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ABSTRACT
Spatial layout is the problem of arranging a set of components

in an enclosure such that a set of objectives and constraints is sat-
isfied. The constraints may include non-interference of objects,
accessibility requirements and connection cost limits. Spatial lay-
out problems are found primarily in the domains of electrical en-
gineering and mechanical engineering in the design of integrated
circuits and mechanical or electromechanical artifacts. Traditional
approaches include ad-hoc (or specialized) heuristics, Genetic Al-
gorithms and Simulated Annealing. The A-Teams approach pro-
vides a way of synergistically combining these approaches in a
modular agent based fashion. A-Teams are also open to the addi-
tion of new agents. Modifications in the task requirements trans-
late to modifications in the agent mix. In this paper we describe
how modular A-Team based optimization can be used to solve 3
dimensional spatial layout problems.

INTRODUCTION

A number of design and manufacturing problems re-
quire spatial arrangements of parts subject to a wide variety
of spatial constraints. Given a set of arbitrarily shaped rigid
3D solid objects, an arbitrarily shaped housing (which may
be optional in some cases), the goal is to arrange the objects
inside the housing without violating any of the given spatial
constraints while optimizing the given objective function(s).
Examples include the design of satellites, the design of cars,

packing for material handling, and 3D nesting for rapid
prototyping. We refer to such problems as spatial layout
problems. Different spatial layout problems have different
types of constraints and objective functions. Most spatial
layout problems have many different conflicting constraint
and objective functions which make them very challenging,
and the software currently used for solving such problems
is difficult and expensive to develop.

There has been considerable research in 2D spatial lay-
out problems found in integrated circuit design. Extensions
of such problems to three dimensions consist of packing 2D
layers. The objects are almost always rectangular in shape.
Problems in material handling packing are characterized by
packing box shaped containers. Most of the research in
the Operations Research, Industrial Engineering and Elec-
trical Engineering communities has been on packing such
box-like objects, usually into box-like containers. Mechan-
ical Engineering problems on the other hand are usually
3D in nature. However, there has not been much work in
this area due to the lack of computational resources. It is
only recently that computers have become powerful enough
to attempt automated optimization of 3D spatial layouts.
Recently developed technologies such as rapid prototyping
(Hinzman 1995) also create a need for better 3D spatial
layout tools.

1 Copyright c© 1998 by ASME



Spatial layout problems in 3D are usually solved using
ad-hoc heuristics, genetic algorithms (GA) or simulated an-
nealing (SA). Ad-hoc heuristics take advantage of structure
in the problem and are fast but fragile. GA and SA are
more robust to differences in problem structure but much
slower. Additionally, both methods optimize with respect
to a single merit function, expressed as the weighted sum
of all objectives and constraints, and users must decide on
the relative importance of the various objectives a-priori.

We are developing a different approach to solving spa-
tial layout problems that attempts to combine and extend
the strengths of the existing methodologies. Our approach
determines good spatial layouts of the physical components
while satisfying requirements on component interference,
accessibility, connectivity, and separation. The individual
objectives and constraints are captured in software agents
that interact with each other in an autonomous and asyn-
chronous manner through shared memories containing can-
didate solutions. The agents are implemented in a dis-
tributed fashion and can be reconfigured dynamically, for
instance to capture changes in the design requirements. To
allow the designer to weigh the trade-offs in the constraints
and optimization criteria, the Pareto optimal frontier of
non-dominated solutions is computed and visualized. Our
approach has the following benefits: (1) it has core technol-
ogy components that can be used elsewhere; (2) additional
constraints and objective functions can be easily added; (3)
agents can be combined together in a variety of ways; (4)
humans can participate in the problem solving process; and
(5) the system is based on a distributed architecture which
can use all the available computational power.

ASYNCHRONOUS TEAMS (A-TEAMS)

An A-Team (Talukdar and deSouza, 1994) is an orga-
nization of autonomous agents (or agents, for short). An
agent is an entity whose input and output spaces are main-
tained by computers, and whose control system is com-
pletely self-contained (i.e. it decides for itself when and
what to work on). Agents collaborate by modifying one an-
other’s results (trial solutions). The results collect in shared
memories. An agent consists of five components: an input
memory, a scheduler that determines when the agent will
work, a selector tht chooses one or more solutions from the
input memory, and an operator that modifies the selected
solutions and writes the result to the output memory.

There are two classes of agents in A-Teams: construc-
tors that produce new solutions by modifying old ones, and
destroyers that erase old solutions. The organization of
agents and memories can be represented as directed hyper-
graphs, where nodes represent memories and arcs represent
agents. Such a graph is called a dataflow. A dataflow is
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Figure 1. An A-Team consisting of two memories and several construction

and destruction agents.

an A-Team if and only if all arcs lie in closed loops. A
complete set of definitions, descriptions and prescriptions
for A-Teams can be found in (Talukdar, 1998). Additional
details and theoretical analyses of why A-Teams work well
can be found in (Talukdar et al. 1998).

The power of A-Teams lies in their modular design. So-
lutions in various representations (or even solutions to re-
lated problems that might provide hints at solutions for the
problem at hand) are stored in different memories. Heuris-
tics that operate on these solutions are encapsulated as
autonomous agents (they work independently and asyn-
chronously of each other). There is no central controller as
in hierarchical problem solvers. Thus agents can be added
or removed as needed without affecting existing agents in
the team. Each agent is independent of all others, and there
may even be multiple copies of agents running simultane-
ously in parallel. Furthermore, the A-Team can be easily
scaled as more processors become available, and the A-Team
configuration may even be changed dynamically by adding
and removing agents.

A-Teams have been developed for a variety of computa-
tion problems, including nonlinear equation solving (Taluk-
dar et al. 1983), traveling salesman problems (deSouza,
1993), high rise building design(Quadrel, 1991), reconfig-
urable robot design (Murthy, 1992), diagnosis of faults in
electric networks (Chen, 1992), control of electric networks
(Talukdar and Ramesh, 1993), job shop scheduling (Chen
et al., 1993), steel (Lee et al., 1995) and paper mill schedul-
ing (Rachlin et al., 1996), train scheduling (Tsen, 1995),
protein folding (Lukin et al. 1997) and constraint satisfac-
tion (Gorti et al., 1996). Not only do these asynchronous
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teams find good solutions, but they appear to be scale effec-
tive: solution quality and speed improve with the addition
of agents and computers.

SPATIAL LAYOUT - PROBLEMS AND METHODS

There are three primary areas of research in spatial lay-
out problems. These are Operations Research (OR) and
Industrial Engineering (IE) where the problems are usually
referred to as “packing” problems; Electrical Engineering
(EE), where the problems are called “layout” or “place-
ment” problems; and Mechanical Engineering (ME), where
the problems are related to “configuration design” prob-
lems. We will provide a brief survey of the work in all
these areas, although our research focuses on spatial lay-
out problems in Mechanical Engineering domains such as
design, prototyping and manufacturing which typically re-
quire packing components with complicated shapes, subject
to a variety of constraints.

Spatial Layout Problems

The focus in EE emphasizes connectivity costs between
objects since there is some freedom on the size and shape
of objects (which may lie within some neighborhood of the
given target). The problems derive from the need to trans-
form a circuit description, consisting of a set of modules
and nets (wiring connecting the modules), into a layout in
2D which is then implemented in silicon to make integrated
circuits. There are several steps to this process, consist-
ing of: partitioning the circuit into components; placement
of modules of fixed sizes without overlap onto a 2D surface
representing the chip so as to minimize wiring requirements;
routing the wiring around the modules on the surface; and
compaction of the final arrangement. Placement usually
implies locating rectangles of fixed size. Floorplanning is
placement of rectangles that may vary in size. The main
concern is to fit the rectangles and minimize the length (and
quality, as measured for example by the number of bends) of
wiring used to connect components. A good current survey
for EE problems is found in (Aarts et al., 1997). Problems
in EE are primarily 2D due to the planar nature of the in-
tegrated circuit technology. There is some extension into
the third dimension, but this consists of stacking layers of
components, which can be considered as a set of 2D prob-
lems. The objects and container are rectangular in shape.
Such problems consider much simpler objects than the ir-
regular, non-convex, 3D objects found in electromechanical
assemblies.

The focus in OR, IE and ME has been mainly on max-
imizing packing density since the components in mechan-
ical assembly and container packing are rigid. Other con-

straints such as stability or accessibility are usually ignored.
Much of the work in OR is on 2D problems related to the-
oretically oriented bin-packing or knapsack problems. This
work focuses on packing rectangles in rectangular bound-
aries. The OR literature focuses on the development of
heuristics (for 2D or 3D box-like objects in box-like hous-
ings). Nonlinear programming methods are not used due
to the extreme difficulty in problem formulation and the
disconnected character of feasible regions in spatial layout
problems. However there has been some exploratory inves-
tigation into other methods such as Simulated Annealing
or Tabu Search. A general survey of packing problems in
OR is (Dowsland and Dowsland, 1992). It describes the
main types of problems that have been considered in the
literature, classifying the problems by dimension (1, 2 or
3D). This paper also describes the use of non-heuristic based
methods (such as branch and bound) for 2D rectangle pack-
ing, which require considerable computation time even for
small problems. The literature focuses on packing density,
usually ignoring other (possibly important) constraints such
as accessibility or separation requirements. The 3D prob-
lems in OR or IE usually involve packing cuboids into other
cuboids (e.g. for packing boxes in containers for shipping).
In addition to the packing constraints, the additional con-
straint of locating the center of gravity of the packed con-
tainer low and near the center (in the horizontal plane) of
the container is often considered.

Spatial Layout Methods

There are three main categories of methods for packing
rigid objects: Ad-Hoc (or specialized) Heuristics, Genetic
Algorithms, and Simulated Annealing. Gradient based opti-
mization methods such as nonlinear programming methods
are normally not applied to layout problems because of the
difficulty in setting up the required problem formulation.

Ad-Hoc Heuristics: These are most widely used in the
OR and IE literature. For three dimensional problems,
(Dowsland and Dowsland, 1992) states that the approaches
are “entirely composed of a series of ad-hoc heuristic rules
derived from common sense” but that “practical experience
suggests that any of [these] methods will out-perform man-
ual methods on average.” The section on non-rectangular
packing indicates the absence of methods here, with most
of the work being in circle and sphere packing, primarily in
the mathematical and recreational literature. It is pointed
out that existing heuristics designed for rectangles are dif-
ficult to extend to these problems. Most heuristics locate
the objects one at a time in the container, with some kind
of layering rule to indicate how objects will be placed. The
search space is usually limited to placing objects so that
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their corners align with already placed objects. Examples
of such heuristics can be found in (Lengauer, 1990; Aziz,
1991; Gehring et al., 1990; Haessler and Talbot, 1990).

Genetic Algorithms (GA): These are modeled on the
principle of natural selection (Davis, 1991). Solutions are
represented as binary strings (chromosomes). Populations
of candidate solutions are maintained. Members of the pop-
ulations are ranked based on a “fitness function,” which
is usually the merit function being optimized. New solu-
tions are generated by combining two or more solutions
(crossover) and by perturbing solutions (mutation). This
process, called reproduction, is modeled on natural selec-
tion. Solutions with better fitness have a better chance of
being selected for reproduction. Genetic algorithms might
either store the solution directly, or might make use of an
encoded representation along with a decoder which maps
from the solution string to an actual solution. For example,
in packing problems, the solutions might consist of the loca-
tion and orientation of the objects (direct representation),
or might be an ordering of the objects (encoded representa-
tion) which is then mapped into an actual location. Alterna-
tively, a combination of the two representations may be used
such as an ordering and orientation for the objects, where
the encoded part is used only to determine translations.
Genetic Algorithm approaches to packing typically use par-
tially or completely encoded representations with a packing
heuristic to locate the parts. They extend the heuristic
methods by allowing for some randomization. The use of
packing heuristics greatly limits the size of the search space
and often ensures feasibility in terms of overlap and protru-
sion. GA in 3D have been applied to packing cuboids in
cuboids while optimizing the location of the center of grav-
ity in the X-Y plane (Kawakami et al., 1991; Wodziak and
Fadel, 1994). Extensions to cuboids with holes (shoebox-
like objects with thick walls) have recently been tried (Iko-
nen et al. 1997). Related work in 3D pipe routing uses
tesellated representations of objects to speed up the evalu-
ations required by GA in (Sandurkar et al., 1997), allowing
more complex objects to be considered.

Simulated Annealing (SA): This is a method of opti-
mization based on the physical process of annealing met-
als (Kirkpatrick et al., 1983). SA is an iterative method.
Solutions are subject to random perturbations. Perturba-
tions that lead to better merit function values are always
accepted. Perturbations that lead to worse values are some-
times accepted based on a time dependent “temperature”
parameter and the amount of change in the merit function.
If a perturbation is accepted the current solution is replaced
by the perturbed solution. The proportion of worse per-

turbations accepted decreases with time and the algorithm
evolves in a continuous fashion from behaving like a random
walk to behaving like a hill climb. SA has been used exten-
sively for layout problems in integrated circuit design. This
led to the use of SA for packing 3D objects (Szykman and
Cagan, 1993; Szykman and Cagan, 1995), which demon-
strated that SA works well for packing cuboids and cylinders
in cuboids. (Szykman, 1995) also shows examples of using
SA for packing cylinders subject to connectivity costs be-
tween objects. The latest development in this methodology,
(Kolli et al., 1996), is the use of multi-resolution models for
fast interference detection, which reduces the time required
for evaluation and facilitates the packing of non-convex ob-
jects by SA.

Other Methods: An atypical approach to packing can
be found in (Kim and Gossard, 1991) where a nonlinear pro-
gramming approach is used. The formulation of the prob-
lem is extremely complicated (the objects are represented
as unions and intersection of half spaces) and the only ex-
ample with 3D objects has only 3 objects, one of which is a
cuboid. It appears unlikely that such an approach will ever
be competitive with heuristic methods. Another approach
which has been considered is Tabu Search. For example
(Dowsland, 1993) states that it would probably work bet-
ter than SA. There is, however, little empirical evidence to
confirm or deny this claim.

Real world problems are usually larger in terms of
the complexity of objects considered and in the number
and complexity of constraints than most of the methods
described above can tackle. Heuristic methods are fast,
but are fragile and difficult to extend as the number and
characteristics of constraints change. These methods work
best with cuboids. General purpose zero order randomized
methods such as SA and GA are broadly applicable but re-
quire many evaluations, usually restricting applications to
fairly simple objects such as cuboids and cylinders, or to
problems with a large number of symmetries.

SPATIAL LAYOUT A-TEAM

We are exploring how A-Teams can help solve complex
problems. There are three main thrusts: (1) modular con-
straint handling for flexible organizations of custom solvers,
(2) effective use of different object representations such as
multi-resolution oct-trees and tesselated boundary repre-
sentations and (3) combinations of different methods such
as GA, ad-hoc heuristics and gradient based algorithms in
a single solver. In this paper we describe the modular con-
straint handling thrust.

The A-Team based spatial layout tool is designed to
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solve problems with multiple constraints, without restric-
tions on the number or types of constraints. Since it is
usually easier to develop algorithms or heuristics to solve
problems with fewer constraints, we partitioned the prob-
lem by constraints and objectives. Independent heuristics
were developed to improve solutions with respect to each
constraint and objective. These heuristics were encapsu-
lated into agents, and organized into an A-Team.

We refer to agents that work only on one or a small
number of constraints and/or objectives as specialized
agents since they are experts on their own constraints
and/or objectives and ignorant of others. The ability of
specialized agents each of which has knowledge about only
one constraint (or objective) to solve problems with mul-
tiple constraints has been demonstrated in the domain of
nonlinear programming in (Talukdar et al. 1997).

The hope is that such specialized agents can be reused
to develop customized solvers within a class of problems
with sets of overlapping constraints (and objectives), al-
lowing the same agent to be used in several solvers, and
simplifying the reconfiguration of custom solvers for new
problems, where the appropriate set of specialized agents
can be assembled from a repository.

Agents in A-Teams can all work in parallel across a
network of computers. No coordination is required, simplyf-
ing the assembly of the team. Should some of the agents
be computationally expensive relative to the rest, several
copies can be incorporated into the team to work on differ-
ent solutions simultaneously.

Pareto Frontiers

Since A-Teams work with populations of solutions and
do not require a single merit function, sets of non-dominated
solutions (a Pareto frontier) can be constructed. As a result,
the user does not have to provide a set of weights a-priori
and can choose the best trade-offs between the different
objectives after good solutions have been found.

The functionality of the team was extended to con-
struct and display Pareto frontiers by adding a new agent.
This agent retrieves solutions from the memory and pro-
vides plots of the objectives, allowing the user to determine
solutions that are on the Pareto frontier.

An example of such a plot is shown in Figure 2. This
allows the user to view the relative tradeoffs between ob-
jectives for the set of solutions found by the A-Team. A
solution dominates another if its is at least as good for all
objectives (and constraints) and better in at least one. A
set of solutions is non-dominated if none of the solutions
is dominated by another. For example, two solutions are
non-dominated if one has a lower connectivity cost and the
other a lower accessibility penalty.

Figure 2. Pareto Frontiers: Comparing the tradeoff between objectives for

solutions, each of which is identified by a unique number on the plot

Problem Definition

We selected a small set of constraints in order to de-
velop and demonstrate the spatial layout tool. The con-
straints were selected to represent several different types
of constraints found in practice, discontinous, continuous-
differentiable, and procedural. The agents for each con-
straint can use the best methods for dealing with the con-
straint, for example gradient-based methods can be used for
differentiable constraints.

Given a housing and a set of components, we specify
the following constraints and objectives:
c1. Protrusion: Ci ∩H = Ci, ∀i.
c2. Overlap: Ci ∩ Cj = ∅, ∀i, j; i 6= j
c3. Connectivity: min

∑
i,j Wij ×Distance(Ci, Cj)

c4. Separation: Distance(Ci, Cj) ≥ sij
c5. Accessibility: SweepFace(f) ∩ Ci = ∅, ∀f, i
c6. Accessibility: min

∑
i,k(Volume(SweepFace(f) ∩H)

where:
H is a solid model for the housing packable volume (interior
of the housing);
Ci is solid model for component i;
f is a (planar) face on a component that needs to be acces-
sible;
Wij is the cost of connecting components Ci and Cj;
sij is the minimum required separation between Ci and Cj;
Distance(Ci, Cj) is the distance between the two compo-
nents;
SweepFace(f) is the solid body generated by sweeping face
f , a face on one of the components, to infinity in the direc-
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tion of its normal; and
Volume(C) is the volume of a solid body C

The connectivity objective (c3) measures the total cost
of establishing physical connections between components.
Separation constraints (c4) keep components apart that
might interfere with each other electromagnetically or ther-
mally. Certain faces on some of the components are required
to be accessible (i.e. not blocked by any other component,
for instance the battery compartment of a portable radio
needs to be accessible). Accessibility (c5) of a face is de-
fined as the ability to sweep a face along the direction of
its normal without the swept volume intersecting with any
other object. An alternate definition of accessibility (in-
cluding both c5 and c6) was also used to demonstrate the
reconfigurability of the A-Team based tool. The alternate
problem definition measures accessibility not only by the
ability to sweep the required face freely, but also by the dis-
tance of the face from the boundary of the housing packable
volume measured by the intersection between the swept face
volume and the housing packable volume.

Objective (c3) is designed to represent differentiable
and continuous objectives. Constraint (c4) represents dis-
continuous constraints with many regions of zero violation.
Constraint (c5) represents procedurally defined constraints.
Both constraints (c4) and (c5) have highly discontinuous
derivatives, which makes them difficult to solve using gra-
dient based methods.

We use a typical electromechanical assembly design
problem as an instance of the class of problems under con-
sideration. The task consists of packing a set of compo-
nents into a housing unit subject to a set of constraints.
There are accessibility constraints (for components such as
knobs, connectors, heat sinks etc.); connectivity require-
ments (for components that may have many connections
between them); and separation constraints (for components
that may interfere electromagnetically or thermally if placed
too close together).

The artifact is the optics subassembly of a missile seeker
shown in Figure 3. There are ten components in the sub-
assembly: a ccd camera unit, a microprocessor, a digital
signal processor, two analog-digital converters, a voltage
stabilizer, serial and parallel connectors and two amplifiers.
There are connectivity requirements between the micropro-
cessor, digital signal processor, camera and connectors. The
amplifiers must be kept suitably far from the camera and
microprocessor. Additionally, the connectors must be acces-
sible from outside the housing, and there must be no com-
ponent blocking the front of the camera lens. The housing
is non convex, and contains holes. The components cover
a range of shapes and sizes. The shapes of the objects and
constraints between them are illustrated in Figure 4

The objects are represented by 3D CAD models in ACIS

Figure 3. The Seeker Assembly for a Missile (The optics housing is colored)

format. The ACIS 3.0 class library and API are used for
manipulation and processing of the 3D models. Solutions
are represented as vectors of translations of the objects from
their reference locations in the world coordinate system. A
secondary representation uses a discretized grid, with so-
lutions represented as a list of grid points corresponding
to the centroid location of each object. ACIS 3.0 is used
to evaluate the interference, protrusion, and accessibility
requirements. The agent for viewing solutions uses Open-
Inventor for display and rendering.

The A-Team

We used two solution representations in the solver. One
is a permutation list of the type used in a GA. The list
identifies the order in which the objects will be placed in
the housing by the decoder. The second solution represen-
tation consists of the translation of each object identifying
its location explicitly in the housing.

Two types of memories (corresponding to the two repre-
sentations used) and a collection of agents were developed.
Such agents can be easily assembled into A-Teams resem-
bling the example dataflow provided in Figure 1.

We categorize construction agents into three types: (1)
Creators (or seeders), which generate new solutions to popu-
late the memories; (2) Modifiers which create new solutions
by modifying existing solutions in the memories; and (3)
Evaluators which evaluate the solutions with respect to the
objectives and constraints.

There is an independent evaluator for each constraint
and objective. Evaluators start work whenever they detect
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Figure 4. Problem Description: Optics Housing, Components and Constraints

new unevaluated solutions in the memory. Since they are
independent, they can simultaneously update evaluations
for new solutions or even work on different solutions.

There are independent modifiers for each constraint and
objective. Since the protrusion and interference constraints
are difficult to satisfy, agents for accessibility, separation
and connectivity attempt not to increase violations of these
constraints. These agents use a variety of heuristics, re-
stricted only by the availability of good methods. As an
example, one heuristic for connectivity in the A-Team uses
the gradient of the connectivity cost to improve solutions.
Because the modular nature of the team allows multiple
agents for a constraint to run concurrently, other agents us-
ing different algorithms to improve connectivity may also
work in parallel.

The current set of creators can be classified into three
groups: one that uses an ordering of the objects combined
with a decoder (similar to packing heuristics found in the
Operations Research literature and in Genetic Algorithms),
one that uses random placement of the objects (similar to
that used in Simulated Annealing or Tabu Search) and one
that uses a discretized grid to locate objects. We will de-
scribe one of the creators as an example of how secondary
representations can be used to assist in optimization. An
A-Team that uses a discretized grid representation ignores
protrusion and interference, trying to place accessible ob-

jects near the grid boundary. Separation and connectivity
are approximated by integral manhattan distances on the
grid. The only goal of this subsidiary A-Team is to generate
good starting configurations.

A destroyer erases solutions that are dominated by (and
hence are worse than) others in the memory. If the memory
is full of non-dominated solutions, an arbitrarily selected
solution may be destroyed to make space.

Creating Memories, Agents and A-Teams using the A-Teams

Toolkit

The memory is implemented as an active repository in
the A-Teams toolkit. Since the agents must be able to com-
municate with the memory, they must share a common com-
munication protocol. The toolkit is implemented primarily
in C++. A memory stores a class of data. The user must
provide a read and write method for each data class. The
user specifies which class is stored in the memory using a
template that is provided.

Each heuristic is encapsulated in an agent by adding a
scheduler which determines how often the agent will work
and the selector which determines what it will work on.
In the case of the layout tool, the scheduler pauses for a
pre-specified amount of time between iterations (usually
about 5 microseconds). Depending on the agent, the se-
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Figure 5. The A-Team Toolkit allows users to configure and execute A-Teams graphically

lector chooses a solution randomly, either from a uniform
distribution (all solutions have an equal probability of being
selected) or with a bias towards better solutions (e.g. those
with fewer violations).

To create an agent the user must provide code for the
heuristic or algorithm that is to be encapsulated. This is
called the operator of the agent. The user can then either
create a new scheduler and/or selector or choose one from
those provided with the A-Teams toolkit.

Once the user has specified the input and output data
classes, the operator, scheduler and selector can then be

compiled into an agent using the template provided with
the toolkit.

After the user has registered the memories and agents
into a repository, A-Teams can be configured and executed
using the graphical interface provided with the Toolkit. The
user adds memories and agents to the A-Team, and connects
them together graphically to indicate the data flow. The in-
terface allows the user to control the execution of the team,
and to add or remove agents dynamically during execution.
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Tests

The tool was first used to find a placement of the objects
given the accessibility, connectivity, separation, interference
and protrusion constraints. It took an A-Team sharing a
single sparc-ultra workstation 12 hours to find a good lay-
out. The same A-Team took about 2 hours to find a layout
of similar quality using a total of 8 networked SGI, sparc-20
and sparc-ultra workstations.

Figure 6. Layout for the problem using the first definition of Accessibility

A solution satisfying the constraints is shown in the
Figure 6. The ability to customize the solver was demon-
strated by using two different definitions for accessibility.
It was considered insufficient for the appropriate face of the
connectors to just be reachable from outside, and accessibil-
ity was redefined to give preference to placements where the
connectors and the heat sinks of the amplifiers were closer
to the housing boundary.

Since the A-Team was designed to be modular with re-
spect to constraints, there is a separate agent designed to
improve each constraint. Keeping a clear distinction be-
tween the sub-tasks assigned to each agents makes it easy
to reconfigure the team should task requirements change.

We have shown this by modifying the specifications
for accessibility, and by reconfiguring the A-Team just by
replacing the accessibility related agents. The remaining
agents were unchanged and, in fact could continue working
while the accessibility related agents were reconfigured. A

Figure 7. Layout for the problem using the second definition of Accessibility

solution found by the modified team is shown for compari-
son in Figure 7. Some of the components have been moved
closer to the housing. Neither of the two solutions domi-
nates - the first is better in terms of connectivity, while the
second is better for accessibility. The final choice is left to
the user.

SUMMARY AND FUTURE WORK

We have developed an A-Team based tool for spatial
layout. The tool is modular, with separate agents for each
constraint. To adapt the solution approach to a specific
problem instance, the tool can be reconfigured (even dur-
ing execution) by removing or adding agents to the team.
We have demonstrated that a set of independent agents
working in parallel on small subsets of the constraints can
be organized to solve the larger problem.

We developed the tool using a set of random packing
problems and tested it with a spatial layout problem repre-
senting an electromechanical assembly with 10 components,
a highly non-convex housing, and 5 constraints. We are ex-
tending the test set to include more examples such as the
layout of the components under the hood of a car.

The tool is also open to the use of different heuristics.
It allows the exact evaluation based heuristics to be used
alongside approximation based ones. We are extending the
set of agents to include the use of evaluation based heuris-
tics.
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We are extending the tool to use both multi-resolution
representations of objects as in (Kolli et al., 1996) and
tesselated representations as in (Sandurkar et al., 1997).
Both techniques appear extremely promising in initial test-
ing, with interference detection being considerably faster for
these representations and we are working towards integrat-
ing these representations into the tool.

The A-Team paradigm facilitates interaction and coop-
eration between humans and computational agents to solve
difficult problems. This ability is exceptionally useful for
Spatial Layout problems since human beings are very good
at identifying and distinguishing promising from unpromis-
ing layouts. In a significant number of cases, humans are
much better than the best algorithms available. Computers,
on the other hand, are much better at numeric processing.
We are extending the tool to allow for synergistic cooper-
ation, harnessing the pattern recognition ability of humans
with the numerical abilities of computers.

Other extensions to the tool include the use of alter-
nate representations for objects and solutions, allowing ro-
tational freedom, and addition of diversity (e.g. by adding
a simulated annealing agent) to the team.
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