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Abstract

One of the most important parameters to consider when designing a manipulator is the number of

degrees-of-freedom (DOFs).  This article focuses on the question: How many DOFs are necessary and

sufficient for fault tolerance and how should these DOFs be distributed along the length of the

manipulator?  A manipulator is fault tolerant if it can complete its task even when one of its joints fails

and is immobilized.  The number of degrees-of-freedom needed for fault tolerance strongly depends on

the knowledge available about the task.  In this article, two approaches are explored.  First, for the design

of a General Purpose Fault Tolerant Manipulator, it is assumed that neither the exact task trajectory, nor

the redundancy resolution algorithm are known a priori and that the manipulator has no joint limits.  In

this case, two redundant DOFs are necessary and sufficient to sustain one joint failure as is demonstrated

in two design templates for spatial fault tolerant manipulators.  In a second approach, both the Cartesian

task path and the redundancy resolution algorithm are assumed to be known.  The design of such aTask

Specific Fault Tolerant Manipulator requires only one degree-of-redundancy.

1 Introduction

As robots are being used in a growing range of applications, the issue of reliability becomes more and

more important.  Recently, with the Hubble telescope and the Mars Observer, NASA has experienced first

hand how devastating the consequences can be when a critical component fails during a multi-billion-

dollar mission.  Space applications are particularly vulnerable to failure, because of the adverse

environment (cosmic rays, solar particles etc.) and the demand for long term operation.  In this context,

NASA has started to incorporate fault tolerance in their robot designs (Wu et al. 1993).  Reliability is also
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important in medical robotics, because of the risk of the loss of human life.  Although medical staff will

probably always be on standby to take over in the case of a manipulator failure, the robot should at least

be fail-safe, meaning it should fail into a safe configuration.  A third domain of robot applications in

which reliability is a major issue is the Environmental Restoration and Waste Management (ER&WM)

program of the Department of Energy.  Consider, for instance, the use of a manipulator in a nuclear

environment where equipment has to be repaired or space has to be searched for radioactive

contamination.  The manipulator system deployed in these kinds of critical tasks must be reliable, so that

the successful completion of the task or the safe removal of the robot system is assured.

In this article, we focus on fault tolerance as a technique to achieve reliability in manipulator systems.

The traditional approach to reliability has been that of fault intolerance, where the reliability of the system

is assured by the use of high quality components.  However, increasing system complexity and the

necessity for long term operation have proven this approach inadequate.  The system reliability can be

further improved through redundancy.  This design approach was already advocated in the early fifties by

von Neumann in connection with the design of reliable computers: “The complete system must be

organized in such a manner, that a malfunction of the whole automaton cannot be caused by the

malfunctioning of a single component, ... , but only by the malfunctioning of a large number of them”

(von Neumann 1956, p. 70).  This is the basic principle of fault tolerance:add redundancy to compensate

for possible failures of components.  However, this does not mean that any kind of redundancy added to

a system results in fault tolerance.  The main goal of this article is therefore to shed some light on the

redundancy requirements for fault tolerant manipulators.  That is, how much redundancy is needed and

how should this redundancy be distributed over the manipulator structure?

The redundancy provisions needed for fault tolerance can be incorporated only at a price of increased

complexity.  This drawback can be overcome by a modular and structured design philosophy, as is

advocated in (Schmitz, Khosla, and Kanade 1988; Fukuda et al. 1992; Sreevijayan 1992; Hui et al. 1993;

Chen and Burdick 1995).  Modularity in hardware and software has the advantage of facilitating testing

during the design phase and therefore reducing the chances for unanticipated faults.  Modules also

constitute natural boundaries to which faults can be confined.  By including fault detection and recovery

mechanisms in critical modules, the effect of local faults remains internal to the modules, totally

transparent to the higher levels of the manipulator system.  Such a modular design philosophy is

embodied in the Reconfigurable Modular Manipulator System (RMMS) developed in the Advanced

Manipulators Laboratory at Carnegie Mellon University (Schmitz, Khosla, and Kanade 1988).  The
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RMMS utilizes a stock of interchangeable link modules of different lengths and shapes, and joint modules

of various sizes and performance specifications.  By combining these general purpose modules, a wide

range of manipulator configurations can be assembled.  When one needs a different configurations for a

specific task (Paredis, and Khosla 1993), a robot created with the RMMS can be easily taken apart and

reconfigured suitably.  This reconfigurability can be further exploited to reduce the complexity of fault

tolerant manipulators, as is shown in Section 4.

Over the past decade, a lot of research has been done in fault tolerance for computer systems (refer to

Johnson (1989) for and overview), but only recently has the concept been applied in robotics.  Most of

the work in fault tolerant robotics is directly based on the results from computer science, and can be

classified in three categories:

1. Design of fault tolerant robots,

2. Fault detection and identification (FDI),

3. Fault recovery and intelligent control.

When designing a fault tolerant manipulator, one should decide where to include redundancy so that the

overall reliability is maximum.  One should distinguish between hardware, software, analytical,

information, and time redundancy (Johnson 1989).  Our focus will be on hardware redundancy, which

consists of actuation, sensor, communication and computing redundancy.  Each of these types of

redundancies can still be implemented at different levels.  In Sreevijayan (1992), for instance, a four-level

subsumptive architecture for actuation redundancy is proposed:

Level 1: Dual actuators—extra actuators per joint,

Level 2: Parallel structures—extra joints per DOF,

Level 3: Redundant manipulators—extra DOFs per manipulator arm,

Level 4: Multiple arms—extra arms per manipulator system.

A system can possibly be designed with redundancies at all four levels, resulting in the ability to sustain

multiple simultaneous faults.

An example of a fault tolerant design for the space shuttle manipulator is described in Wu et al. (1993).

Fault tolerance is here guaranteed by using a differential gear train with dual input actuators for every

DOF—an implementation of the first level of the four-level subsumptive architecture.  In this article, we

are more interested in achieving fault tolerance using redundant DOFs (Level 3).  We envision the
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following scenario.  A fault detection and identification algorithm monitors the proper functioning of each

DOF of a redundant manipulator.  As soon as a failure of a subcomponent is detected, one immobilizes

the corresponding DOF by activating its fail-safe brake.  Automatically, the joint trajectory is adapted to

the new manipulator structure and the task is continued without interruption.  The strength of this scenario

resides in the fact that it can handle a large variety of possible faults, ranging from sensor failures to

transmission and actuation failures.  All these failures can be treated in the same manner, namely, by

eliminating the whole DOF through immobilization.

Although fault detection and identification (FDI) is an important part of our scenario for fault tolerance,

we will not cover this subject in this article.  Instead we refer to the following references (Chow and

Willsky 1984; Stengel 1988; Ting, Tosunoglu, and Tesar 1993; Visinsky, Walker, and Cavallaro 1993;

Visinsky, Walker, and Cavallaro 1994).  In Visinsky, Walker, and Cavallaro (1993), using the concept of

analytical redundancy, an FDI algorithm is presented along the lines of Chow and Willsky (1984).  The

result is a set of four simple equations which test for consistency between the measured position and

velocity and the expected acceleration and jerk.  This FDI algorithm fits into a three-layer intelligent

control framework, consisting of a servo layer, and interface layer and a supervisory layer.  The main

problem presented to the intelligent controller is to distinguish between failures, disturbances and

modeling errors, and to respond to each in the proper way.  An overview of intelligent fault tolerant

control is given in Stengel (1988).  A range of approaches is reported, beginning with robust control,

progressing through parallel and analytical redundancy, and ending with rule-based systems and artificial

neural networks.  The task of the robotics researcher is to apply and modify these approaches to the

highly non-linear dynamics of robot manipulators.

After a fault has been detected, the failing DOF is immobilized by activating its brake.  In Pradeep et al.

(1988), the authors analyze the effect of the immobilization of one of the DOFs of three commercial

manipulators.  They conclude that the robots with decoupled DOFs are more severely “crippled” by the

loss of a joint than the ones with strongly coupled DOFs.  This can be translated into the guideline that,

for the design of fault tolerant manipulators, strong coupling between the DOFs is highly desirable.  The

results presented in Lewis and Maciejewski (1994a) can be interpreted similarly.  A kinematic fault

tolerance measure is defined as the minimum kinematic dexterity after joint failure.  The maximum

kinematic fault tolerance is achieved in a manipulator posture in which each joint contributes equally to

the null-space motion—a posture with strong coupling between the DOFs.  For a manipulator with at least

one decoupled DOF, the kinematic fault tolerance measure is always minimal, that is, zero.  The same
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measure can be used as a criterion for the redundancy resolution of the fault-free manipulator.  It is shown

that the chances for task completion, after immobilization of one joint due to failure, are much better than

when traditional pseudo-inverse control is used.  However, due to the local nature of the fault tolerance

measure, completion of the task cannot be guaranteed on a global scale (Lewis and Maciejewski 1994b).

An important conclusion is that the ability to recover from a fault depends strongly on the joint trajectory

followed by the fault-free manipulator system.

This conclusion led us to explore two approaches to the problem of manipulator fault tolerance.  The two

approaches differ in the assumptions that are made with regard to the task and with regard to the choice

of redundancy resolution algorithm.  In a first approach, the goal is to design ageneral purpose fault

tolerant manipulator.  We assume that the task is only characterized by the size and position of thetask

space which is the portion of the Cartesian output space in which the task will take place.  No

assumptions are made about the path that needs to be followed within the task space or about the

redundancy resolution algorithm used to execute the task.  Such a general purpose fault tolerant

manipulator can fault tolerantly execute any task of which the task space lies inside the fault tolerant

workspace of the manipulator.  This approach to fault tolerance is further explored in Section 3.

In a second approach, the goal is to design atask specific fault tolerant manipulator.  In this approach,

we assume that the Cartesian path to be followed is known a priori and that the corresponding set of

possible joint trajectories can be limited by an appropriate choice of a redundancy resolution algorithm.

We show in Section 4 how these additional assumptions allow us to design a fault tolerant manipulator

with fewer DOFs than a general purpose fault tolerant manipulator.

For both approaches, we will in this article answer the question: How many degrees-of-redundancy

(DORs) are necessary and sufficient for fault tolerance?

2 Fault Tolerance and Reliability

The basic idea presented in this article is to use a manipulator’s redundant DOFs to compensate for a

possible failure of one of the joints.  The underlying assumption is that a manipulator that can sustain a

joint failure is more reliable than one that cannot.  The question is: “Does fault tolerance always result in

an increase in reliability?”  The answer is given by reliability theory (Johnson 1989).

The reliability, , of a component or a system is the conditional probability that the component

operates correctly throughout the interval , given that it was operating correctly at the time .  For

R t( )

t0 t,[ ] t0
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non-fault-tolerant serial link manipulators, the system fails when any single subsystem—a DOF or joint

module for modular manipulators—fails.  The system reliability can then be computed as the product of

the module reliabilities, :

. (1)

Or, in the case that every module is equally reliable with reliability :

. (2)

If there are  modules and only  of those are required for the system to function properly—the system

can tolerate  module failures—then the system reliability is the sum of the reliabilities of all

systems with  or fewer faults.  Since there are  different systems with  faults, the system

reliability of a fault tolerant system with equal module reliabilities can be written concisely as

. (3)

We can apply this formula to the example of an 8-DOF fault tolerant manipulator, which needs only seven

DOFs to function properly.  The system reliability of the fault tolerant system is:

, (4)

compared to  for an equivalent 6-DOF non-fault-tolerant system.  Both reliabilities are

plotted as a function of the module reliability in Figure 1a, while Figure 1b shows the relative system

reliability :

, (5)

which equals 1 for  and .  These graphs should be interpreted as follows:

• when , then .  The system reliability is zero in both cases, i.e.,

both systems are guaranteed to fail.

• when , then .  That is, both systems are 100% reliable.

• when , then , meaning that the fault tolerant system is more reliable

than the non-fault-tolerant one.
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• when , then .  The modules are so unreliable that the added complexity

of the fault tolerant system reduces the overall performance.

Preferably, one would like to operate a system at a reliability close to one, for which the fault tolerant

system is the more reliable.  To compare both alternatives for modules with a high reliability, it is more

instructive to rewrite Equation (4) as an expression for the system’sunreliability, :

, (6)

when .  The unreliability for the non-fault-tolerant system is

. (7)

In general, the unreliability of a -fault tolerant system—one that can sustain  faults—is of the order

.  This means that the reliability of a fault tolerant system increases more significantly when the

reliability of the individual modules is high.  Best results are thus obtained when fault tolerance is

combined with high component reliability, or fault intolerance.

Figure 1a: System reliability of an 8-DOF fault
tolerant manipulator and a 6-DOF non-fault-

tolerant manipulator.
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Figure 1b: Relative system reliability of an 8-
DOF fault tolerant manipulator versus a 6-DOF
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3 General Purpose Fault Tolerant Manipulators1

In this section, we discuss the kinematic design of a general purpose fault tolerant manipulator without

joint limits.  As for non-fault-tolerant manipulators, the kinematic capabilities are mainly characterized

by the shape and size of the workspace or rather the fault tolerant workspace (FTWS) in this case.  We

identify several properties of general purpose fault tolerant manipulators and their workspaces, and

propose an 8-DOF design template.

To set the stage for our development, we define the following concepts relating to general purpose fault

tolerant manipulators:

• General Purpose Fault Tolerant Manipulator:  A manipulator that will still be able to meet

the task specifications, even if any one or more of its joints fail and are frozen at any arbitrary

joint angles.

• k-Reduced Order Derivative (k-ROD):  When  joints of an -DOF manipulator fail, the

effective number of joints is .  The resulting faulty manipulator is called a -reduced

order derivative.

• Order of Fault Tolerance:  A manipulator is fault tolerant of the -th order, if and only if all

possible -reduced order derivatives can still perform the specified task.  We call the manip-

ulator -fault tolerant.

• Fault Tolerant Workspace (FTWS):  The fault tolerant workspace of a -fault tolerant ma-

nipulator is the set of points reachable by all possible -reduced order derivatives.

Notice that our definition of a general purpose fault tolerant manipulator reflects the assumption that the

redundancy resolution algorithm is not known a priori: a joint failure can occur at an arbitrary angle.

In the remainder of this section, if no specific task is mentioned,  it is assumed that the task is to reach a

nonzero volume of points.  That is, the task space is an -dimensional manifold in the -dimensional

output space of the manipulator.  A manipulator with a FTWS of dimension less than  is considered

not to be fault tolerant.

1. This section is based on Paredis and Khosla (1994).

k n

n k–( ) k
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k
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k
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3.1 Properties of General Purpose Fault Tolerant Manipulators

3.1.1 Existence

A general purpose manipulator has six DOFs which allow it to position its end effector in an arbitrary

position and orientation anywhere in its workspace.  An obvious way to make this manipulator fault

tolerant is to design every joint with a redundant actuator.  If one of the actuators of the resulting -

DOF fault tolerant manipulator were to fail, the redundant actuator could take over and the manipulator

would still be functional.  Similarly, a -fault tolerant manipulator can be constructed by duplicating

every DOF  times, resulting in a -DOF manipulator.  This argument illustrates that

DOFs are sufficient for -th order fault tolerance.  In the remainder of this section, we determine the

number of DOFsnecessaryto achieve general purpose fault tolerance.

3.1.2 Boundary of the Fault Tolerant Workspace

In this section, we show that a boundary point of the FTWS is a critical value.2  Consider a -fault

tolerant planar manipulator, .  A boundary point, , of the FTWS has to be an element of the

boundary of the workspace of at least one ROD, , obtained by freezing  joints of .  Indeed, if

were an interior point of the workspaces of all RODs, then it would by definition be an interior point of

the FTWS and not a boundary point.  The Jacobian of , , can be obtained from the Jacobian of

, , by deleting the columns corresponding to the frozen DOFs.  Because  is a boundary point of

the workspace of , the Jacobian of  at  is singular.  We prove now that  is singular too.

Suppose that  were non-singular, then at least one of the columns corresponding to a frozen DOF

would be outside the column space of the singular matrix, .  Physically this means that a small

change in the angle of that frozen DOF would cause the end effector of  to move in a direction with a

component perpendicular to the boundary of the workspace of the ROD, , as illustrated in Figure 2.

The ROD with this new frozen angle would be unable to reach the point, .  As a result,  would be

outside the FTWS, contradicting the fact that  is a boundary point of the FTWS.  Thus,  is singular

and  is a critical value.

Consequently, the FTWS is bounded by critical value manifolds.  For planar positional manipulators, the

critical value manifolds are concentric circles, and the FTWS is an annulus with inner radius and

outer radius .

2. A critical value is an end-effector position that can be reached in a singular configuration, i.e., that is the image of a crit-
ical point (Burdick 1988).
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3.1.3 Required Degree of Redundancy

In Section 3.1.1, it is shown that, in general,  redundant DOFs—i.e.  DOFs in total—are

sufficient to achieve -th order fault tolerance.  For planar positional manipulators, however, we prove

that  redundant DOFs are necessary and sufficient for -th order fault tolerance.

Necessary:  The proof shows that  DOFs (or  redundant DOFs) are insufficient, by

finding a lower bound for  and an upper bound for .  First consider the ROD obtained by

freezing the first  joints at  radians, as illustrated in Figure 3.  The maximum reach in the opposite

frozen
frozen

θ

θ dθ+

pb
pb

ROD M ∗
workspace boundary

of M ∗

Figure 2: A ROD unable to reach a point outside the FTWS.

workspace boundary
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direction is an upper bound for :

, (8)

where  is the length of the -th link.  In order for  to be positive, we must have that:

. (9)

Making this assumption, we find that  is bounded below by the inner radius of the workspace of

the ROD obtained by freezing the  last joints at  radians, as illustrated in Figure 3:

. (10)

From Equation (8) and Equation (10), it follows that at best

, (11)

resulting in a one-dimensional FTWS.  Therefore, a -DOF planar manipulator cannot be -th

order fault tolerant.

Sufficient:  The proof shows that there exists a -DOF manipulator template that is -fault

tolerant.  Consider a manipulator with  links of length .  Because all the links have the same

length, it is possible to compensate for a fault in a DOF by choosing a neighboring DOF to be at

radians; that is, folded back onto the failing DOF.  Even when consecutive DOFs fail, this trace-back-

mechanism can be used to compensate for failures.  The result is that, by sacrificing one DOF to

compensate for every fault, the -DOF manipulator with  faults is equivalent to a faultless -

DOF manipulator.  The FTWS of the  DOF manipulator is then the workspace of the equivalent

-DOF manipulator, that is,

. (12)

3.1.4 Including Orientation

Thus far, we have only considered planar positional manipulators.  The results can be easily extended to

the case in which orientation is considered also, by converting the orientational problem into an
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equivalent positional problem:

An -DOF manipulator, , is -fault tolerant with respect to a set of points, , if

and only if:

1.  The positional manipulator, , obtained from  by deleting its last link, , is -fault

tolerant with respect to the set of points ,

2.  is -fault tolerant while reaching the points in  in any direction.

Necessary:  The positional manipulator, , needs at least  DOFs to be -th order fault

tolerant with respect to ; therefore, the manipulator  needs at least  DOFs.

Sufficient:  Again, we show that there exists a -DOF manipulator template that is -fault

tolerant.  Consider a template of which the first  links have length  and the last link has length

zero; it is the template described in the previous section with a zero-length link added at the end.  For this

template, one can again use the trace-back-mechanism to show that it is equivalent to a faultless 3-DOF

manipulator with link lengths , , and .  the FTWS is thus:

(13)

This result for planar manipulators with orientation and the result obtained in Section 3.1.3 can be

summarized in the following theorem:

Theorem:

For planar manipulators without joint limits,  degrees-of-redundancy are necessary and suffi-

cient for -th order general purpose fault tolerance.

3.2 Spatial Fault Tolerant Manipulators

For planar fault tolerant manipulators, we were able to prove that  is the required degree of

redundancy.  The proof was based on geometric workspace analysis.  For spatial manipulators, however,

the geometric analysis becomes too complex.  Therefore, we will demonstrate some properties of spatial

fault tolerant manipulators using two examples.

As a first example, consider a 5-DOF spatial positional manipulator.  Its Denavit-Hartenberg (D-H)

parameters are listed in Table 1.  This manipulator is first order fault tolerant, and because of its simple

n M k W xi yi ϕi, ,( ){ }=

M ' M ln k

W ' xi ln ϕicos– yi ln ϕisin–,( ){ }=

M ' k 1–( ) W '

M ' 2k 2+( ) k

W ' M 2k 3+( )

2k 3+( ) k

2k 2+( ) l

l l 0

FTWS x yϕ, ,( ) x
2

y
2

+ 2l andϕ 0 2π, )[∈≤
 
 
 

=
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kinematic structure, an analytic expression for the boundary of the FTWS can be derived.  The FTWS is

symmetric with respect to the first axis.  A cross-section (the X-Z plane), as shown in Figure 4, can be

described by two segments of a circle with radius 2 and center at , and a straight line from

 to .  An important property of this FTWS is that it does not have any

holes or a central void, so that the FTWS of the same manipulator scaled by any factor  contains

the original FTWS.  As a result, this fault tolerant manipulator can be used as adesign template.  Any

task space can be enclosed in the FTWS of  a scaled version of the design template.

In Section 3.1.2, it is shown  that the boundary of the FTWS of a planar manipulator coincides with its

critical value manifolds.  Figure 4 demonstrates that this property also holds for the 5-DOF spatial

manipulator considered in this example.  The critical value manifolds are computed using the algorithm

described in Burdick (1992) and are depicted in a solid line.  The bold part of the critical value manifolds

is the boundary of the FTWS.  The property that the FTWS is bounded by critical value manifolds can

be effectively used for the determination of the FTWS.  Testing whether a point is an element of the

FTWS is a complicated procedure.  One has to verify whether that point is reachable for all possible

RODs, i.e., for all manipulator structures resulting from a joint failure of every possible joint at every

possible joint angle.  To find a good approximation of the FTWS, one would have to execute this test for

a large number of points.  This would be prohibitively slow.  However, to improve the efficiency, one can

compute the critical value manifolds of the manipulator first.  These manifolds partition the Cartesian

output space of the manipulator in sectors that are either entirely inside the FTWS or entirely outside the

DOF

1 0 1 90˚

2 a 1 0˚

3 -a 1 90˚

4 b 1 0˚

5 -b 1 —

Table 1: D-H parameters of a 5-DOF first
order fault tolerant spatial manipulator,

without orientation.

i di ai αi

DOF

1 0 1 90˚

2 a 1 0˚

3 -a 1 90˚

4 b 1 0˚

5 -b 0 90˚

6 1 0 90˚

7 0 0 90˚

8 0 0 —

Table 2: D-H parameters of an 8-DOF first order
fault tolerant spatial manipulator.

i di ai αi

x 1= z 0=,( )

x 2= z 3=,( ) x 2= z 3–=,( )

λ 1>
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FTWS.  Thus, by checking whetherone point of a sector is an element of the FTWS, one can check

whether thewhole sector is in the FTWS.  The number of FTWS-membership tests is so reduced to the

number of sectors in the partition of the output space.

As a second example of a spatial general purpose fault tolerant manipulator, consider an 8-DOF

manipulator, with D-H parameters listed in Table 2.  It is the same manipulator as in the previous

example, with a zero-length 3-roll-wrist added at the end.  Using a Monte Carlo method, it has been

determined that this manipulator is first order fault tolerant while reaching all the points, in the FTWS of

example one,in any direction.  This property can be demonstrated with the following arguments.  When

one of the first five DOFs fails, the manipulator can still reach any position in the FTWS (because the 5-

DOF positional manipulator is FT) and can take any orientation at this position using the intact 3-roll-

wrist.  When one of the DOFs in the wrist fails, we are left with a 7-DOF manipulator which has enough

orientational capabilities to reach any point in the FTWS in any orientation.  Consequently, one could call

this thedextrousFTWS.  Since there are again no holes or voids in the FTWS, this manipulator can also

Figure 4: A cross-section of the boundary of the FTWS of a 5-DOF
spatial manipulator (bold) as part of its critical value manifolds.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

z



15

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Designing Fault Tolerant Manipulators: How Many Degrees-of-freedom?”

to appear in The International Journal of Robotics Research, 1996.

be used as a design template.

Finally, one should notice that both examples have only two redundant DOFs, which indicates that two

degrees-of-redundancy are also sufficient for 1-fault tolerance of spatial manipulators.  Whether the

theorem in Section 3.1.4 also holds for higher orders of fault tolerance of spatial manipulators requires

further research.

4 Task Specific Fault Tolerant Manipulators

In the previous section, we considered the design of fault tolerant manipulators for general use.  We

proved that two redundant DOFs are necessary and sufficient for first order fault tolerance.  However, as

we will show in this section, a simpler kinematic structure is often sufficient when one specific task is

considered.

The disadvantage of this approach is that a task specific fault tolerant manipulator is only suited for a very

limited set of similar trajectories.  Unlike general purpose fault tolerance, task specific fault tolerance

might require a different manipulator structure for every task.  However, by using a modular manipulator

system such as RMMS, it is possible to quickly reconfigure the manipulator to custom-tailor it for a

specific task.

4.1 Local versus Global Fault Tolerance

Consider the task of reaching all the points in an -neighborhood, , of the point .

Suppose that  can be reached by an -DOF manipulator in a posture, .  If the posture, , is non-

singular, then there exists an , such that the manipulator can reach any point in .  However,

for -fault-tolerance, any point in  needs to be reachable even when  of the joints of the

manipulator are frozen.  This is possible if and only if the Jacobians of all -RODs in the posture  are

non-singular, i.e., have at least rank .  We call such a posture, ,locally fault tolerant.

The Jacobian of a -ROD, , can be obtained by deleting the columns of the fault-free Jacobian that

correspond to the frozen DOFs; the dimensions of  are .  A necessary condition for

 to be of rank  is that  has to be larger than or equal to .  Indeed, the manipulator needs

to have at least  functional DOFs, even after a failure of  of them.  That means that  DORs are

necessary  for local fault tolerance.

Are  DORs alsosufficient for local fault tolerance?  Consider a manipulator with  DOFs; the

ε B p ε,( ) p ℜm∈

p n θ T
n∈ θ

ε 0> B p ε,( )

k B p ε,( ) k

k θ

m θ

k JROD

JROD m n k–( )×

JROD m n m k+( )

m k k

k n m k+=
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Jacobian of a -ROD, , is then a square  matrix.  A posture, , is locally fault tolerant

if the Jacobians of all  RODs are full rank.  When the rank of any  is less than , the robot is

in an internal singularity.  The difference between singular, locally fault tolerant and internally singular

postures is illustrated in Figure 5.  The locus of internal singularities is a set of -dimensional

surfaces in ; or -dimensional surfaces, when .  Thus, nearly all postures of a

manipulator with  DORs are locally -fault tolerant.  This can be summarized in the following theorem.

Theorem:

 degrees-of-redundancy are necessary and sufficient for -th order local fault tolerance.

The fact that a posture is locally -fault tolerant guarantees that the manipulator can reach every point in

a neighborhood of the end effector position, even after failure of  DOFs.  However, this neighborhood

can be small.  To extend this result to larger trajectories, we have to formulate aglobal fault tolerance

condition.  This can best be illustrated with an example.

4.2 Example of Task Specific Fault Tolerance

Before we present the global fault tolerance condition, we modify the definition of fault tolerance to

include task specificity:

• Task Specific Fault Tolerant Manipulator:  A manipulator is 1-fault tolerant with respect to

the task of following the Cartesian path, , if and only if there exists a fault tolerant joint

trajectory, .

• Fault tolerant joint trajectory:   A trajectory, , is 1-fault tolerant with respect to

k JROD m m× θ ℜn∈

m JROD m

Locally Fault Tolerant

Rank(J) = 2

Internally Singular

Rank(J) = 2

Singular

Rank(J) < 2

Figure 5:  Examples of locally fault tolerant, internally singular and singular postures of
a 3-DOF planar manipulator.

m k 1–+( )

T
n

n 1–( ) n m k+=

k k

k k
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the task of following the Cartesian path , if for every DOF  and for every

instant, , there exists an alternate trajectory, , for which:

  1)  maps onto  under the forward kinematics

  2)

  3)   (i.e., the -th DOF is frozen at the time )

There are two main difference between this definition and the one for general purpose fault tolerance.

The first difference is that we assume that the task is to follow a specific Cartesian path, rather than an

unspecified path inside the task space.  The second difference is that we no longer require that every point

along the Cartesian path be reachable when a joint fails at anarbitrary angle, but only at an angle that

occurred previously along the fault tolerant joint trajectory.  Under these assumptions, -fault tolerance

can be achieved with only  redundant DOFs.

As an example, consider a 3-DOF planar manipulator with normalized link lengths of 1.  We want to

determine whether this manipulator is 1-fault tolerant with respect to the task of following the path,

shown in Figure 6, which is parametrized as  with .  For every point, , along the path,

one can compute a preimage.3  Because the manipulator in this example has one DOR, the preimage of

every point  is a one-dimensional subset of , and can be parametrized in this case as

3. The preimage of a point  is the set of all postures, , for which , where  is the forward kinematics mapping
of the manipulator.

p t( ) ℜm∈ j 1…n=

t
f θ t j t

f, ,( )

θ t j t
f, ,( ) p t( )

θ t( ) θ t j t
f, ,( ) t∀ t

f≤=

θ j t j t
f, ,( ) θ j t

f
( ) t∀ f>= j t

f

k

k

Figure 6: Path for the example of task specific fault tolerance.
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 with  (In general, the preimage of a point might consist of disjoint manifolds, in

which case each manifold should be parametrized separately). The continuous function, , describes a 2-

dimensional surface in , as is shown in Figure 7.  Any joint trajectory that maps onto the specified

Cartesian path, , can be formulated as , or .  According to the definition

of task specific fault tolerance, the manipulator is fault tolerant if and only if a fault tolerant trajectory,

, can be found.  It is clear that every posture of a fault tolerant trajectory, , has to be locally

fault tolerant.  However,  this requirement is not sufficient because a fault at a point, , might cause

another point, , to become unreachable, even if the posture  were locally fault tolerant.

Therefore, one should exclude as possible postures for a fault tolerant trajectory not only internally

singular postures, but also postures that, in the case of failure, would cause an internal singularity further

along the path.  This is the condition for global fault tolerance.  For our example, the set of acceptable

postures is shown in Figure 8.  The same set of postures can be represented in the -plane—the

white regions in Figure 9.  A fault tolerant trajectory exists when a continuous function,  with

, can be found for which all postures, , are acceptable, i.e., satisfy the global

fault tolerance condition.  One such trajectory is shown in dashed line in Figure 9.

Further analysis of Figure 9 reveals that the unacceptable areas can be classified according to the failing

DOF.  This is illustrated in Figures 10, 11 and 12 for failures of DOFs 1, 2 and 3, respectively.  The dotted

θ g p α( ) β,( )= β T
1∈

g

T
3

Figure 7: The preimage of a path. Figure 8: The set of acceptable points for a
fault tolerant trajectory.
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Figure 9: A possible fault tolerant trajec-
tory.  Regions of unacceptable postures,

, are marked in gray.α β,( )

Figure 10:  The unacceptable postures in
case of a failure of joint 1 (areas in gray).
The solid lines are contours of constant

values of  and the dotted lines indicate
internally singular postures.
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Figure 11:  The unacceptable postures in
case of a failure of joint 2.

Figure 12:  The unacceptable postures in
case of a failure of joint 3.
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lines correspond to internally singular postures, while the solid lines are contours of constant joint angles

,  and , respectively.  These contours represent the joint trajectories that are followed once a

failing DOF has been immobilized.  The gray areas are postures for which the global fault tolerance

condition is violated.  Notice that the contour lines in these areas do not reach the end of the Cartesian

path, , but instead get stuck at an internal singularity.  It is also important to notice that the

acceptable areas (in white) can be described byfault tolerant joint intervals for each of the DOFs.  For

example, the area in which the fault tolerant joint trajectory is drawn in Figure 9, can be characterized by

the joint intervals depicted in Figure 13.  As long as the joint angles stay within these fault tolerant joint

intervals at each point along the path, fault tolerant execution of the path is guaranteed.

4.3 Redundancy Resolution Algorithms for Task Specific Fault Tolerance

We have shown that, to fault tolerantly follow a Cartesian path, it is important to follow a joint space

trajectory that consists only of postures satisfying the global fault tolerance condition.  How can we

achieve this practically?

An obvious implementation is to compute a fault tolerant joint trajectory off-line and store it as a set of

via points in joint space.  At execution time, a joint space controller can be used to follow this trajectory

until a joint failure is detected.  At that point, the failing joint is immobilized and an inverse kinematics

algorithm is used on-line to compute the appropriate joint angles for the remaining DOFs.  Although
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Figure 13:  Fault tolerant joint intervals for the trajectory shown in dashed line in Figure 9.
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simple and computationally inexpensive, this scheme has several disadvantages.  First, the fault tolerant

joint trajectory cannot be adjusted at run time to satisfy secondary task requirements, such as obstacle

avoidance.  Also, when a failure occurs, one has to change the joint trajectory generation algorithm

instantaneously, making it difficult to achieve a smooth transition from operation with  DOFs to

operation with  DOFs.

To avoid these drawbacks, we suggest that one uses a kinematic controller of the form4:

, (14)

both before and after a failure has occurred, as is also suggested in Lewis and Maciejewski (1994b).  The

transition to operation with one fewer DOF can simply be achieved by zeroing out the column of the

Jacobian that corresponds to the immobilized DOF.  The gradient projection method (Liégeois 1977) can

be used to assure that the manipulator stays within the fault tolerant joint intervals, indicated in Figure

13.  By choosing an appropriate potential function, , one can even combine the requirement for fault

tolerance with a secondary task requirement.  An additional advantage is that this scheme can

accommodate for small changes in the Cartesian path, while still maintaining the property of fault

tolerance.  As long as the joint trajectory stays within the fault tolerant joint intervals, it is guaranteed that

every point further along the Cartesian path will be reachable even after joint failure.  This is particularly

important in sensor based systems in which small trajectory corrections are made based on sensor

feedback.

5 Summary

In this article, we have shown that making a manipulator fault tolerant by adding redundant DOFs is an

effective way to increase the reliability of a manipulator.  However, not every redundant manipulator is

fault tolerant.  Thus, an important problem for the design of fault tolerant manipulators is:  How many

DOFs are necessary and sufficient for fault tolerance and how should these DOFs be distributed along the

length of the manipulator?  We have shown that, depending on the assumptions that are made about the

task, the answer to this question varies.

For general purpose fault tolerant manipulators without joint limits, two degrees-of-redundancy are

necessary and sufficient to sustain one fault.  This conclusion was illustrated with two spatial general

4. Readers who are unfamiliar with local optimization of  kinematic redundancy are referred to Nakamura (1991) for a de-
tailed tutorial.
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θ̇ J†ẋ I J†J–( ) h∇+=

h



22

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Designing Fault Tolerant Manipulators: How Many Degrees-of-freedom?”

to appear in The International Journal of Robotics Research, 1996.

purpose fault tolerant manipulator designs:  a 5-DOF positional manipulator and an 8-DOF positional and

orientational manipulator.  Both manipulators have a fault tolerant workspace without any holes or voids

so that one can scale the designs to fit any task.

For task specific fault tolerant manipulators, only one degree-of-redundancy is necessary and sufficient

for 1-fault tolerance.  However, one might have to use a different manipulator and recompute the fault

tolerant joint intervals, for every task.  This drawback can be partially overcome by using a modular

manipulator system that can be quickly reconfigured to suit a particular task.
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