
Agent-Based Planning and Control of a Multi-Manipulator
Assembly System

Juan-Carlos Fraile
Automatic and Systems Engineering Dept.

University of Valladolid
Valladolid 47011 – Spain
jcfraile@dali.eis.uva.es

Christiaan J.J. Paredis, Cheng-Hua Wang
Pradeep K. Khosla

Institute for Complex Engineered Systems
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890
^cjp, cwwang, pkk̀@ices.cmu.edu

Abstract

This paper presents a distributed planning and control
architecture for autonomous Multi-Manipulator Systems
(MMS). The control architecture is implemented using an
agent-based approach. A team of distributed and
autonomous agents is deployed to model the flexible
assembly system in such a way that the agents negotiate,
collaborate, and cooperate to achieve the goals of
assembly tasks.

The main focus of this paper is on assembly task
allocation and assembly task execution. We describe the
agent models and communication mechanism, and
explain how they handle complex interactions among
agents. A distributed trajectory planning approach based
on artificial potential fields is also presented.

Experimental results show that our multi-agent
planning and control framework is suitable for flexible
robotic assembly tasks. Our approach addresses the
issues of flexibility, scalability, reconfigurability, and
fault-tolerance. We anticipate that the same approach
can be applied to other flexible manufacturing
environments.

1 Introduction and Related Work

To stay competitive in the current global economy, it
is crucial for companies to react quickly to changing
economic factors, such as customer demands, new
technologies, and cost of materials/production. Such
market changes often encourage the creation of new
products or demand product improvements.
Accommodating frequent product changes requires a
manufacturing system be more flexible than currently
prevalent hard automation systems. Consequently, there
has recently been an increasing interest in flexible
manufacturing and assembly systems [15], [16] and [17].

There are two important aspects to a flexible
manufacturing system: automation hardware and the
corresponding planning and control software. The latter
is the heart of a flexible manufacturing system; an
appropriate software architecture can improve system
performance significantly. In this paper, we focus mainly
on the software aspect.

Distributed Artificial Intelligence covers the
intersection of Artificial Intelligence and Distributing
Computing. Multi-Agent Systems (MAS) are commonly
used in solving difficult problems in the areas of
Distributed Artificial Intelligence. This paper takes the
multi-agent approach in which a team of agents, each
with only limited local knowledge and local information,
collaborates to satisfy both local and global objectives.
The overall behavior of the system emerges through the
dynamic interactions of the agent’s local behaviors.

Several other researchers have addressed the use of
MAS for the control of robotic systems. Basran [2]
considers a flexible agent-based robotic assembly cell.
The agents use a contract-net protocol for negotiation
and dynamic task allocation. Oliveira [9] presents a
cooperative multi-agent system for robotic assembly cells
using a blackboard architecture as an inter-agent
communication mechanism. Nagata [8] proposes a
rather original approach to assembly task planning for
multiple manipulators by associating an agent to each of
the parts to be assembled, while Lueth [7] and Ouelhadj
[10] take the more traditional approach of associating an
agent to each of the robots performing the assembly
tasks. Overgaard [11], on the other hand, develops a
multi-agent approach to grasping in which each agent
controls only part of a robot. Huang [4] proposes an
agent-architecture for autonomous distributed systems
based on the control mechanism of organs in living
systems, or animals in colonies or groups.

Motion planning is critical for assembly task
execution. The computational complexity of finding a
collision-free path/trajectory for a multi-manipulator
systems grows exponentially with the total number of
degrees-of-freedom (DOFs) of the system [6]. As a
result, most practical approaches utilize only heuristic
solutions to make the problem tractable [1], [3], and
[12].

2 Problem Definition

We are developing an agent-based planning and
control system for a flexible assembly system with multi-
manipulators. The input of the system is the mechanical
model of the product to be assembled. The output of the
system is the final assembled product. The general flow
diagram that indicates the global operation of the system
is shown in Figure 1. This flow is mainly divided in two
stages: an off-line stage and an on-line stage.

The off-line stage performs assembly task

decomposition. It produces a preliminary assembly plan
that consists of a sequence of assembly operations and the
precedence relationships among them. The input to this
off-line stage is the mechanical model of a product that is
composed of parts. It then generates a preliminary
assembly plan based on assembly accessibility and
stability. The assembly operations that make up a
preliminary assembly plan are task level operations.
Currently we have implemented two such operations:
“Pick/Place Part” and “Insert Part.” The preliminary plan
is used as the input to the on-line stage.

 The on-line stage focuses on task allocation and task
execution. In this stage, agents of a team collaborate and
cooperate to achieve common goals. The task allocation
phase assigns assembly operations to appropriate

resources (manipulators). The task level operations are
also mapped into low-level operations that manipulators
can understand and execute. In the agent system,
several special agents are added during task execution: a
collision avoidance agent (for collision-free trajectory
planning), a fault tolerance agent (for fault recovery), and
a monitoring agent (for interleaving planning and
execution).

This paper focuses on the on-line stage. We present an
agent based planning and control architecture for task
control and coordination. The multi-agent paradigm has
been adopted as it provides the following advantages:
x Homogenous Framework: All system components

are considered and modeled in a uniform and
homogenous manner

x Modularity and Scalability : Different modules are
developed and implemented independently. This
approach can simplify agent component
development/maintenance and make addition/
removal of agents much easier.

x Dynamic Reconfigurability: The capability to
quickly reconfigure a system enables timely response
to changing market conditions

x Distributed Control : Each agent has local control
with the capability to coordinate its activities
through messages-passing communication. Agents
can reside on different computers and manipulator
controllers.

x Fault Tolerance: Techniques for fault detection,
failure recovery, and execution monitoring during
task execution is provided to make system
performance more robust.

3 Hardware Description

The multi-manipulator assembly system developed at
the Automatic and Systems Engineering Department of
the University of Valladolid consists of the following
components (Figure 3). There are three 5 DOF Scorbot
ER-IX manipulators in a triangular configuration. These

Product Model

Assembly Plan with
Precedence Relationship

High Level
Task Commands

Low Level
Robot Commands

Task
Decomposition

Task
Allocation

Task
Execution

Off-Line Stage

On-Line Stage

Manipulator 1 Manipulator 3Manipulator 2

Scheduling

Trajectory Planning and Robot Control

Error Recovery

Monitoring

Assembled Product

Figure 1: Global Operation Flow.

Figure 2: The MMS in Our Laboratory.

manipulators share a common workspace where they can

simultaneously perform assembly operations. In the
middle of the workspace is a servo-controlled rotating
worktable on which the assembly is built. A linear
conveyor system serves as a part feeder and is to the
manipulators. A buffer area is provided to store parts
temporarily before they are assembled.

The agent-based control system is implemented in a
distributed fashion on four Pentium 400 PCs. Each
manipulator has its own low-level controller that is
connected to one of the PCs over a serial RS-232 line.
The rotating worktable and part feeder are controlled by
an Omron-PLC, which is connected to the fourth PC. All
four PCs are further linked through a local Ethernet
network.

4 Agent Types

The multi-agent paradigm is based on the premise
that complex problems can be partitioned into simpler
sub-problems that have limited mutual dependencies.
The fewer dependencies the system has, the more
successful the agent-based approach can be. Therefore,
problem decomposition and design of individual agent
become the most important software design decisions for
agent-based system. We have adopted a hybrid
decomposition approach [14], which combines robot-
based and task-based components. Our agent architecture
is shown in Figure 4.

We have designed the following agents in our system:
x Scheduler Agent is responsible for scheduling the

detailed assembly operations and assigning them to
available resources (manipulators).

x Manipulator Agents are responsible for the low-
level control of individual manipulators, and for
converting task level assembly operations to low-
level robot commands.

x Auxiliary Component Agents are responsible for
the control of the auxiliary components, i.e. part
feeder and the rotation table in our system.

x World State Agent contains both static and
dynamic information of all components in the
system. Static information includes geometric,
kinematic, and dynamic information of all system
components. Dynamic information includes current
component configuration and any dynamic state
information.

x Trajectory Planning Agent is responsible for
generating the collision-free motion of the three
manipulators on the fly.

x Fault Tolerance Agent manages and coordinates

Manipulator Agents

1 32

Task Execution Control

Task Commands
Robot Commands

Scheduler Agent

Communication Agent

Auxiliary Component
Agent

World State Agent Trajectory Planning
Agent

Fault Tolerance
Agent

Monitoring Agent

Graphic Simulator

User Interface User

Par
t F

ee
din

g Resource Allocation

State Update/Query

Agent Communication Support

State Update/Query
Visual Verification

Failure Management

Execution Feedback

Failure Notification

Resource Utilization

Planning Interruption and Re-planning

Trajectory Planning

State Query

Figure 4: Agent System Architecture.

Manipulator
Controller 1

Manipulator
Controller 3

Manipulator
Controller 2

Part Feeder

Rotational
Table

Omron PLC

Pentium
400

Pentium
400

Pentium
400

Pentium
400

Manipulator 1 Manipulator 2 Manipulator 3

Local Ethernet Network

Figure 3: Hardware Architecture.

the failure recovery process.
x Communication Agent handles message passing

and message dispatching in the agent system
through a blackboard architecture

x Monitoring Agent monitors task planning and
execution to improve resource utilization. It notifies
the fault tolerance agent in case of system failures.

x Graphic Simulation Agent provides visual
verification of task execution.

5 Agent Model

A typical agent architecture in our system is
illustrated in Figure 5. The agent model is based on the
ARCHON project [13]. Agents are involved in two types
of activities: internal activities that lead the agent to
achieve its own goals, and external activities through
which the agent communicates and collaborates with
others agents to achieve common goals. To support both
internal and external activities, a typical agent contains
the following modules:

x Communication Module
The communication module is responsible for

managing and controlling communications among
agents. Both direct peer-to-peer communication and
communication through blackboard architecture is
supported. The communication module itself consists of a
low-level network interface and a higher-level
communication protocol.

The communication module manages two types of
messages: state messages and commands messages. State
messages contain dynamic state information of system
components, while command messages contain other
information, such as geometric information, kinematic
and dynamic performance, or execution commands.

Command communications are implemented by priority
messages, buffers and without time restrictions. A
blackboard architecture manages the command
communications.

x Knowledge Module
 The knowledge module provides an agent with an

information source about the agent itself and the
environment (others agents). This module has a
knowledge base that stores necessary data and knowledge
for the agent to perform its activities. The knowledge
base includes two kinds of knowledge:

1. Local knowledge base: It contains information
related to agent capabilities and its own state
information.

2. Global knowledge base: It contains information
of other agents, with which the agent will work.
The agent collaborates and cooperates with these
agents during the task allocation and task
execution stage.

x Control Module
The control module determines the agent’s behaviors.

It operates in a goal-driven fashion. When an agent is
assigned a set of tasks, every task in the set is converted
into a set of goals. The agent can achieve the goals as
long as its capabilities can meet the requirements. Agent
goals are mapped into a collection of plan scripts, which
can be achieved by the control module. The scripts are
coded with the necessary parameters and low level robot
commands. The control module can run either
independently or cooperatively with others agents. In our
system the control module consists of a set of C++
programs which were developed according to the object-
orientation programming (OOP) paradigm.

The control module is the only component of the
agent that does not reside on the PC; instead, it is
executed on the robot controller.

6 Communications Among Agents

The ability to represent, query, and manipulate
knowledge is crucial to agent-based systems. Finin et al
[5] propose KQML, a novel language for such purpose.
We have adopted the KQML format to represent our
message format and protocol. There are two types of
communications in our system: commands and state
communications.

x Command communications (non-periodic
communication)
A blackboard architecture has been implemented

inside the communication agent to manage the command
communications. The message is handled according to its
priority and time stamp. A high priority command

Knowledge
Module

Local Knowledge
Global Knowledge

Control Module

Communication Module

Plan

TasksGoals

State Commands

Network Interface and Communication Protocols

Figure 5: Agent Model.

message will be sent before a lower priority message. If
two messages have the same priority, the one with earlier
time stamp will be sent first.

Agents communicate with each other by posting
command messages on the blackboard. The
communication agent is responsible for handling
message dispatching sending the message to its recipient,
and sending the reply back to its sender. Figure 6 shows
how this kind of communications is achieved.

The messages that fall into the category of command
communications are:

1. Control commands: Commands related to the
control of the system components (manipulators,
rotation table, and part feeder).

2. Information request commands: Query
commands regarding the agent’s state and
knowledge.

3. Failure commands: Failure report

x State communications between world state agent
and manipulator agent (periodic communications)
During the task execution stage, manipulator agents

need up-to-date state information of other manipulator
agents to plan collision-free trajectories. This
information must be updated at each time instant to
reflect the current states of the manipulators. This state
information is used by the trajectory planning agent
during task execution.

As we expect, there is intensive message passing
between the world state agent and manipulator agents,
particularly during the trajectory planning stage. This
communication bottleneck can dramatically degrade
system performance. To overcome this problem, we have
developed a periodical and point-to-point state

communication between manipulator agents and world
state agent (Figure 7). For every small time interval (a
few milliseconds) the world state agent will request the
latest state information from all manipulator agents.
Manipulator agents reply by sending their current state
information to world state agent. The world state agent
then updates all state information in it.

Whenever an agent requests the state information of
some manipulator, it requests the information from the
world state agent instead of communicating directly with
the manipulator agent. This approach reduces
communication overhead and simplifies state information
management.

x State communications between world state agent
and others agents (non-periodic communication)
Whenever a non-manipulator agent changes its state,

it sends its current state to the world state agent. This is
done in a non-periodic fashion to reduce unnecessary
state polling form the world state agent. Figure 7 shows
how the world state agent manages the state

communications.

7 Collision-free Trajectory Planning

As the three manipulators share the same workspace,
collisions among these manipulators are possible. To
avoid collisions between the robots as well as between the
robots and the environment, we have developed an agent-
based collision avoidance system. The system is based on
the concept of Manipulator Incremental Motion (MIM).
As illustrated in Figure 8, the trajectories of each
manipulator are divided into small steps (a few
millimeters along the trajectory). The computation of
these steps is coordinated by the Trajectory Planning
Agent and is performed in near real-time during the
assembly execution. This allows us to produce collision-
free task execution, even when the trajectories of the
robots are not known in advance.

Blackboard
Mechanism

Request
Buffer

Reply
Buffer

 Agents

Communication
Agent

Figure 6: Command Message Managed by the
Communication Agent.

Non-Periodic State Update/Query

World State Agent

Manipulator
Agent 1

Manipulator
Agent 3

Manipulator
Agent 2

Non-Manipulator
 Agents

Periodic State Update/Query

State
Query

Periodic
State
Update

State
Change
Report

Periodic State Query

Figure 7: State Messages and World State Agent.

We have developed a distributed trajectory planning

system in which each of the manipulator agents computes
its incremental motion. The Trajectory Planning Agent
assigns a priority to each of the manipulators to compute
the next manipulator incremental motion in the order
that has been determined previously.

The priority management is both dynamic and
reactive. It is dynamic since the priority is calculated on
the fly at each configuration along the path. It is reactive
because it takes into account the System State at each
time instant. The following factors are considered to
compute the priority for each manipulator:
x Assembly sequences.
x Distance between the manipulator and its goal

configuration. The closer to the goal configuration
the manipulator is, the higher its assigned priority.

x Distance between manipulator and parts. A higher
priority will be assigned to the manipulator that is
closer to the parts that are about to be assembled.
The part feeder will deliver the parts into the system.

x Manipulator priority history. In order to achieve
load balancing for manipulators, the manipulator,
which has been utilized frequently, will be assigned
a lower priority.

x Manipulator failure. If a manipulator breaks down
during execution, it will be assigned a high priority
so that the following trajectory planning will first
consider the broken manipulator and plan
accordingly.

Once the priority of each manipulator is determined
the next manipulator incremental motion of the
manipulator will be computed.

The calculation of manipulator incremental motion of
the manipulators is based on an artificial potential field
technique [6]. This technique uses artificial potential
(forces) to model the trajectory-planning problem. There
are two kinds of potentials: attractive potential generated
by the goal configurations of manipulators and repulsive
potentials generated by obstacles. These two potentials
encourage a manipulator to move towards its goal

configuration and keep it from moving towards the
obstacles. Time is considered as another independent
variable to determine the motion of the manipulators.

The following information is needed in order to
calculate the manipulator incremental motion of a
manipulator:
x Current and goal configuration of the manipulator
x Geometric models of workspace, manipulators, part

feeder, rotation table, storage buffer, and parts that
have been assembled.

 This approach can be treated as a search problem,
which aims to find a shortest collision-free trajectory. We
have developed a heuristic search approach to generating
collision-free trajectories. For each manipulator at its
current configuration, all feasible states are generated.
Each state is represented by the following parameters:
x Distance between the current configuration and the

goal configuration of the manipulator
x The states of the all system components

This method uses both, the configuration space (C-
space) and the Cartesian workspace (W-space)
representations. The potential function “g” is a function
of two dependent variables, Do and Dr, where:
x Do: the distance from the manipulator to its goal

configuration. ‘Do’ is defined within the
manipulator configuration space.

x Dr: the minimum distance between the manipulator
and all the obstacles in the system.

When both, the priority and the best manipulator
incremental motion , have been calculated at each time
instant, the complete motions of the manipulators can be
obtained.

8 Conclusions

In this paper, we present a distributed planning and
control architecture for autonomous multi-manipulator
systems using a multi-agent paradigm. We have focused
on the on-line stage (task allocation and task execution)
of assembly operations. The task execution part has been
completely implemented and tested with our hardware
system. All agents except the fault tolerance agent have
been designed and implemented and are currently being
tested.

The experimental results demonstrate that our multi-
agent architecture is an adequate framework for flexible
robotic assembly. The system is modeled by a team of
autonomous agents that develop cooperative strategies to
achieve the common goals. Agents communicate with

Initial Configuration

Goal Configuration
MIM i-1

MIM i
Manipulator Trajectory

Configuration i-1

Configuration i

Figure 8: Manipulator Incremental Motion (MIM).

designated communication format and protocol to
exchange information.

We anticipated that our approach can be applied and
extended to other flexible manufacturing systems. We are
currently applying and extending the planning and
control strategy to another flexible assembly system with
four manipulators (RobotWorld by Automatix, Inc.) at
Carnegie Mellon University. The preliminary
experiments have shown some promising results.

Acknowledgements

This research has been funded in part by the Research
Program TAP 95-0092 of the “Comisión Interministerial
de Ciencia y Tecnología (CICYT)” of the Spanish
Government, by DARPA under contract ONR #N00014-
96-1-0854 and by the Institute for Complex Engineered
Systems at Carnegie Mellon University.

References

[1] J.Barraquand, B.Langlois, and J.-C.Latombe. “Numerical
potential field techniques for robot path planning,” IEEE
Transactions on Systems, Man and Cybernetics, No 2, pp.
222-24, 1992.

[2] J.S. Basran, E.M. Petriu, and D.C. Petriu. “Flexible agent-
based robotic assembly cell,” Proceedings of the 1997
IEEE International Conference on Robotics and
Automation, pp. 3461-3466, 1997.

[3] B. Faverjon, and P. Tournassoud. “A local based approach
for path planning of manipulators with a high number of
degrees of freedom,” Proceedings of the 1987 IEEE
International Conference on Robotics and Automation,
pp. 1152-1159, 1987.

[4] S.Y. Huang, and Umetani Y. “A constructing scheme for
autonomous distributed control systems with multi-agent
society,” Proceedings of the International Symposium on
Autonomous Decentralized Systems, pp. 17-24, 1997.

[5] Tim Finin, Richard Fritzson Don McKay and Robin
McEntire. “KQML as an Agent Communication
Language,” The Proceedings of the Third International
Conference on Information and Knowledge Management
(CIKM'94), ACM Press, November 1994

[6] J.-C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, 1991.

[7] T.C. Lueth, and T. Laengle. “Task description,
decomposition and allocation in a distributed autonomous
multi-agent robot system,” Proceedings of the 1994 IEEE
International Conference on Robots and Autonomous
System, pp 1516-1523, 1994.

[8] T. Nagata, and J. Hirai. “Distributed planning for
assembly tasks by multiple manipulators,” Proceedings of
the 1994 IEEE International Conference on Robotics and
Automation, pp.3522-3529. 1994.

[9] E. Oliveira. “Cooperative multi-agent system for an
assembly robotics cell,” Robotics and Computer
Integrated Manufacturing, Vol. 11, No 4, pp. 311-317,
1994.

[10] D. Ouelhadj, C. Hanachi B. Bouzouia. “Multi-agent
system for dynamic scheduling and control in
manufacturing cell,” Proceedings of the 1998 IEEE
International Conference on Robotics and Automation,
pp. 2128-2133, 1998.

[11] L. Overgaard, Nelson B. and Khosla P. “A multi-agent
framework for grasping using visual servoing and
collision avoidance,” Proceedings of the 1996 IEEE
International Conference on Robotics and Automation,
pp.2456-2461, 1996.

[12] P. Pal, and K. Jayarajan. “Fast path planning for robots
manipulators using spatial relations in the configuration
space,” Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 668-673,
1993.

[13] Thies Wittig, (ed.) ARCHON: an architecture for multi-
agent systems, Ellis Horwood, 1992.

[14] E.S. Tzafestas, “Agentifying the process: task-based or
robot-based decomposition?” Proceedings of the 1994
IEEE International Conference on Systems, man and
Cybernetics, pp. 582-587. 1994.

[15] F. Choobineh and R. Suri (eds.), Flexible Manufacturing
Systems: Current Issues and Models, Industrial
Engineering Management Press and, Norcross: Georgia,
1986.

[16] P.F. Muir, A.A. Rizzi, and J. Gowdy, Minifactory: A
Precision Assembly System Adaptable to the Product Life
Cycle, in Architectures, Networks, and Intelligent Systems
for Manufacturing Integration, B. Gopalakrishnan et al.
Eds., Proceedings of the SPIE, Vol. 3203, pp. 74-80,
1997.

[17] Sandia National Laboratory, AMPS: Agile Manufacturing
Prototyping System, http://www.sandia.gov/
AMPSfact.html, 1997.

