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Abstract

The application of robots in critical missions in hazardous
environments requires the development of reliable or fault
tolerant manipulators.  In this paper, we define fault tol-
erance as the ability to continue the performance of a task
after immobilization of a joint due to failure.  Initially, no
joint limits are considered, in which case we prove the ex-
istence of fault tolerant manipulators and develop an
analysis tool to determine the fault tolerant work space.
We also derive design templates for spatial fault tolerant
manipulators.  When joint limits are introduced, analytic
solutions become infeasible but instead a numerical de-
sign procedure can be used, as is illustrated through an
example.

1: Introduction

Consider the use of manipulators in a nuclear environ-
ment where equipment has to be repaired or space has to
be searched for radioactive contamination.  A manipulator
that is deployed for this kind of critical missions must
have many desirable attributes.  It must beversatile.  That
is, the manipulator system must be capable of accom-
plishing a wide variety of tasks and possibly be capable of
reconfiguring itself.  It must beeasily maintainable and
cost effective.  Ease of maintenance would significantly
reduce the downtime and therefore increase the utility of
the system.  It must also bereliable or fault tolerant.  That
is, if one of the subsystems were to fail, the reduced sys-
tem should still be capable of accomplishing its mission
objectives.  The property of fault tolerance is a must in
critical missions that may involve high costs if the mis-
sion were to fail due to a failure in the manipulator sys-
tem.  Recently, fault tolerant (or failure tolerant) robotics
has been the subject of several publications
[1, 11, 15, 16], in which different aspects of the problem
are addressed.  Visinsky et al. [16] propose a framework
to includefailure detectionin fault tolerant robot systems.
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Lewis and Maciejewski [11], on the other hand, discuss
the importance of thecontroller and the redundancy reso-
lution algorithm.  In this paper, the focus is on kinematic
design of fault tolerant manipulators.

2: Definition of fault tolerance

To set the stage for our development, we define the fol-
lowing properties of fault tolerant manipulators [1]:

• Fault Tolerant (FT) Manipulator :  An -DOF
manipulator that will still be able to meet the task
specifications, even if any one or more of its joints
fail and are frozen at any arbitrary joint angles.

• k-Reduced Order Derivative (k-ROD):  When
joints of an -DOF manipulator fail, the effective
number of joints is .  The resulting faulty
manipulator is called a -reduced order derivative.

• Order of Fault Tolerance:  An -DOF manipula-
tor is FT of the -th order, if and only if all possible

-reduced order derivatives can still perform the
specified task.  We call the manipulator -fault tol-
erant.

• Fault Tolerant Work Space (FTWS):  The fault
tolerant work space of a -FT manipulator is the set
of points reachable by all possible -reduced order
derivatives.

These definitions differ from the concept of fault toler-
ance as proposed by Maciejewski [12].  Instead of attrib-
uting the property of fault tolerance to amanipulator, he
quantifies a measure of fault tolerance for a manipulator
postureand describes a technique to determine the opti-
mal FT posture, based on the singular value decomposi-
tion of the Jacobian matrix.  If a joint fails in this optimal
posture, the resulting reduced order derivative will have
maximum possible dexterity.  However, a failure at a dif-
ferent angle may make the execution of the task impossi-
ble.
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In the rest of this paper, if no specific task is men-
tioned,  it is assumed that the task consists of reaching a
nonzero volume of points in the task space, i.e., an -di-
mensional manifold in the -dimensional task space.  A
manipulator that satisfies the fault tolerance condition
only while reaching a manifold of dimension less than ,
is considered not to be fault tolerant.

3: Properties of fault tolerant manipulators

3.1: Existence

Suppose that we have an -DOF manipulator, ,
that satisfies all the kinematic requirements of a given
task.  It has been shown that such a manipulator can be
found by using the task based design approach described
in [8] or [13].  An obvious way to make this manipulator
FT is to design every joint with a redundant actuator.  If
one of the actuators of the resulting -DOF FT manipu-
lator were to fail, the redundant actuator could take over
and the manipulator would still be functional.  Similarly,
a -FT manipulator can be constructed by duplicating ev-
ery DOF  times, resulting in a -DOF manipu-
lator.  This same manipulator structure can also be
interpreted according to the four level subsumptive archi-
tecture for FT manipulators, proposed in [15].  The four
levels are:

I) Dual Actuators: extra actuators per joint.
II) Parallel Structures: extra joints per DOF.
III) Redundant Manipulators: extra DOFs per arm.
IV) Multiple Arms: extra arms per system.

According to this classification, the -DOF ma-
nipulator is an -DOF manipulator with  actua-
tors for every DOF—redundancy of level I.  In the rest of
this paper, we focus our attention on fault tolerant manip-
ulators with redundancies of level III.

3.2: Boundary of the fault tolerant work space

In this section, we show that a boundary point of the
FTWS is a critical value (A critical value is an end-effec-
tor position that can be reached in a singular configura-
tion, i.e., that is the image of a critical point [2]).

Consider a -FT planar manipulator, .  A boundary
point, , of the FTWS has to be an element of the
boundary of the work space of at least one ROD, , ob-
tained by freezing  joints of .  Indeed, if  were an
interior point of the work spaces of all RODs, then it
would by definition be an interior point of the FTWS and
not a boundary point.  The Jacobian of , , can be
obtained from the Jacobian of , , by deleting the col-
umns corresponding to the frozen DOFs.  Because  is a
boundary point of the work space of , the Jacobian of
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 at  is singular.  We prove now that  is singular
too.  Suppose that  were non-singular, then at least one
of the columns corresponding to a frozen DOF would be
outside the column space of the singular matrix, .
Physically this means that a small change in the angle of
that frozen DOF would cause the end effector of  to
move in a direction with a component perpendicular to
the boundary of the work space of the ROD, , as illus-
trated in Figure 1.  The ROD with this new frozen angle
would be unable to reach the point, .  As a result,
would be outside the FTWS, contradicting the fact that
is a boundary point of the FTWS.  Thus,  is singular
and  is a critical value.

Consequently, the FTWS is bounded by critical value
manifolds.  For planar positional manipulators, the critical
value manifolds are concentric circles, and the FTWS is
an annulus with inner radius and outer radius

.

3.3: Required degree of redundancy

In Section 3.1, it is shown that, in general,  redun-
dant DOFs—i.e.  DOFs in total—are sufficient
to achieve -th order fault tolerance.  For planar position-
al manipulators, we prove now that  DOFs are also
necessary for -th order fault tolerance.
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Figure 1: A ROD unable to reach a point outside
the FTWS.
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The proof shows that  DOFs (or  re-
dundant DOFs) are insufficient, by finding a lower bound
for  and an upper bound for .  First consider
the ROD obtained by freezing the first  joints at  radi-
ans, as illustrated in Figure 2.  The maximum reach in the
opposite direction is an upper bound for :

(1)

where  is the length of the -th link.  In order for
 to be positive, we must have that:

. (2)

Making this assumption, we find that  is bound-
ed below by the inner radius of the work space of the
ROD obtained by freezing the  last joints at  radians,
as illustrated in Figure 2:

. (3)

From Equation (1) and Equation (3), it follows that at
best
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Figure 2: An upper bound for
and a lower bound for .
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, (4)

resulting in a one-dimensional FTWS.  Therefore, a
-DOF manipulator cannot be FT ■

3.4: Including orientation

Thus far, we have only considered planar positional
manipulators.  The results for positional manipulators can
be easily extended to the case in which orientation is con-
sidered also, by converting the orientational problem into
an equivalent positional problem:

An -DOF manipulator, , is -FT with respect to
a set of points, , if and only if:

1. the positional manipulator, , obtained from
by deleting its last link, , is -th order fault
tolerant with respect to the set of points

,

2.  is -FT while reaching the points in
 in any direction.

The positional manipulator, , needs at least
 DOFs to be -FT with respect to ; therefore,

the manipulator  needs at least  DOFs.  Now,
consider a -DOF manipulator with the first

 links having length, , and the last link having
length zero.  It is easy to verify that this manipulator’s

-th order FTWS is:

(5)

Thus,  DOFs are necessary and sufficient for
-th order fault tolerance of planar manipulators when

orientation is included
This result and the result obtained in Section 3.3 can be

summarized in the following theorem:

Theorem:
For planar manipulators,  redundant DOFs
are necessary and sufficient for -th order fault
tolerance.

4: Spatial fault tolerant manipulators

For planar FT manipulators, we were able to prove that
 is the required degree of redundancy.  The proof was

based on geometric work space analysis.  However, geo-
metric analysis becomes too complex for spatial manipu-
lators, especially since we are dealing with redundant
manipulators.  Therefore, we will demonstrate some prop-
erties of spatial FT manipulators using two examples.

As a first example, consider a 5-DOF spatial positional
manipulator.  Its Denavit-Hartenberg (D-H) parameters
are listed in Table 1.  This manipulator is first order FT,
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and because of its simple kinematic structure, an analytic
expression for the boundary of the FTWS can be derived.
The FTWS is symmetric with respect to the first axis.  A
cross-section (the X-Z plane), as shown in Figure 3, can
be described by two segments of a circle with radius 2 and
center at , and a straight line from

 to .  An important
property of this FTWS is that it does not have any holes
or a central void, so that the FTWS of the same manipu-
lator scaled by any factor, , contains the original
FTWS.  As a result, this FT manipulator can be used as a
design template.  Any specified set of points can be
reached in a first order FT way by a scaled version of the
template.

In Section 3.2, it is shown  that the boundary of the
FTWS of a planar manipulator coincides with its critical
value manifolds.  Figure 3 demonstrates that this property
also holds for the 5-DOF spatial manipulator considered
in this example.  The critical value manifolds are comput-

DOF

1 0 1 90˚

2 a 1 0˚

3 -a 1 90˚

4 b 1 0˚

5 -b 1 —

Table 1: D-H parameters of a  5-DOF first
order FT spatial manipulator, without

orientation.

i di ai αi

Figure 3: A cross-section of the boundary
of the FTWS of a 5-DOF spatial manipula-
tor (bold) as part of its critical value mani-
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ed using the algorithm described in [2] and are depicted in
a solid line.  The bold part of the critical value manifolds
is the boundary of the FTWS.

As a second example, consider an 8-DOF manipulator,
with D-H parameters listed in Table 2.  It is the same ma-
nipulator as in example one, with a zero-length 3-roll-
wrist added at the end.  Using a Monte Carlo method, it
has been determined that this manipulator is first order FT
while reaching all the points in the FTWS of example
one,in any direction.  This property can be demonstrated
with the following arguments.  When one of the first five
DOFs fails, the manipulator can still reach any position in
the FTWS (because the 5-DOF positional manipulator is
FT) and can take any orientation at this position using the
intact 3-roll-wrist.  When one of the DOFs in the wrist
fails, we are left with a 7-DOF manipulator which has
enough orientational capabilities to reach any point in the
FTWS in any orientation.  Consequently, one could call
this thedextrousFTWS.  Since there are again no holes or
voids in the FTWS, this manipulator can also be used as
a design template.

Finally, one should notice that both examples have
only two redundant DOFs, which seems to indicate that
the theorem in Section 3.4 is extendable to spatial manip-
ulators.

5: Joint limits

In Section 2, the definition of a FT manipulator includ-
ed the specification that joints could fail “at any arbitrary
angle.”  Thus far, we did not consider joint limits and
therefore “at any arbitrary joint angle” meant at any angle
between  and .  From now on, however, an arbitrary
joint angle is restricted to be within the joint limits.  Using
two examples, we discuss now how the introduction of
joint limits changes the properties of FT manipulators.

First, consider a 4-DOF positional planar manipulator
with links of length one.  Figure 4 illustrates how the

DOF

1 0 1 90˚

2 a 1 0˚

3 -a 1 90˚

4 b 1 0˚

5 -b 0 90˚

6 1 0 90˚

7 0 0 90˚

8 0 0 —

Table 2: D-H parameters of an 8-DOF  first
order FT spatial manipulator.

i di ai αi

0 2π
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work space changes when the joint limits (the same limits
for all joints) vary from  through .  As one
would expect the FTWS shrinks,  but it also changes po-
sition.  A point that isoutside the FTWS of a manipulator
without joint limits can becomeinside the FTWS when
joint limits are introduced.  This can be understood by
thinking of the FTWS as the intersection of the work
spaces of all RODs.  When joint limits are introduced, the
work space of every ROD reduces in size, but the inter-

Figure 4: The FTWS of a 4-DOF planar
manipulator with joint limits.
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section of fewer RODs has to be taken to obtain the
FTWS.

As a second example, we revisit the 5-DOF spatial ma-
nipulator of the previous section.  As depicted in Figure 5,
the FTWS of this 5-DOF manipulator shrinks rapidly
when the joint angle intervals are reduced.  Moreover, a
central hole appears and the FTWS splits into two discon-
nected parts.  When the joint angle interval becomes
smaller than , the FTWS vanishes.

From the above examples, it is clear that the analysis,
and therefore also the design of FT manipulators is very
complex when joint limits are introduced.  Whereas we
were able to generate design templates for the case of no
joint limits (or joint limits of ), finding ageneral
design template is infeasible due to the infinite number of
possible joint limits.  Therefore, in the next section, we
propose a numerical procedure to find the kinematic struc-
ture of a FT manipulator when joint limits are considered.

6: Task based design of fault tolerant manipu-
lators

6.1: Mathematical formulation

In this section, we formulate a method to determine the
kinematic structure of a manipulator which is FT with re-
spect to the task of reaching a set of positions/orienta-

Figure 5: A cross-section of the FTWS of a
5-DOF spatial manipulator with joint limits.
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tions, , and for which
the joint limits for each of the DOFs are given.  We
present a technique based on the design method proposed
in [14].  In this approach, the Denavit-Hartenberg param-
eters are determined through the optimization of a penalty,
which is positive when any design specification is violat-
ed and is zero when all the specifications are met.  This is
expressed mathematically as:

, (6)

where “pen_f( )” determines the penalty for the vio-
lation of the constraints by a manipulator design, , in
a posture, , reaching a specific task point.

A manipulator is first order FT with respect to a task if
all possible first order RODs can fulfill the task.
Equation (5) can then be adapted to include first order
fault tolerance as follows [1]:

(7)

The maximization yields zero when all the RODs, re-
sulting from a failure of joint , are able to reach the task
point.  As a result, the minimization over the D-H param-
eters equals zero if and only if all possible RODs are able
to reach every specified task point.

6.2: Implementation

Equation (6) contains three nested optimizations.  For
each ROD, the innermost minimization finds the posture,
for which the penalty function is minimal.  The task that
we consider is to reach a certain point without violating
the joint limit constraints.  The penalty function therefore
consists of two parts.  A first part penalizes the failure to
reach the point (without considering joint limits). This
penalty is equal to the norm squared of the residue, ,
namely, the distance between the actual position/orienta-
tion of the end effector and its desired position/orienta-
tion.  A second part, penalizes the joint limit violations.
This penalty is equal to

. (8)

The resulting minimization of the full penalty function,
is a nonlinear least squares (NLLS) problem, and is com-
monly solved in robotics applications using a Newton-
Raphson scheme [6] (cfr. numerical inverse kinematics
literature). This scheme converges very quickly when the
penalty at the optimum is zero, i.e., for a zero residual
NLLS problem.  However, it is possible that a task point

W p j xj yj zj ϑj ϕj ψj, , , , ,( )={ }=

min min pen_f DH θpost task cnstr, , ,( )[ ]
task points

∑
DH postures

⋅
DH

θpost

min max min pen_f ⋅( )[ ]
j 1=

n

∑ 
 

task points
∑

DH θ
j

i j≠( )
θi

j

r 2

max 0 θi θi
max−,( )2 max 0 θi

min θi−,( )2+{ }
i 1=

n

∑

is outside the reach of the manipulator, in which case the
minimization becomes a large residual problem.  For this
class of problems, the Newton-Raphson scheme (or
Gauss-Newton algorithm) converges slowly and is outper-
formed by the BFGS algorithm (Broyden-Fletcher-Gold-
farb-Shanno [5]).  As shown by Fletcher and Xu [4], the
best overall performance is obtained by a hybrid algo-
rithm, which combines the advantages of both the Gauss-
Newton and BFGS algorithms.

The second optimization in Equation (6) is the maxi-
mization over the frozen joint angle, .  A typical exam-
ple of the objective function is shown in Figure 6.  Notice
that the function and its gradient are zero possibly over a
large part of the domain, namely, where the task point is
reachable.  To solve the maximization, we need to incor-
porate additional information.  The key observation is that
when the desired point is outside the reach of the manip-
ulator, the innermost minimization algorithm always gets
stuck at the boundary of the work spaces of the manipu-
lator, where the Jacobian matrix of the manipulator loses
rank [10].  The measure of isotropy, , is defined as [7]:

, (9)

with  the number of Cartesian coordinates.  For a singu-
lar Jacobian,  is zero; otherwise it is positive.  Conse-
quently, a minimization over  leads to regions where the
penalty is possibly positive.  Thus, the derivative of
with respect to , can be used to compensate for the lack
of gradient information in the norm of the residue.  As
one can see in Figure 6, however, the measure of isotropy
is a multimodal function of .  As there is only one op-
timization variable, an efficient global optimization algo-
rithm, such as the algorithm developed by
Zilinskas [17], can be used.  is a combination of a
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one-stage Bayesian algorithm and Brent’s local minimiza-
tion resulting in smart global coverage and accurate local
refinement.

The third and outermost optimization minimizes the to-
tal penalty of a kinematic configuration, defined by the

 D-H parameters.  Unfortunately, this function
also has multiple minima. Therefore, we need to employ
a global optimization method, such assimulated anneal-
ing.  Simulated annealing was first proposed as a combi-
natorial optimization algorithm [9], but can be easily
adapted to continuously varying optimization variables.
The method is basically a random iterative improvement
algorithm with the modification that, under certain condi-
tions, anincrease in the objective function is accepted.  A
new trial configuration is generated randomly in the
neighborhood of the current configuration.  The condition
for acceptance of this trial configuration is:

(10)

which depends on a control variable, , the temperature.
The algorithm is started at a high temperature, for which
all new configurations are accepted.  After each iteration
the temperature is decreased until no new acceptable con-
figuration can be found.  The search is thenfrozen.  We
adapted this basic algorithm to include the special proper-
ties of our objective function, in particular, the algorithm
is stopped when a new trial configuration has an objective
function value equal to zero, even when the search is not
yet frozen.  We know that a kinematic configuration with
a penalty of zero satisfies all the design requirements.

7: Numerical results

To illustrate the approach developed in the previous
section, we give an example of a first order FT spatial ma-
nipulator design: a five DOF spatial manipulator that is
required to be first order FT while accomplishing the task
of reaching three points:

3n 1−( )

∆Fobj 0≤ accept⇒
exp ∆Fobj T⁄−( ) random 0 1),[> accept⇒




T

5 DOF solution

DOF

1 0.2 0.7 90˚

2 0.1 1.0 0˚

3 0.9 0.1 135˚

4 0.6 0.5 0˚

5 0.1 1.3 —

Table 3: D-H parameters of a 5-DOF first order FT
spatial solution with joint limits.

i di ai αi
(11)

Notice that we do not consider end effector orientation at
this time.  The joint limits for all five DOFs are
and .

From the example in Section 5, we know that five de-
grees of freedom are sufficient for first order fault toler-
ance.  Our numerical results confirm this.  The D-H
parameters of a possible design are listed in Table 3.
Figure 7 shows a cross-section along the XZ-plane of the
boundary of the FTWS.

8: Summary

In this paper, we definedfault tolerance as a property
of a small class of redundant manipulators.  Based on the
definition, we were able to constructively prove the exist-
ence of FT manipulators by duplicating the joints.  When
no joint limits are considered, we proved analytically that,

 redundant DOFs are necessary and sufficient for fault
tolerance of planar manipulators.  We also proved that the
boundary of the FTWS consists of critical values.  For
spatial manipulators,  design templates were introduced.
A manipulator able to reach a specified set of points can
be designed by scaling the template appropriately.  For
manipulators with joint limits, analytical solutions be-

p1 0.5 0 0.5, ,( )=

p2 0 0.5 0.25, ,( )=

p3 0.75 0 0.5, ,( )=

150°−
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Figure 7: A cross-section of the FTWS of the
5-DOF solution
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come infeasible.  Therefore, we introduced a numerical
design method based on an earlier developed “task based
design” approach.  All the different steps of our develop-
ment were illustrated with design examples.
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