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Abstract

Rapid technical advances in many different areas of scientific computing provide the
enabling technologies for creating a comprehensive simulation and visualization envi-
ronment for assembly design and planning. We have built an intelligent environment
in which simple simulation tools can be composed into complex simulations for detect-
ing potential assembly problems. Our goal in this project is to develop high fidelity
assembly simulation and visualization tools that can detect assembly related problems
without going through physical mock-ups. In addition, these tools can be used to
create easy-to-visualize instructions for performing assembly and service operations.

1 Introduction

Developing high-performance electro-mechanical products is a very challenging task. In order
to improve efficiency and reduce the product weight and volume, designers need to pack a
large number of components in a very small space. At the same time, in order to make
products easier to assemble and service, designers need to leave enough room for performing
assembly and disassembly operations. These requirements are quite often in conflict and
make design of electro-mechanical products a highly iterative process. In the absence of high
fidelity simulation tools, most product development teams are forced to include physical
prototyping in the design loop to verify proper functioning and ease of assembly. Physical
prototyping is a major bottleneck. It slows down the product development process and
seriously constrains the number of design alternatives that can be examined. Furthermore,
after a prototype has been built and tested, a significant amount of time is spent creating
instructions for performing assembly and service.



Rapid technical advances in many different areas of scientific computing provide the
enabling technologies for creating a comprehensive simulation and visualization environment
for assembly design and planning. We believe that developing and maintaining a single
monolithic system for assembly simulations will not be practical. Instead, we have built an
environment in which simple simulation tools can be composed into complex simulations.
Our goal in this project is to develop high fidelity assembly simulation and visualization
tools that can detect assembly related problems without going through physical mock-ups.
In addition, these tools will be used to create easy-to-visualize instructions for performing
assembly and service operations.

In our Intelligent Assembly Modeling and Simulation (IAMS) environment, the designer
creates an assembly design using a commercial CAD package. After adding information
about articulation and assembly features, the designer stores the design in the assembly
format. The designer then selects a number of simulation tools and composes them into
a customized simulation. In parallel, process engineers create a model of the work cell in
which the parts will be assembled. The designer proposes an initial sequence in which this
assembly can be performed — either interactively or through the use of assembly planning
software. He uses the simulation environment to analyze the assembly, and he makes changes
in the assembly after discovering problems. Currently, the simulation environment includes
the facilities for performing interference detection, tool accessibility analysis, and detailed
path planning.

When the designer is satisfied with the design, the process engineer can optimize the
workspace and create a detailed animation of the assembly process. This sequence is down-
loaded to the operator’s desktop computer, where it can be consulted using a browser. The
operator can start assembling the parts immediately, without the need for extensive training.

2 Review of Related Work

Assembly Representation: In order to use computer-aided assembly design and plan-
ning systems, we need to have computer-interpretable assembly representations. A number
of different approaches have been adopted to represent assemblies [21, 20, 23, 27, 36, 35, 25].
In many of these techniques, each individual part is represented by its geometric model,
and the assembly is represented by the relative position and orientation of each individual
part in the final assembled configuration. Most non-geometric information such as fits or
joints is stored as text labels. At present, there is no comprehensive scheme for representing
articulated assemblies. In order to do intelligent simulations, we need better assembly rep-
resentations. In this project, we have developed assembly representations that allow us to
capture articulation.

Design for Assembly: This area grew out of the need to create products that are easier
to assemble [26, 15, 14, 22, 2]. It was started by the pioneering work of Boothroyd and
Dewherst. Several different variations of Boothroyd and Dewherst techniques have been
developed over the years. Most systems formulate this problem in the following way: given



the description of an assembly, evaluate its goodness and offer redesign advice based on the
bottleneck areas. Boothroyd and Dewherst Inc. offers commercial software based on the
early research of its founders. However, most DFA tools are currently not integrated with
CAD software, lack abilities to perform geometric reasoning, and fail to detect problems due
to interactions with the workspace and tools. Our approach addresses these short-comings
and complements the capabilities of DFA software.

Assembly /Disassembly Operation Sequencing: This body of research mainly focuses
on generating feasible assembly or disassembly sequences [8, 9, 5, 4, 17, 33, 42, 39]. This
research can be further divided into two groups. The first group developed techniques for
finding optimal or near-optimal sequences. The second group developed techniques for ef-
ficiently enumerating all feasible sequences. In most cases, assembly time or cost is used
as the objective function [18, 24]. In many systems, the first step is to create an assem-
bly/disassembly dependency network. This network represents the blocking characteristics
of the assembly. Information for creating the assembly/disassembly dependency network
can either be supplied by the human or by an automated geometric reasoning system. The
next step is to use state-space search techniques for finding the desired solution. Assembly
sequences are used for assembling the part. Disassembly sequences are used for creating a
maintenance plan or recycling the product [28, 29]. Currently, this work does not address
tool and process related issues. Our research complements this work by providing a much
more extensive set of analysis capabilities.

Motion Planning: This research mainly deals with robot motion planning for robotic
assembly [3, 31, 37]. The problem is defined as: given a sequence of assembly operations to
be performed, determine a series of robot moves that are capable of executing the given op-
eration sequence and optimize the given objective function (i.e., operation time). In general,
the problem of finding the optimal motion plan is shown to be P-space hard. Therefore,
quite often the following two approaches are used to simplify the problem at hand. In the
first approach, an attempt is made to find an optimal motion path under a restricted set
of robot moves. In the second approach, fast algorithms are developed to find near-optimal
solutions.

Tool Accessibility To analyze tool accessibility in machining operations, two different
approaches have been developed. The first approach checks for interference between the
workpiece and the tool accessibility volume, which is defined as the non-cutting portion of
the tool [13, 38, 10]. The second approach uses visibility maps [41, 19]; a machining operation
for a particular face is selected such that the tool approach direction is inside the visibility
region for that face. Both approaches have also been applied for coordinate measuring
machines, to determine the accessibility of inspection points. The tool accessibility problem
has also been investigated for the assembly domain. Homem de Mello and Sanderson’s [6]
model of assemblies include attachments, which describe fastening methods. Four types of
attachment are considered: clip, pressure, screw, and glue. Even though the attachments can
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Figure 1: System Overview

be used to generate disassembly sequences, the detailed tool movements required to carry
out these attachment are not modeled. Diaz et al. [7] present a method that automatically
determines the complexity of an assembly task based on the tool use. The most detailed
work is reported by Wilson [40]. Wilson developed a tool representation that includes the
tools use volume, i.e. the minimum space that must be free in an assembly to apply the tool.
He further divides tools into pre-tool, in-tool, and post-tool classes, based on the time at
which the tools are applied relative to when the parts are mated in the assembly operation.
In addition, he provides algorithms for finding feasible tool placements.

3 System Overview

As illustrated in Figure 1, our software environment consists of four major components:
(1) an assembly editor, (2) a plan editor, (3) an assembly simulator, and (4) an animation
generator/viewer. The assembly editor imports CAD files of individual components from
an ACIS-based solid modeling system and organizes them into an assembly representation.
Using feature recognition techniques, the assembly editor recognizes joints between parts and
assembly features on individual parts. The plan editor allows users to synthesize assembly
plans interactively. The assembly sequence and tooling information (i.e., macro plans) en-
tered by the user are automatically converted into low level tool and part motions (i.e., micro
plans). Using the assembly simulator, the user selects and controls various simulations (such
as interference and tool accessibility). The animation viewer allows the assembly operators
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Figure 2: A One Degree of Freedom Scanner

to view the modeled assembly process interactively. The users can randomly access any
particular operation in the assembly sequence and interactively change their 3D viewpoint.

Practically, these components can be used in the following manner. A designer creates
an assembly design using a commercial CAD package. The design is imported into our envi-
ronment using the assembly editor. The designer than uses the plan editor to enter a specific
assembly sequence. The designer selects a number of simulation agents in the simulation
controller and composes them into a customized simulation. Based on the feedback from the
simulations he may have to change the assembly design. After several design iterations, he
is satisfied with the design and hands it over to the process engineer. In parallel, using the
workspace editor, the process engineer has created a model of the work-cell in which this
assembly will be performed. After incorporating the assembly in the workspace, the process
engineer performs a detailed simulation to check for any problems in the final assembly plan.
He then generates an animation of the assembly process which is down-loaded to the opera-
tor’s desktop computer where it can be viewed by the operator using animation viewer. The
operator can start assembling the parts immediately, without the need for extensive training
or tedious creation of documentation.

During our recent field trips to Allied Signal and Raytheon, we found that most assem-
bly operators already have computers on their workbenches to display digitized drawings
and images illustrating the assembly operations. As a result, we do not expect any major
economic or social obstacles to adopting this technology in the workplace.

Our system has been implemented using C++ programming language. It currently runs
on SUN (under Solaris operating system) and SGI workstations. We use ACIS for repre-
senting various part in the assembly model. We use RAPID [11] for performing interference
tests. We are using Openlnventor for graphical rendering. We use the LEDA class library
for implementing various data structures.

Figure 2 shows assembly of a scanner. This scanner has one degree of freedom and is



Figure 3: Specifying a revolute joint in the assembly editor.

used to detect the presence of an object by scanning horizontally. We will be using this
example throughout this paper to illustrate capabilities of our system.

4 Assembly Editor

Assemblies are a collection of components, which by virtue of their relative positions and
orientations, satisfy certain functional requirements of the designer. However, specifying the
part geometry and the relative positions and orientations of the parts is not sufficient for
performing assembly simulations. The designer should be able to annotate each part with
additional information which will be useful in the design process, as well as be able to group
parts into a single assembly.

To address this issue, we have developed an Assembly Editor (shown in Figure 3) which
assists the designer in creating a representation of the assembly. Besides the ability to group
all the parts into a single data structure, the Assembly Editor provides the designer with the
ability to attach attributes to parts (such as color, material name, and density). The Editor
automatically identifies features on the part which can aid in subsequent tool selection, and
incorporates the ability to populate a representation of articulation for each joint in the
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Figure 4: An example of assembly feature.

assembly. Once this is done, two very important tasks during assembly sequence planning
and simulation happen seamlessly, with minimal user interaction:

e Tool selection is based on the part features that have been detected by the Assembly
Editor. Depending on the type of feature recognized (such as a Phillips slot), the
appropriate tool will be automatically selected and will know how to position itself on
the part.

e Simulation of articulation can now proceed at a very high level, namely, the designer
needs only to specify a value for the degree of freedom for a joint, and the system will
proceed to articulate it; it is no longer required to mimic articulation by a relative
motion of the part by providing a transformation.

4.1 Feature Recognition

Whether a tool is applicable for a part depends on the features of the part to which it is
applied. For example, a Phillips screwdriver can only be used for screwing in a screw with
a Phillips slot of the appropriate dimensions.

We have developed an algorithm that automatically recognizes assembly features. The
feature recognition algorithm is quite generic because of our canonical representation of
features. The representation consists of a parametric base face (with a particular surface
type, number of edges, interior angles, and accessibility condition) and a set of neighboring
faces. The algorithm loops over all the faces in the solid model and compares each of them
with the parametric representation of the features’ base face. If there is a match and the
base face needs to be accessible, the algorithm checks for intersections between the normally
swept volume of the base face and the rest of the part. Finally, the neighboring faces of the
base face are matched with the neighboring faces of the feature template. If all of the above



conditions are met, the algorithm extracts the features’ reference frame and the values of its
parameters.

As an example consider the PhillipsSlot feature defined in Figure 4(a) and shown in
Figure 4(b) as part of a screw. The algorithm detects that the base of the slot matches
the parametric representation of the base of a phillips slot. In addition, upon sweeping the
base, it is found that that the base is accessible. Then the faces on the edges of the base
face are matched with the corresponding faces in the template. Since these conditions are
met, the algorithm returns the reference frame, the depth, the length and the width of the
phillips slot. All of the information relating to the features on the part, along with the other
attributes of the part form a complete description of the part (see Appendix A.2).

4.2 Joint Specification

Most electro-mechanical products have built-in articulation. Examples include household
appliances, computer disk drives, tape drives, satellites, VCRs, etc. Most existing assembly
representations do not explicitly model kinematic behavior of the assembly. In order to cor-
rectly generate assembly or disassembly plans for such products, we need to take articulation
information into account.

Before joints can be defined, it is helpful to know which parts are in contact with which
other parts. Some subset of these contacts will become joints in the final assembly. From
the part geometry, we generate all the possible contacts between the parts, and populate
an undirected contact graph, with parts represented as nodes, and contacts as edges. Edges
between nodes are automatically derived by performing intersections between the nodes.
Each part is scaled by a measure proportional to its bounding box dimensions, so that the
result of the intersection is a regular solid (or a set of regular solids). Some of these contacts
will become legitimate joints; others can be deleted by the designer. The graph is pruned to
a tree (Figure 5).

By default, all the contacts are fixed joints. The contacts that are not fixed joints in the
final assembly can be converted to one of the following lower pairs: Revolute (1 Rotational
Degree of Freedom (RDOF)), Cylindrical (1 RDOF, 1 Translational Degree of Freedom
(TDOF)), Prismatic (1 TDOF), Planar (1 RDOF, 2 TDOF), and Spherical (3 RDOF). For
example, the scanner assembly has a revolute joint between the motor and the motor sleeve
(Figure 6).

We define three levels of articulation representation (Figure 7). The highest level is one
of body-to-body contacts, and is obtained from the graph. The contacts can be classified
into two types - constraint contacts and incidental contacts [32]. Constraint contacts limit
the degrees of freedom of the component, and incidental contacts limit the range of motions
allowed for each degree of freedom.

The intermediate level uses the body-to-body contact information to obtain body-to-
body constraints. The result of each intersection is examined for features such as cylindrical
faces, or opposing planar faces. The point and line features on these faces form the low-level
representation.
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Figure 5: The Contact graph for the Missile Scanner Assembly.

A complete representation of a joint between two parts in an assembly requires two pieces
of information - the position of the joint on each part and a description of the degrees of
freedom of the joint. The position is specified by a position vector. The degrees of freedom
are specified by defining features on the parts which constrain the relative movement of the
parts and by defining limits on how much constrained movement is allowed. Figure 3 shows
a revolute joint being specified in the assembly editor. Representation of the revolute joint
in the missile scanner is given by:

{ Joint Revolute {Name motorsleeve_motor}
{ JointFeatures
{ Axis motorsleeve 150 60 8500 1100}
Rotation axis
——
{ Axis motor 1506085 001 100}
——— S——

Position of axes Orientation axis

{ Articulations

{ Theta 0 -75 75}

¥
¥

Joints can be tested using the joint tester window (Figure 3) by selecting the correspond-
ing edge on the contact graph and entering an articulation value for a degree of freedom.
Once all the joints are defined and tested for correctness, and unwanted contacts have been
removed from the contact graph, the designer is able to save the newly created assembly
(see Appendix A.l for a partial missile scanner assembly file). Now that a complete repre-
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Figure 6: The Revolute Joint between the Motor and the Motor Sleeve.

sentation for the assembly is available, the designer can create a workspace and construct
an assembly plan.

5 Plan Editor

To construct assembly plans for simulation, we need to satisfy two important criteria. On the
one hand, we need to create a description of an assembly plan at a level at which humans are
able to provide high level expertise. On the other hand, we need a very detailed description
for performing high fidelity simulations. For instance, for a given assembly operation, it is
very easy for the user to propose the appropriate tool. However, for simulation purposes,
this operation needs to be augmented with detailed information about the position of each
of the parts and tools at any time. Our approach is to create automatic plan completion
capabilities that bridge the gap between these two requirements and relieve the user from
tedious entry of low-level details; these details will be automatically generated by the system.

5.1 Workspace Generation

Whether an assembly plan is acceptable or not depends not only on the geometry of the parts,
but also on the workspace in which the assembly will be created, and on the tools with which
the assembly operations will be performed. It is important that we build comprehensive
representations for both the workspace and the tools. For instance, in addition to the tool
geometry, our representation captures information about the proper tool usage (e.g., tool
orientation or movement).

The workspace generator takes the assembly and the tool models as input and synthesizes
a working environment which includes: an assembly table, a part rack, and a tool rack. The
layout of the environment and the configurations of each of the parts and tools are also
determined. All parts and tools are oriented so that their principal axes are aligned with
the X, Y, and 7 axes in the world coordinate. Identical parts are grouped and placed in a
single cell of the part rack. Figure 8 shows the workspace for the scanner.
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Figure 7: The Articulation Representation Schema.

5.2 Entering High Level Plans

To facilitate the generation of detailed assembly process specifications, we have implemented
an assembly plan editor. With this editor, the process engineer can specify a high-level
assembly sequence, as is illustrated in Figure 9. Such as sequence consists of high-level as-
sembly operations performed on individual parts or sub-assemblies. The operations that are
currently supported include: relative and absolute positioning of parts, fitting, extracting,
screwing, tightening, soldering, brazing, and coating. When one of these operations is se-
lected, the plan editor will display a customized form in which the user can specify additional
information. For instance, for a screwing operation, the user is asked for the name of the
screw, the tool name, and the duration of the operation.

A micro-planner (described in Section 6.2) will then convert the high-level assembly plan
into low-level detailed assembly primitives. For example, a single screwing operation will
result in a sequence of assembly primitives starting with the positioning of the screwdriver,

11



Figure 8: Workspace for the scanner.

engaging of the screwdriver with the screw, the actual screwing, the disengagement, and
finally, the return of the screwdriver to the shelf. All the additional information needed
to generate such a low-level sequence is extracted automatically from the tool, part and
assembly models. Once the process engineer has entered a high-level assembly operation, he
can verify the corresponding micro-plan immediately in the graphical animation window.

6 Assembly Simulation

The assembly simulation module consists of a simulation controller and three tools, which
we will describe in the following subsections.

6.1 Interference Detection

In order to ensure successful assembly, it is very important to avoid part-part and part-tool
interference during assembly operations. Such interference can damage parts and tools. We
have developed an agent that will detect part-part interference during assembly operations
and allow designers to either modify the design or change the assembly plan to eliminate
such problems. Figure 10 shows an example of detecting part-part interference in a scanner
assembly.

In real-world problems, assemblies tend to contain a large number of parts, each with
complicated geometry. For most interference checking algorithms, performance deteriorates
rapidly with the increase in the number of parts in the assembly and the number of faces
per part. Most assembly design and planning problems exhibit several levels of nested
combinatorial explosion, making scalability an important research topic. Computation time
for detecting interference depends on the size of geometric models. Quite often, geometric
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Figure 9: A screw operation being specified in the plan editor.
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Figure 10: Detecting part part interference.

models can be simplified before interference checks. We use hierarchical approximations of
the geometric models of individual parts. For instance, checking for interference between the
bounding enclosures of parts can be a quick first test for part-part interference. Only when
the bounding boxes intersect, do we then need to proceed with more complex tests.

6.2 Micro Planner for Analyzing Tool Accessibility

The ability to account for tooling requirements is critical in both design and assembly of
complex electro-mechanical products. The designers need to make sure there is no interfer-
ence between tools and parts. Likewise, process engineers need to ensure that an assembly
operator has enough room to manipulate the tools. Moreover, both the execution time and
the quality of the assembly depend on the tool type and its particular application.

Without adequate software-aids, designers currently rely on physical prototypes to inves-
tigate tool accessibility issues. We are building micro planning software that helps designers
and process engineers to select and evaluate tool applications within assembly plans. A more
detailed description of the micro planner can be found in [12].

6.2.1 Tool Representation

To enable reasoning about tool usage, we have developed tool models that capture the
following three types of information.

Tool Geometry: To investigate accessibility issues, we need to represent the geometry of
a tool. In general, we model tools as articulated devices. During the assembly process, one
can control the joint values for each of the DOFs of the tool. As illustrated in Figure 11
and 12, we also define a tool application frame that indicates the tool’s position relative to
the part to which it is applied. Some tools can be used in more that one way. Therefore,

14



Figure 11: Tool representation for a plier including its application frame and degree-of-
freedom.

Figure 12: Tool representation for a screw driver.

we allow the same physical tool to correspond to multiple logical tools. For example, the
Allen wrench in Figure 13 can be treated as two different logical tools each with its own
application frame and motion definition.

Tool Parameters: For a given assembly operation, the size and shape of the tool need to
match the size and shape of the part feature to which it is applied. To check whether this
condition is satisfied without having to rely on geometric reasoning with solid models, the
size of the tool is abstracted in the tool parameters. As illustrated in Figure 14, a flathead
screwdriver is characterized by the length, width, and height of its tip. These parameters are
compared to the parameters of the corresponding part feature in the applicability condition.

Tool Use: The final component of our tool model lists, for each type of assembly operation
supported by the tool, the sequence of motions describing the proper tool use. Some of the
types of assembly operations that are currently supported are: position, screw, unscrew,
tighten, loosen, reorient, fit, and extract. A tool will typically support one or more of these
operations. We have also modeled a logical tool called “no_tool” that has no physical tool
attached to it and supports all of the above operations.

15
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Figure 13: Two logical tools corresponding to the same physical tool.

As shown in Figure 14, the motion primitives are expressed in TCL syntax and may
contain references to both the part and tool parameters. This parametric description allows
complicated tool movements to be expressed as a simple sequence of elementary motions.
Some elementary motions, such as relative and absolute linear moves of parts or tools,
translate directly into low-level simulation primitives; others, such as screw with retraction,
require a large number of simulation primitives. The screw with retraction motion-macro
divides a single screwing operation into multiple applications over 60 or 120 degrees each.
This is useful in case a wrench is used in a confined area in which it cannot complete a full
360-degree rotation. Figure 15 shows an example where tool motion range is restricted due
to obstruction.

For a given tool and assembly operation, the tool motion script models the motion se-
quence of the tool required to execute the assembly operation. In our environment, the micro
planner automatically converts the high-level assembly operations and tooling information
into low-level part and tool motions.

6.2.2 Tool selection

Whether a tool is applicable depends on the type of operation for which it is to be used, and
on the features of the part to which it is applied. For example, a Phillips screwdriver can
only be used for screwing in a screw with a Phillips slot of the appropriate dimensions. For
a given assembly operation, a feasible tool is selected according to the following steps:

1. Consider only those tools for which the given assembly operation is supported.

2. Verify that the part to which the tool is applied has all the required features listed in
the tool model (the definitions of the part features are described in the next section)

3. Evaluate the tool applicability condition to verify that the dimensions of the tool match
the dimensions of the corresponding part feature.

4. Finally, for parts containing symmetry, determine the initial position of the tool and
part such that no collisions occur during the execution of the motion script; this is a
planning problem that will be addressed in Section 6.3.

16



{ Tool
{ Name screwdriver }
{ Body
{ URL screwdriverl.asm }
{ Transform identity } }
{ PartFeatures
{ Name FlatSlot }
{ Name Thread } }
{ Parameters
{ Length 3 }
{ width 0.8 }
{ Height 1.2 } }
{ ApplicabilityCondition
# TCL script
"expr $Width < $FlatSlot(Width) && $Height > $FlatSlot(Depth)" }
{ Operation { Type screw }
# TCL script
"# engage motion
AbsMoveTool $FlatSlot(Reference) RelativeTo $part(transform);
RelMoveTool Transform translation 0 O -$FlatSlot(Depth);
Attach $tool(name) $part(name);
# operate motion
RelMoveTool Transform screw 0 0 0 0 0 1
[expr -360*$Thread(Depth)*$Thread(hand) $Thread(Pitch)] -$Thread(Depth);
# disengage motion
Detach $tool(name) $part(name);
RelMoveTool Transform translation O O $FlatSlot(Depth);" }
{ Operation { Type unscrew }
# TCL script
"# engage motion
AbsMoveTool $FlatSlot(Reference) RelativeTo $part(transform);
RelMoveTool Transform translation 0 O -$FlatSlot(Depth);
Attach $tool(name) $part(name);
# operate motion
RelMoveTool Transform screw 0 0 0 0 0 1
[expr 360*$Thread(Depth)*$Thread(hand) $Thread(Pitch)] $Thread(Depth);
# disengage motion
Detach $tool(name) $part(name);
RelMoveTool Transform translation O O $FlatSlot(Depth);" }

Figure 14: A file describing a flathead screwdriver.
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Figure 15: An example of restricted tool motion range.

6.3 Path Planning

To move a tool from its initial position in the workspace environment to the application posi-
tion, requires in general a sequence of translations/rotations. To generate these complicated
paths, one could rely on the user’s geometric intuition. Indeed, humans tend to be rather
good at finding a collision free path between an initial and final position. However, there
is currently no convenient mechanism available to enter a 6-DOF path into the computer;
specifying via-points textually is tedious and error-prone, graphical entry is difficult because
a mouse has only two DOF's, and VR environments with 6-DOF hand tracking are still very
expensive and therefore not readily accessible.

It is our goal to relieve the user from the path planning task all together, and generate
tool and part paths automatically. The 6-DOF path planning problem is very challenging,
however, due to the following characteristics. First, in the application position, the tool tends
to be in contact with the part to which it is applied. That means that in the configuration
space the goal configuration may be almost completely surrounded by obstacles, which is
a situation that is typically difficult to handle for path planning algorithms. Second, one
only computes a path once for each part in the assembly. This means, that one cannot
amortize any of the pre-computations required by some of the path planning algorithms
(e.g. pre-computation of the configuration space).

Several path planning algorithms have been developed specifically for assembly plan-
ning [1, 34]. Our implementation is based on a group of randomized path planners [1, 16, 30].
These algorithms do not require the computation of the C-space; they consist of the following
components: a simple potential field method, generation of random via-points, creation of a
roadmap graph, and search of the roadmap. For a detailed description of these algorithms

18



refer to [16, 30].

We have implemented a simple potential field method that is an extension of the method
described in [30]. The method lets the tool make small moves to 36 neighboring positions
(6 pure translations, 6 pure rotations, and 24 combined rotations/translations), and ranks
these positions according to their distance from the goal position. The tool is moved to
that direct neighbor that is closest to the goal without colliding with any obstacles. The
algorithm terminates when the goal is reached or when no neighboring positions closer to
the goal are collision free.

To check for collision, we use a combination of RAPID and ACIS. RAPID is a fast
collision detection algorithm based on oriented bounding-box trees [11]. Because it uses a
faceted representation of the tools and objects, it often detects collisions between objects
that are in contact but do not really intersect. For instance, when rotating a cylindrical
object inside a cylindrical hole of the same diameter, RAPID will always detect a collision
except when the facets of the hole happen to line up perfectly with the facets of the cylinder.
Since contact situations are common in assembly, we use the ACIS geometric kernel to check
for intersections between the exact solid models whenever RAPID detects a collision between
the faceted models. In this way, we are able to check for collisions rapidly and accurately.

The creation of the roadmap based on randomly generated via-points is unacceptably
slow for our purposes. Instead, we have defined a set of via points that yields feasible paths
in most cases. These points are located at the corners of an expanded bounding box around
the subassembly of the parts that are being mated. If this selection does not result in a
connected roadmap, then the user is asked to identify promising via-points using a graphical
user interface, until a feasible path is found.

7 Animation Generator/Viewer

We envision that a number of applications can benefit from our visualization agent. We
create an interactive animation of the proposed assembly plan. This animation includes
the visualization of the tools and assembly. Such a complete and high fidelity visualization
environment can be used by the design and process engineers while editing and simulating
an assembly plan, but also by operators on the shop-floor to learn the assembly process.
The idea is to store the visualization information in a compact assembly-movie-format that
can be viewed interactively with a simple multi-media viewer (separate from the editing and
simulation environment) on a low-cost PC.

Most companies today use engineering drawings and textual instruction sheets as the
primary medium for giving instructions to their assembly operators. This means that the
assembly operator needs to be trained to read engineering drawings and textual instruction
sheets. Moreover, for complex assemblies, following engineering drawings and textual in-
struction sheets takes a very long time and is also prone to misinterpretation. From the
perspective of the manufacturing engineer, the creation of the engineering drawings and tex-
tual descriptions for each assembly operation is a very time-consuming process. Moreover,
as parts undergo changes, the assembly instructions need to be updated and redistributed
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to all the operators. This results in a huge version control problem.

With current multi-media technology and solid modelling based CAD, one can automat-
ically create audio visual animations illustrating the entire assembly sequence. We believe
that such a capability will allow even an untrained operator to follow assembly instruc-
tions without making errors. Automatic generation and distribution of these interactive 3D
instructions will result in a significant workload reduction for manufacturing and process
engineers, and will increase reliability through improved version control of the instructions.

The shop-floor visualization environment that we have developed provides the assembly
operator with a random-access 3D interactive animation of the complete assembly process.
In a compact format, the animation viewer stores the state of each component or tool as a
function of time. This allows us to regenerate the state of the complete system (assembly
workspace, tools, and the assembly components themselves) almost instantaneously, resulting
in a random-access animation. The operator can jump forward or backward in time to a
particular assembly operation of interest. To investigate the details of this operation, he
can adjust the speed of the simulation continuously, pause it, or even move backwards in
time. Furthermore, at any time during the animation, the operator can change the camera’s
viewpoint or zoom in to better study the details of an operation. Figure 16 shows a snap
shot of our animation viewer.

& Conclusions

In this paper we describe a system for performing a variety of assembly simulations. Our
simulation environment incorporates the following new features.

o Articulated Tools and Products: Most electro-mechanical products have articulated
devices. However, most assembly planning systems do not properly handle articulated
products and tools. Our assembly simulator will be able to handle products and tools
with built-in articulation. This is important for a large variety of designs, for which
the articulated components need to be moved to perform the assembly operations.

o Automatic Plan Completion: When designing a complex electro-mechanical product,
the designer usually already has a coarse assembly sequence in mind. However, to
perform a high fidelity simulation, it is important to specify an assembly plan in full
detail. Our framework provides plan completion features that automatically fill in the
details of high level assembly operations specified by the design and process engineers.

o Assembly Process Modeling: Most research efforts have focussed on the geometric as-
pects of the assembly (i.e., finding a sequence of assembly operation without part-part
interference). We believe that assembly tools and the workspace play a very significant
role. Many of the problems related to assembly cannot be recognized without taking
process models into account. We therefore model the workspace. This allows the pro-
cess engineers to evaluate various types of environments in which the assemblies can
be performed.
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We believe that our assembly modeling and simulation infra-structure described in this
paper will allow the creation of much more complex products in a much shorter time. Specif-
ically, we envision the following three main advantages:

o Reduction in Physical Prototyping: By reducing the need for physical prototyping, we
will be able to complete each design iteration much faster and significantly reduce the
cost of prototyping.

o Agile Work-force: Ability to provide easy-to-follow instructions eliminates the need for
work-force training in specialized activities. Instead, we can have a agile work-force
that can be deployed to handle a wide variety of tasks.

o Belter Assembly Analysis/Planning Software: We believe that our simulation environ-
ment can be combined with a number of assembly analysis/planning tools to create
much better software. In particular, we see the following three potential applications
of this research: (1) automated assembly planners, (2) optimum design for assembly
workspaces, and (3) automated assembly redesign to improve manufacturability.
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A File Formats

The data structures used to represent parts, assemblies, tools, workspaces, plans and simu-
lations in the TAMS environment are all nested lists.

The files presented in this Appendix are partial listings of actual data files used for the
missile seeker example. They have been selected to provide the reader with a sample of the
capabilities provided by our data structures.

A.1 Assembly Files

This partial Scanner Assembly file contains a list of parts and joints. FEach part is described
by a name, a URL which is a pointer to the geometry, and a transformation which places the
part in its assembled position in the assembly. Every joint is described by a type, a name,
and the names of the base and attached parts forming the joint. In addition, depending on
the type of joint, there are also features defined on each part, as well as the current value
and limits of the degrees of freedom of the joint.

{ Assembly
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**

List of parts forming the assembly
Part

{ Name motor }

{ URL motor.sat }

{ Transform Identity }

-~

-~

Part

{ Name scanner }

{ URL scanner.sat }

{ Transform Identity }

**

List of joints between parts
Joint Fixed
{ Name potentiometer_sleeve_screw_potentiometer_to_frame}
{ BasePart potentiometer_sleeve }
{ AttachedPart screw_potentiometer_to_frame }
{ JointFeatures
{ Point potentiometer_sleeve O O O }
{ Point screw_potentiometer_to_frame O 0 O }

-~

{ Joint Revolute
{ Name motor_scanner}
{ BasePart motor }
{ AttachedPart scanner }
{ JointFeatures

{ Axis motor 150 60 85 0 0 11 0 0 }
{ Axis scanner 150 60 85 0 011 0 0 }
}
{ Articulations { Theta 0 -75 75 }
}
}
}

A.2 Part Files

This partial part file describes the screw from the potentiometer to the frame of the Scanner
Assembly. A part is described by its color, a transformation, information about the material
used in the part, and a list of part features, if any. The list of part features is used to
determine the type of tool to use in assembly operations involving this part.

{ Part
{ Color gray }
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{ Transform Identity }
{ Material { Name carbon_fibre_composite }
{ Density 0.006 }
+
{PartFeature PhillipsSlot
{Width 1.5}
{Depth 1.2}
{Length 6.5}
{ Transform Homogeneous 166 44 190 0 -1 0 1 0 O}
+
{PartFeature Thread
{Pitch 2}
{Depth 8}
{Hand Right}
+
+

A.3 Tool Files

Tool files contain tool information and a list of operations the tools support. A tool is
described by its tool class, a name, a URL which is a pointer to the geometry, and a trans-
formation from tool modelling frame to the tool application frame. A list of part features
and parameters is used for tool selection and applicability checking. Fach operation in a tool
file describes the tool motions at the engagement, operational, and disengagement stages.

{ Tool hex_wrench
{ Name 5mm_allen_long }
{ Body
{ URL 5mm_allen_wrench.asm }
{ Transform Homogeneous -1.1658 27.5 -100 1 0 0 0 1 0 }

{ PartFeatures
{ Type HexagonalSlot }
{ Type Thread }

{ Parameters
{ Width 2.5 }
{ Depth 3 }

-~

ApplicabilityCondition "expr 1" }

{ Operation Screw

{ MotionMacro
#engage
"AbsMoveTool $HexagonalSlot(Transform) RelativeTo $Part(Transform)"
"RelMoveTool Transform Translation O O -$HexagonalSlot(Depth)"
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"Attach $Tool(Name) $Part(Name)"
#operate
"RelMoveTool Transform Screw 0 0 0 0 0 1
[expr -360*$Thread(Depth)*$Thread (Hand)/$Thread(Pitch)] -$Thread(Depth)"
#disengage
"Detach $Tool(Name) $Part(Name)"
"RelMoveTool Transform Translation O O $HexagonalSlot(Depth)"
"Attach $Part(Name) $Subassembly(Name)"
"AbsMoveTool $Tool(Transform)"
+
+
{ Operation Unscrew
{ MotionMacro
#engage
"AbsMoveTool $HexagonalSlot(Transform) RelativeTo $Part(Transform)"
"RelMoveTool Transform Translation O O -$HexagonalSlot(Depth)"
"Detach $Part(Name) $Subassembly(Name)"
"Attach $Tool(Name) $Part(Name)"
#operate
"RelMoveTool Transform Screw 0 0 0 0 0 1
[expr 360*$Thread(Depth)*$Thread(Hand) /$Thread(Pitch)] $Thread(Depth)"
"Detach $Tool(Name) $Part(Name)"
#disengage
"RelMoveTool Transform Translation O O $HexagonalSlot(Depth)"
"AbsMoveTool $Tool(Transform)"
+
+
{ Operation Tighten
{ MotionMacro
#engage
"AbsMoveTool $HexagonalSlot(Transform) RelativeTo $Part(Transform)"
"RelMoveTool Transform Translation O O -$HexagonalSlot(Depth)"
#operate
"Pause 3"
#disengage
"RelMoveTool Transform Translation O O $HexagonalSlot(Depth)"
"AbsMoveTool $Tool(Transform)"
+
+
{ Operation Loosen
{ MotionMacro
#engage
"AbsMoveTool $HexagonalSlot(Transform) RelativeTo $Part(Transform)"

"RelMoveTool Transform Translation O O -$HexagonalSlot(Depth)"
#operate
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"Pause 3"

#disengage

"RelMoveTool Transform Translation O O $HexagonalSlot(Depth)"
"AbsMoveTool $Tool(Transform)"

A.4 Tool Database File

Tool database files contain a list of available tools which can be used in assembly operations.

{ ToolDataBase
{ ToolURL 5mm_allen_long.tool }
{ ToolURL 5mm_allen_short.tool }
{ ToolURL Bmm_phillips.tool }
{ ToolURL no_tool.tool }

A.5 Workspace Files

Workspace files contain a complete description of the assemblies that are present, including
the assembly that is to be assembled, as well as other assemblies which define each tool and
the shelves. A workspace file defines the working environment for the given assembly task
and is used in simulation files.

# version 1.0
{ WorkSpace
{ Assembly
{ URL scanner_assembly.asm }
{ Name scanner_assembly }
{ AssemblyState
{ Assembled No }
{ PartState
{ Name base }
{ Transform Homogeneous -210 550 20 0 -1 0 1 0 O }
+
{ PartState
{ Name motor }
{ Transform Translation -300 240 195}
+
+
{ Assembly
{ URL ../../Tools/environment.asm }
{ Name assembly_station }
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{ AssemblyState
{ Assembled Yes }
}

{ Assembly
{ URL ../../Tools/5mm_allen_wrench.asm }
{ Name 5mm_allen_wrench }
{ AssemblyState
{ Assembled Yes }
{ Transform Homogeneous -500 270 314 0 0 1 0 1 O }
}

{ Assembly
{ URL ../../Tools/bmm_phillipshead_screwdriver.asm }
{ Name B5mm_phillipshead_screwdriver }
{ AssemblyState
{ Assembled Yes }
{ Transform Homogeneous -500 270 225 -1 0 0 0 -1 0 }
+
+

A.6 Plan Files

Plan files contain detailed assembly instructions for the assembly to be assembled. An
assembly plan contains the assembly to be assembled, the workspace file, the tools used
for this plan, and a list of assembly operations which describes the assembly sequence and
assembly motions of the parts and tools.

{ AssemblyPlan

{ AssemblyURL scanner_assembly.asm }

{ WorkspaceURL scanner.wsp r

{ ToolURL tool.dtb }

{ Macro "potentiometer_subassembly"

{ Operation AbsPositionPart

SubAssembly potentiometer_subassembly }
Part "scanner_assembly.potentiometer_sleeve"}
Transform Homogeneous 200 0 190 1 0 0 0 -1 0O}
Tool "no_tool"}
Duration "2"}
Comments ""}

N

{ Operation RelPosition
{ SubAssembly potentiometer_subassembly }
{ Part "scanner_assembly.potentiometer"}
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}
}
{M
{

A.7

{ Transform Translation 0 0 -100}
{ Tool "no_tool"}

{ Duration "2"}

{ Comments ""}

acro '"final_assembly"

Operation AbsPositionPart
SubAssembly final_assembly }
Part "scanner_assembly.base"}
Transform Identity}

Tool "no_tool"}
Duration "2"}
Comments ""}

N

Operation RelPosition

SubAssembly final_assembly }

Part "scanner_assembly.screw_frame_to_base"}
Transform Translation 0 O 25}

Tool "no_tool"}

Duration "2"}

Comments ""}

N

Operation AbsPositionAssembly

{ SubAssembly final_assembly }

{ Transform Homogeneous 200 100 0 -1 0 0 0 -1 O}
{ Tool "no_tool"}

{ Duration "2"}

{ Comments "'}

Operation Screw

{ SubAssembly final_assembly }

{ Part "scanner_assembly.screw_potentiometer_to_frame"}
{ Tool "Bmm_phillips"}

{ Duration "15"}

{ Comments "'}

Simulation Files

Simulation files contain the assembly motion information. A simulation file is represented by

its workspace and a list of simulation steps. Each simulation step defines a specific assembly
operation and is executed in sequence. A simulation step also indicates the part or tool
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involved in the operation. The duration of a simulation step is used to perform the assembly
simulation.

#version 1.0
{ Simulation
# description of the workspace
{ Assembly
{ URL seeker.asm }
{ Name seeker}
{ AssemblyState
{ Assembled No }
{ PartState
{ Name gimbal }
{ Transform Homogeneous -150 340 40 1 0 0 O 1 O}
+
{ PartState
{ Name housing }
{ Transform Homogeneous 150 360 10 1 0 0 0 1 O}
+
{ PartState
{ Name pitch_motor }
{ Transform Homogeneous 150 300 110 1 0 0 O 1 O}
+
+
+
{ Assembly
{ URL ../../Tools/environment.asm}
{ Name assembly_station}
{ AssemblyState
{ Assembled Yes }
+
+
{ Assembly
{ URL ../../Tools/Bmm_allen_wrench.asm}
{ Name 5mm_allen_wrench}
{ AssemblyState
{ Assembled Yes }
{ Transform Homogeneous -520 270 114 0 0 1 0 1 0O}
+
+
{ Assembly
{ URL ../../Tools/bmm_phillipshead_screwdriver.asm}
{ Name 5mm_phillipshead_screwdriver}
{ AssemblyState
{ Assembled Yes }
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{ Transform Homogeneous -500 270 225 -1 0 0 0 -1 O}

+

+

# Steps in the simulation

{ SimulationStep RelativeMoveObject
{ ObjectName "seeker.optics_housing" }
{ Duration 0.00564173 }
{ Transform Screw 0 0 0 -1 0 0 5.72958 0 }

-~

SimulationStep AbsoluteMoveObject

{ ObjectName "seeker.optics_housing" }
{ Duration 0.011952 }

{ Transform Identity }

-~

SimulationStep Attach
{ AttachObject "seeker.switch_shaft_motor" }
{ ToObject "seeker.optics_housing" }

{ SimulationStep AbsoluteMoveAssembly
{ AssemblyName "Bmm_phillipshead_screwdriver" }
{ Duration 3 }

{ Transform Homogeneous 289 -562.5 24
4.71028e-16 1 2.22045e-16
1 -4.71028e-16 3.14018e-16%}
+
{ SimulationStep RelativeMoveAssembly
{ AssemblyName "Bmm_phillipshead_screwdriver" }
{ Duration 3 }
{ Transform Screw 0 -205 0 0 -1 0 0 1.2 }
+

{ SimulationStep Detach
{ DetachObject "Bmm_phillipshead_screwdriver.b5mm_phillipshead_screwdriver"}
{ FromObject 'seeker.screw_cw_motor2" }
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