes and 
simulation models. 
 
3. COMPOSABLE BEHAVIOR MODELS  
 
    To facilitate simulation-based design, our group has been 
working on a composable simulation and design paradigm. 
Similar to traditional artifact models developed for 
computer simulation studies, our initial artifact models 
included only CAD and behavior models. The behavior 
models are designed in an object-oriented fashion with 
public behavior interfaces separated from their internal 
implementations. To support artifact selection, the initial 
artifact models have been expanded to artifact meta-models 
with artifact function and form attributes organized in a 
hierarchical structure.  
 
    Both our behavior models and artifact meta-models are 
defined in extensible markup language (XML) and are 
processed by Java codes. XML is similar in appearance to 
the Hypertext Markup Language (HTML), but allows for 
the development of user-defined tags, various types of 
references and other mechanisms. Its simplicity and 
flexibility has led to its widespread adoption in the 
information technology world and expected support in 
upcoming releases of several commercial web browsers, 
which will make XML-based models readily accessible 
across computer platforms. In addition, our meta-model 

design strategy follows the same strategy as for our 
behavior models.  
 
    There are three major types of identities in our 
composable behavior models: behavior interface, behavior 
implementation and behavior instance. The behavior 
interface of an artifact consists of ports and parameters. The 
parameters completely specify the information needed to 
model the artifact, and the behavior ports model the 
exchange of energy, mass, or signals between the artifact 
and its environment. While behavior interfaces provide 
information required for using artifacts in system modeling, 
behavior implementations specify physical laws underlying 
the artifact’s internal behaviors in the form of mathematical 
equations and composition of behavior models. Since an 
artifact can be modeled with different levels of detail, a 
behavior interface can be mapped to multiple behavior 
implementations. A behavior instance is the binding of a 
behavior interface to a particular behavior implementation 
with behavior parameter values assigned.   
 
    Figure 2 shows the major schema definition for behavior 
models. Following the terminologies used for context free 
grammars and extensible markup language, the notations in 
the behavior schema can be explained as follows. An 
equation with assignment symbol “:=” defines a production 
rule for generating the element on the left hand side from its 
sub-elements specified between the parentheses on the right 
hand side. An suffix after a sub-element indicates the 
cardinality of its occurrence: “?” for 0 or 1 time, “*” for 0 

behavior-interface := (port*, parameter*) 
Attribute (behavior-interface)  = (name) 
Attribute (port) = (name, type) 
Attribute (parameter) = (name, type, default-value?) 
 
behavior-implementation := 
     (behavior-instance*, equations) 
Attribute (behavior-implementation) =  
     (name, of-behavior-interface) 
 
equations := (equation | connect)+ 
Attribute (equation) = (formula) 
Attribute(connection) = (from-port, to-port) 
 
behavior-instance := (bound-behavior-interface, bound-
behavior-implementation, parameter-binding) 
Attribute(behavior-instance) = (name) 
Attribute(bound-behavior-interface) = (name) 
Attribute(bound-behavior-implementation) = (name) 
Attribute(parameter-binding) = (name, value) 
 

Figure 2.  Behavior Model Schema 



or more times, and “+” for 1 or more times. The comma 
between sub-elements defines a required sequence of sub-
elements, while the vertical bar “|” between sub-elements 
indicates that an author can choose between the sub-
elements. Besides the equations for defining the production 
rules, the other type of equations in our model schema is 
used to define XML attributes associated with elements. For 
those readers who are familiar with XML, it is 
straightforward to convert our behavior model schema to an 
XML document type definition (DTD) where the (sub) 
elements and attributes will be defined as XML (sub) 
elements and attributes. Both XML elements and XML 
attributes are attributes of artifact meta-models. In the 
following discussion, we will use the term “XML 
attributes” explicitly to mean XML attributes, while the 
term “attributes” without attributive prefixes means meta-
model attributes.  Figure 3 includes a self-explanatory 
behavior interface for a transformer as an example of a valid 
behavior interface under our behavior model schema. 
 
4.  ARTIFACT META-MODELS 
 
    As discussed in previous sections, one major objective of 

developing artifact meta-models is to incorporate function 
and form information with behavior model. This allows 
users to choose artifacts of desired function and form 
attributes and then use their behavior models in simulation 
studies. Following the methodology used to define behavior 
models, our artifact meta-models are defined with the 
following three types of entities: artifact interface, artifact 
configuration, and artifact instance. An artifact interface 
describes the external effect of the artifact in terms of its 
function and form attributes as well as possible connections 
with other artifacts. A configuration describes sub-
components and their interconnections used to build the 
artifact. Each artifact interface may be associated with 
multiple configurations, reflecting the possibility of 
achieving the same external effect with different sub-
components and/or different inter-connections.  
 
    Since the attributes of artifact functions and forms are 
included in artifact interfaces, this paper will focus on 
artifact interfaces. Other related topics such as using artifact 
configurations to encode various types of design 
information, like function decomposition and physical 
decomposition, will be addressed in future papers.  
 
4.1 Interfaces of Artifact Meta-Models 
 
    An artifact interface includes artifact ports, function and 
form attributes, as well as correspondence between artifact 
interface and behavior interfaces. Figure 4 shows 
definitions of major elements in artifact interfaces.  
 
    In contrast to behavior ports that have name and type 
attributes, artifact ports only have name attributes. This is 
because the function and form attributes of ports, which, 
roughly speaking, define artifact port types, are specified in 
the function and form parts of artifact interfaces. Artifact 
port names are mainly used as reference labels to establish 
the correspondence between ports and their attributes. 
 
    Artifact functions are specified in terms of function types, 
flows and related functional parameters, where flows are 
characterized by flow types and flow parameters. For 
example, the function of a transformer is to “transform” 
(function type) input energy flow to output energy flow 
with a transformation efficiency (functional parameter) of 
0.8. In general, function types define appropriate flows and 
functional parameters. For example, a transformation 
function must have both input flow and output flow as well 
as a parameter for transformation efficiency, while an ideal 
sink function may have only an input flow. Moreover, 
function types and flow types can be further refined to their 
subtypes, which may introduce additional parameters. To 
help manage the huge number of function related attributes 

artifact-interface := (artifact-port*, function*, form*, 
                                    behavior-interface-binding*) 
Attribute (artifact-interface)  = (name) 
 
Attribute (artifact-port) = (name) 
 
function  := {function-type, flows, 
                         appropriate-function-parameters} 
… 
form  := {geometry-type, location-information,  
         material-type,  appropriate-form-parameters} 
… 
behavior-interface-binding := (bound-behavior-interface, 
behavior-port-binding, behavior-parameter-binding) 
Attribute(bound-behavior-interface) = (name) 
Attribute(behavior-port-binding) = 
     (artifact-port-name, behavior-port-name) 
Attribute(behavior-parameter-binding) =  

(artifact-parameter-name, behavior-parameter-name) 
 

Figure 4. Artifact Interface Schema 

<behavior-interface name= “transformer-interface”> 
    <port name= “input-port”, type = “energy-port”/> 
    <port name= “output-port”, type = “energy-port”/> 
    <parameter name = “transform-efficiency”, 

                   type = “real”/> 
</behavior-interface> 

Figure 3. Behavior Interface: Transformer 



and to reflect their hierarchical structures, we have 
developed methodologies for organizing functional 
attributes and will discuss our methodologies as well as 
their XML implementation in the next sub-section.  
 
    Artifact form attributes include artifact geometry (shape 
and location, etc.) and material. Similar to artifact function 
attributes, form attributes are hierarchical. For example, an 
artifact of shape “round” has a form parameter “radius” 
while another artifact of shape “cubic” has a form parameter 
“length”. We have developed similar organizational 
methodologies for form attributes as those for functional 
attributes; but due to space constraints, we will not discuss 
organization schemes for form attributes in this paper.  
 
    In function and form attributes, flows and port forms are 
related to artifact ports: flows specify what type of entities 
such as energy, material, or signal the artifact will inter-
change with other artifact through the ports; and port forms 
describe port-related form attributes. The XML attribute 

“refers-to-port” is used in flow and port-form attributes to 
indicate corresponding artifact ports.  Consequently, the 
properties of artifact ports are specified by those flow and 
port-form attributes. For example, the input-port of the 
transformer in Figure 5 may accommodate input energy 
flow with up to 2.0 Watts of power and has a round shape. 
 
    In summary, an artifact meta-model organizes function 
and form attributes in hierarchical structures with the 
relationships between attributes of different perspectives 
explicitly represented. This makes a meta-model a graph 
instead of a tree. In addition to describing artifact 
properties, the hierarchical function and form structures can 
also be used to represent design specifications. Then, for a 
given design specification, an artifact may be selected if its 
function and form attribute graph includes the same pattern 
as that of the design specification. This essentially 
formulates the artifact selection problems as a graph-
matching problem. 
 
4.2 Function Attribute Hierarchy 
 
   To facilitate artifact indexing, selection and organization, 
artifact models need to use standard function and form 
terminologies and satisfy relationship constraints agreed 
upon by all relevant parties. There have been considerable 
efforts in developing standard function representations [31, 
32]. While our function attribute hierarchy incorporates 
some results developed in this community, the main 
objectives of our work in this area are to develop 
methodologies for designing the hierarchical structures of 
function attributes and gain insights for future research in 
standard function representation. 
 
    As discussed briefly in the previous section, function 
attributes consist of function types, flows and functional 
parameters. Function types impose different constraints on 
flows. For example, the function “convert” should have 
input and output flows of different types, while the function 
“amplify” should have input and output flows of a same 
type. Assuming that functions and flows have a semantic 
attribute called “type” and functions have a semantic 
attribute called “valid”, the above observation can be 
written in the format of  attribute grammar as follows. 
 
function :=(“amplify” |“convert”|..., input-flow, output-
flow) 
       (1) 
valid (function) :=  
((type (function)== “amplify”)  and  
     (type(input-flow) == type(output-flow))) or 
((type(function)== “convert”)  and  
     (type(input-flow) != type(output-flow))) 

<artifact-interface name= “transformer-interface”> 
    <artifact-port name= “input-port”/> 
    <artifact-port name= “output-port”/> 
    

<function>  
 <transformation-function> 
         <input-flow refers-to-port = “input-port”> 
            <energy-flow> 
     <max-power name= “max-power1”  
             unit= “W” value= “2.0”/> 
            </energy-flow> 
         </input-flow> 
         <output-flow refers-to-port = “output-port”> 
            <energy-flow/> 
         </output-flow> 
         <efficiency name= “transform-efficiency” 
             value= “0.8” type= “parameter”/> 
   </transformation-function> 
</function>     
 
<form> 
 <port-form refers-to-port = “input-port”> 
        <shape> 
             <round/> 
        </shape> 
 </port-form> 
</form> 
<behavior-interface-binding> …  
</behavior-interface-binding> 

</artifact-interface> 
 

Figure 5. Artifact Interface: Transformer 



 
   Although XML is well suited for defining context-free 
grammar, it does not provide mechanisms for specifying 
semantic attribute grammar. Nevertheless, there are two 
ways to incorporate semantic information underlying the 
attribute grammar in our system. One way is to hand-encode 
this information in Java code used for processing XML files 
of artifact meta-models and then use the JAVA code to 
enforce the attribute grammar. The major drawback with 
this approach is that the Java code needs to be updated as 
additional attribute grammar rules are introduced, for 
instance when meta-modes are generalized to cover more 
aspects of artifact information such as cost and 
manufacturing process. The other way is to translate the 
attribute grammar to a context-free grammar. For example, 
the attribute grammar as listed above can be translated to 
the following: 
 
function := (“amplify-function” |“convert-function”|...) 
amplify-function := (elec-elec-flow-pair | mech-mech-flow-
pair | ...) 
 
convert-function := (elec-mech-flow-pair | mech-elec-flow-
pair | ...) 
  
Essentially, such an approach enumerates all valid choices 
under an attribute grammar, which can lead to a very large 
context-free grammar and corresponding XML DTD.  
 
    If neither of the above approaches is adopted, i.e., our 
function DTD just specifies the production rule as in 
formula (1) and the Java code does not include hand-code  
for attribute grammar, our system will not prevent the 
generation of semantically-incorrect artifact meta-models 
(such as an artifact that “amplifies” electrical energy to 
mechanical energy). This kind of semantically incorrect 
models, even if generated by mistakes, will likely not find 
similar models in artifact repositories. This can alert the 
modeling engineer that there is a possible mistake in the 
model definition. We are in the process of exploring the 
possibility of using more powerful markup languages for 
meta-models that provide mechanisms for specifying 
semantic attribute grammar, such as XML Schema or 
DAML.  
  
    As for function parameters, it is possible to define a 
generic parameter element where an author can specify 
parameter name, unit, value and other information.  But 
there is no way to control generic parameter specifications 
in a function hierarchy, which may cause an inappropriate 
parameter value being associated with function or flow 
types. For example, a direct-current (DC) flow may be 
associated with a generic parameter that defines a 

“frequency” parameter, which is not proper for DC. So we 
propose to use as many explicit parameter tags as possible, 
but use generic parameter tags as a back up. Also we 
propose to move parameters to as high positions as possible 
in hierarchy, to reflect the natural hierarchy structures. For 
example, a “maximum power” parameter can be associated 
with an energy flow before the energy flow is further 
refined to electrical energy flow (which may have a 
parameter called “maximum current”). 
 
    Our function and flow type hierarchy follows NIST’s 
function and flow hierarchy [31, 32]. But our function and 
flow schema are different. For example, our functions and 
flows have specific parameters while NIST functions and 
flows only use generic parameters. In addition, for a 
compound artifact, the NIST schema associate flows with 
sub-components, from which the flows of compound 
artifacts need to be derived. But our flows are associated 
with artifact ports, which can be further associated with 
ports of sub-components. This approach frees us from the 
task of deriving flows for compound artifacts and makes 
artifact interfaces more informative without introducing 
dependencies on artifact configurations. 

 
4.3 Behavior Interface Binding 
 

In addition to specifying artifact ports and function/form 
attributes, artifact interfaces include correspondence 
between artifact ports/parameters and behavior 
ports/parameters. This correspondence ensures that a 
behavior model of an artifact can be instantiated and used in 
system modeling after the artifact is used in a system 
configuration.   

 
While behavior parameters are explicitly defined as one 

group in behavior interfaces, artifact parameters are 
embedded in function and form attribute hierarchies. This is 
because parameters are an integrate part of function and 
form descriptions. Note that function and form parameters 
may be different from behavior parameters. For example, 
function parameters of a controller may be specified in 
terms of control stability criteria while behavior parameters 
are control parameters required for achieving the desired 
stability performance. Therefore, there usually exists a 
mathematical relationship between artifact parameters and 
behavior parameters. This relationship needs to be specified 
as part of behavior interface binding of an artifact interface 
and may be represented in various ways, such as through a 
Microsoft Excel spreadsheet. For simplicity, the data 
schema in Figure 4 only includes parameter mapping for the 
simplest case where there is a one-to-one correspondence 
between artifact parameters and behavior parameters.  
 



    As for ports, depending on the modeling strategies for 
artifact interfaces and behavior interfaces, there might exist 
a one-to-many and many-to-one mapping between artifact 
ports and behavior ports [33], an issue beyond the scope of 
this paper. Figure 4 shows again the simplest case for 
behavior-port binding where there is one-to-one 
correspondence between behavior ports and artifact ports. 
The artifact ports and parameters of the transformer shown 
in Figure 5 have the same names as their corresponding 
behavior ports and parameters in Figure 3; the behavior-
interface-binding part is omitted in Figure 5  
 
    From an implementation point of view, the behavior-
interface-binding part can be specified outside artifact 
interface and as a two-tuple mapping an artifact interface to 
a behavior interface. This will leave the artifact interface 
definition independent of the behavior interface 
development and allow artifact interfaces to be associated 
with behavior interfaces that are developed after artifact 
interfaces, without changing artifact interfaces.      
 
   The correspondence between artifact parameters and 
behavior parameters makes it possible to instantiate a 
behavior interface. With the correspondence between 
artifact ports and behavior ports, connections between two 
artifacts can be mapped to connections between their 
corresponding behavior models (with possibly additional 
operations for non-bijective port mapping). One subtle yet 
critical point to notice here is that inter-connections between 
artifacts usually involve non-trivial interaction behaviors 
such as rolling motion between two gears. Therefore, it is 
important to include appropriate interaction behavior 
models in the behavior modeling of connecting artifacts[19, 

34]. Figure 6 shows a Motor-Pulley configuration and its 
behavior model with an appropriate interaction model 
between the motor and the pulley.  
 
 
 
5. SUMMARY 
 
    This paper has presented our artifact meta-models 
designed for facilitating artifact selection and composable 
modeling. In particular, meta-models incorporate function 
and form attributes to explicitly describe external 
characteristics and inter-connection requirements of 
artifacts.  In addition, artifact meta-models are associated 
with behavior models, so that a user can choose artifacts 
with desired function and form features and then use their 
behavior models in simulation studies. 
 
   Our artifact meta-models are developed in an object-
oriented fashion, with artifact public interfaces and internal 
configurations separated. This will allow association of 
multiple artifact configurations with one artifact interface 
reflecting the phenomena of achieving a same public 
interface (external effect) with different components and 
their inter-connections. Further, our artifact meta-models, as 
well as our composable behavior models, are defined in 
extensible markup language, which can be accessed across 
computer platforms and interpretable for both human beings 
and computer agents. 
 
   To manage the complexity associated with large number 
of artifact attributes, the function and form attributes are 
organized in a hierarchical fashion. We have discussed our 
methodologies used for designing artifact attribute hierarchy 
and the implementations of the hierarchy in extensible 
markup language. As discussed in the paper, XML is 
suitable for specifying context-free grammar; but function 
and form attributes follow attribute grammar. So we will 
explore other representation languages such as DAML. We 
are also interested in incorporating more aspects of artifact 
information into meta-models such as cost model, statistical 
model, and manufacturing/assembly process. Another part 
of ongoing research in our group is meta-model-based 
artifact indexing, organization and selection. 
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