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Abstract

Whether a task can be completed after a failure of one of
the degrees-of-freedom of a redundant manipulator
depends on the joint angle at which the failure takes place.
It is possible to achieve fault tolerance by globally
planning a trajectory that avoids unfavorable joint
positions before a failure occurs.  In this paper, we present
a trajectory planning algorithm that guarantees fault
tolerance while simultaneously satisfying joint limit and
obstacle avoidance requirements.

1  Introduction

Reliability is becoming an essential attribute of robot
manipulators in a growing range of applications such as
space missions, nuclear waste retrieval, and medical robot-
ics.  This trend has spawned a research effort in fault toler-
ant robotics, covering topics ranging from fault detection
and identification [11] to design [7, 9], control [10], and
redundancy resolution [3] of fault tolerant manipulators.

A manipulator is 1-fault tolerant if it can complete its
task even if one of its joints fails and is immobilized [7].
This definition is based on the following scenario.  A fault
detection and identification algorithm monitors the proper
functioning of each degree-of-freedom (DOF) of a redun-
dant manipulator.  As soon as it detects a failure of a sub-
component, an intelligent controller immobilizes the
corresponding DOF, by activating its brake, and automati-
cally adapts the joint trajectory to the new manipulator
structure; the task is continued without interruption.
According to this scenario, a large variety of possible
faults, ranging from sensor faults to transmission and actu-
ation faults, can be treated in exactly the same manner,
namely, by eliminating the whole DOF through immobili-
zation.

Whether a task can be completed after a joint failure,
depends not only on the structure of the manipulator [8],
but also on the specific joint angle at which the failure
occurred.  In general, failures at a fully extended or folded
back position of a joint are most detrimental to the remain-
ing capabilities of the manipulator.  The basic idea that we

exploit in this paper is to achieve fault tolerance by avoid-
ing unfavorable joint positionsbefore failure.  This idea
was first proposed in [3] where the null-space component
of a redundant manipulator was used to locally minimize
the kinematic fault tolerance measure (kfm)1.  The authors
showed that, for a particular test path, a manipulator with
kfm minimization is more likely to be fault tolerant than a
manipulator with traditional pseudoinverse control.  How-
ever, due to the local nature of the kfm, fault tolerance
could not be guaranteed globally [4].

In this paper, we present a trajectory planning algo-
rithm that guarantees fault tolerance on a global scale,
while avoiding any violations of secondary kinematic
requirements such as joint limits and obstacles.  To achieve
this global result, we have to consider the topology of the
self-motion manifolds, as has been previously suggested in
[4, 5].

2  Definitions

In this section, we introduce several concepts that are
essential for the development of the algorithm presented in
the next section.  We start by giving an exact definition of
the problem.

Definition 1: Fault Tolerant Trajectory Planning Problem

Given: – a manipulator defined by its geometry, joint lim-
its,  and redundancy resolution algorithm.

– a task description consisting of a Cartesian path,
, and the geometry of the obstacles.

Find: – a fault tolerant trajectory in joint space2:
.

A fault tolerant trajectory is defined as follows:

Definition 2: Fault Tolerant Trajectory

A trajectory, , is 1-fault tolerant with respect to
the task of following the Cartesian path , if for

1. The kinematic fault tolerance measure, or kfm, is defined as the
minimum dexterity after joint failure.

2. We assume that the manipulator has only revolute joints.  The joint
space is therefore the -dimensional torus .
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every DOF, , and for every instant, , there
exists an alternate trajectory, , for which:

1)  maps onto  under the forward
     kinematics
2)
3)
4)  does not violate any secondary task
     requirements such as joint limits or obstacles.

This definition corresponds to our scenario for fault
tolerance as described in the introduction.  Before any fail-
ures occur, the manipulator follows the fault tolerant joint
trajectory .  After a failure in joint  at time , joint
is immobilized and the joint trajectory is adapted to keep on
tracking the path .  The new trajectory, , is
equal to  at the instant of failure and maintains a con-
stant joint angle, , for the frozen joint  after the fail-
ure.

There are an infinite number of alternate trajectories,
, one for every possible combination of a failing

DOF and an instant of failure.  This poses practical prob-
lems.  While one can explicitly store a discretized version
of , explicit storage of all  is impossible.
Therefore, we assume that the alternate trajectories are
storedimplicitly in a redundancy resolution algorithm that
computes  at run time once a failure has taken
place.  We also assume that this redundancy resolution
algorithm unambiguously determines , given ,

, and ; that is, we only consider redundancy resolu-
tion algorithms that determine the next joint vector based
on the current joint vector and not on past joint vectors.
This assumption is satisfied for commonly used algorithms
of the form [6]:

. (1)

Because the choice of the redundancy resolution algorithm
fully determines the alternate trajectories, it also influences
the solution of the trajectory planning problem.  In this
paper, we assume the redundancy resolution algorithm to
be a given of the problem, i.e., a part of the manipulator
definition.  Consequently, for a failure of joint  at posture

, there exists a unique alternate trajectory .
In the fourth point of the definition of a fault tolerant

trajectory, we refer to “secondary task requirements.”  The
primary requirement is to follow the path .  In the prob-
lem definition, we included joint limits and obstacles as
secondary requirements, but one can include any other
kinematic requirement that only depends on the current
posture.  For instance, all the dexterity measures enumer-
ated in [2] depend only on the current joint position and
could thus be included as secondary requirements.  We call
the set of postures that satisfy all the secondary task
requirements the set .
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At each instant, , the manipulator postures  and
 map onto the path  under the forward kine-

matics of the manipulator, .  This implies that
these postures are elements of the preimage of .

Definition 3: Preimage of a pointp

The preimage of a point, , is the set
, where  is the forward

kinematics mapping of the manipulator.

This preimage is a set of -dimensional manifolds,3 where
 is the degree-of-redundancy of the

manipulator.

Assume now that joint  fails.  We call the resulting
manipulator, with joint  immobilized, a reduced order
derivative (ROD).

Definition 4: k-Reduced Order Derivative

A manipulator with  DOFs, obtained by immobi-
lizing  of the joints of an -DOF manipulator, is called
a -reduced order derivative.

Whether this ROD is able to complete the task, as is
required for fault tolerance, depends on the posture

 at which the failure occurred.  For certain
, the path  might pass outside the workspace of

the ROD, the redundancy resolution algorithm might get
stuck at a singularity, or the alternate trajectory
might violate the joint limits or cause a collision with an
obstacle.  In all of these cases, the task cannot be
completed.  We call the corresponding posture
intolerant to a failure of DOF .

Definition 5: Posture Tolerant to a Failure of DOFj

A posture  is tolerant to a failure of DOF
if and only if the alternate trajectory , as deter-
mined by the redundancy resolution algorithm, satisfies
all the task requirements.

We call the set of postures  that are tolerant to
a failure of DOF  the set .

Based on the definition of a fault tolerant trajectory, we
conclude that a posture is an acceptable posture for a fault
tolerant trajectory if it is tolerant to failures of each of the
DOFs.  The set of acceptable postures  is
given by the equation:

. (2)

3. An exception is the preimage of a critical value, which is not a manifold
but a bouquet of tori [1].
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3  Algorithm

The algorithm to determine a fault tolerant trajectory
consists of two parts.  In the first part, we determine for
each instant, , the set of acceptable postures, , as
defined in the previous section.  In the second part, we cre-
ate a connectivity graph for the acceptable postures and
search this graph to determine a fault tolerant trajectory.

A key observation for the development of our algo-
rithm is that whether a posture, , is acceptable
depends only on the future course of the path ; it is
independent of  for .  For example, if a failure
occurs at the last point, , of the path, the task can
always be completed, regardless of which course the path
followed previously and regardless of the posture in which
the manipulator reaches this last point.  We conclude that

. (3)

This conclusion forms the basis for the algorithm’s
initialization.

The main iteration of our algorithm is based on a sec-
ond important observation.  Consider a candidate fault tol-
erant trajectory, .  At time , joint  fails and the
alternate trajectory  is followed, as is illustrated
in Figure 1.  Consider also a second candidate fault tolerant
trajectory, , which intersects with  at time

, so that .  If a failure of joint
were to occur at time , the alternate trajectory
would be followed.  Because the joint velocity, , in the
redundancy resolution algorithm, depends only on , ,
and the current joint vector, the two alternate trajectories

 and  are equal to each other for .
A Corollary of this observation is that a posture is tolerant
to a fault in joint  if and only if all the postures along the
corresponding alternate trajectory are also tolerant to faults
in joint :

t∗ At∗
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Figure 1: Two possible failures resulting in the
same alternate trajectory.
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j

j

(4)

which is also equivalent to the expression:

(5)

Equation (5) means that we can determine whether a
posture, , is tolerant to a fault of DOF  by tracing  the
alternate trajectory up to  rather than up to .
This property is used in the main iteration of the first part
of our algorithm.

Once the sets of acceptable postures have been com-
puted, a fault tolerant trajectory is chosen in the second part
of our algorithm.  A fault tolerant trajectory consists of a
sequence,  of acceptable postures—one posture

 for each instant .  However, one cannot pick
the postures  at random from .  For a valid fault
tolerant sequence, there should exist a continuous trajec-
tory of acceptable postures connecting each pair of pos-
tures  and .  Moreover, the sequence
should preferably vary smoothly and stay away from the
boundaries of .  To simplify the search for such a
sequence, we first group the postures of  that are con-
nected to each other.

In general, a set, , may consist of several disjoint
regions, , of acceptable postures:
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Part 1: determination of the acceptable postures

• discretize the path:

• compute the preimage of the last point:

• compute the acceptable postures for the last point:

• for k=last-1 to first do

• compute the preimage:

• for j=1  to n do

• for every posture  do

• compute  using the

  redundancy resolution algorithm

• if  then

• next

• nextj

• compute the set of acceptable postures:

• nextk
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. (6)

The postures in each region  are connected to each
other in the sense that there exists a continuous trajectory
of acceptable postures, , connecting any two pos-
tures in .  On the other hand, by definition, there does
not exist any combination of two postures, one from
and one from , for which such a continuous trajectory
can be found.  Similarly, we call two regions  and

 connected if there exists a continuous trajectory of
acceptable postures, , with , connecting
any two postures  and .  As a result, a
fault tolerant trajectory exists if and only if there exists a
sequence of connected regions, .  This
result is used in the second part of our algorithm, in which
we build a connectivity graph representing the connections
between the regions .  The structure of this graph is in
general very simple due to the limited number of disjoint
regions in each , and due to the limited number of con-
nections between regions at time  and regions at time

.  It is possible that there exists no fault tolerant
sequence of connected regions.  To achieve fault tolerance
in this case, the manipulator itself needs to be adapted by
changing its structure, joint limits, or redundancy resolu-
tion algorithm.

In the final step of the algorithm, a fault tolerant trajec-
tory is determined from the sequence of connected regions.
In general, there are an infinite number of possible fault tol-
erant trajectories.  However, a good trajectory should vary
smoothly and stay away from the boundaries of the regions

.  The choice of one specific fault tolerant trajectory
can be further limited by imposing additional task require-
ments or objectives.

4  Implementational issues

Although most of the steps of the algorithm, presented
in the previous section, can be easily implemented, the
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Part 2: search for a fault tolerant trajectory

• for k=last to first do

• group the acceptable postures, , in disjoint

        regions

• for each region , determine the connections

       with the regions fork+1

• store in connectivity graph

• nextk

• search the connectivity graph to determine a fault

    tolerant sequence of the regions

• select a fault tolerant trajectory

A
tk

R i
tk

R i
tk

R i
tk

computation of the preimage  requires some further
explanation.  As mentioned before, for an -DOF manipu-
lator, the preimage of a point, , is a set of -dimen-
sional manifolds in the -dimensional torus , where

 is the degree-of-redundancy of the manipula-
tor.  The preimage is defined implicitly by the forward kine-
matics function .  The computation of the
preimage involves translating this implicit representation
into an explicit one, for example, a random sampling of the
preimage stored as a finite set of postures .  How-
ever, this particular representation is insufficient for our
algorithm because it does not capture the topology of the
preimage.  Topological information is needed in three steps
of the algorithm:  first, where the sets  are computed;
second, where the intersection of these sets is taken to
obtain ; and third, where the acceptable postures are
grouped into disjoint regions .  It is important to notice
that in all three instances only the local topology matters.
Locally, an -dimensional manifold is diffeomorphic to

, and can thus be approximated by an -dimensional
hyperplane.  Therefore, we have chosen to represent the
preimage  by a polygonal approximation consisting of
line segments when , or triangular patches when

, as is illustrated in Figure 2.  Let  be the number
of postures  used to approximate , then
increases as the accuracy of the approximation increases.

 also depends on the dimensionality, , of the preimage;
this dependency isexponential.

The algorithm also requires the Cartesian path   to
be approximated by a sequence  with .  Let

 be the number of points in the sequence .  Just like
,  depends on the accuracy of the approximation.  In

this case, the dependency is always linear because the Car-
tesian path is 1-dimensional.

The complexity of the algorithm is mainly determined
by the nested loop of the first part of the algorithm.  Assum-
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Figure 2: The projection onto the -
space of a polygonal approximation of a 2-

dimensional preimage for a 5-DOF manipulator.
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ing that the complexity of the redundancy resolution algo-
rithm is linear in , the complexity of our trajectory
planning algorithm can be expressed as:

   or . (7)

Because of the exponential dependency on , the algorithm
is only practical for  or .  Fortunately, two
degrees-of-redundancy are sufficient to achieve fault
tolerance in most practical applications [7].

5  Example

In this section, we illustrate the use of the fault tolerant
trajectory planning algorithm with an example of a 3-DOF
planar manipulator.  This simple example enables us to
describe graphically how a fault tolerant trajectory is
selected.

The 3-DOF manipulator has 3 links of length 1;  the
joint limits are  for  and  for  and ;
no redundancy resolution algorithm is specified because
the 2-DOF reduced order derivatives are non-redundant.
The task is to follow the trajectory shown in Figure 3 at
constant speed in a total time of 10 seconds; a circular
obstacle is centered at  and has a radius of .

Because the manipulator in this example has one
degree-of-redundancy, , the preimage of every
point, , is a one dimensional subset of  and can be
parametrized as  with .  The
function  describes a 2-dimensional surface in , as
illustrated in Figure 4.  The two parameters are the time and
the preimage parameter .  One can also unwrap this sur-
face and represent it in a planar coordinate system with the
time in abscissa and the preimage parameter  in ordi-
nate4; this representation is used in Figures 5 through 8.  A

4. Keep in mind that the planar representation does not capture the exact
topology of the 2-dimensional surface, because the preimage
parameter  is an element of  and the path  is closed,

.
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Figure 3: The Cartesian path and obstacle
position.
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fault tolerant trajectory, , can then be
specified by a function .

In the first part of the algorithm, the sets  are deter-
mined.  They are depicted in Figures 5 through 7 as the
white areas.  The dark gray areas are postures that do not
satisfy the secondary task requirements; i.e., they are the
sets .  These postures would be unacceptable
for a joint trajectory even in case fault tolerance were not
required.  The light gray area is the set of postures for
which the alternate trajectories do not meet the task
requirements.  The alternate trajectories  for this
example are totally determined by keeping the joint angle

 constant, and are represented by the black curves.
Notice that, for the postures in the light gray area, the alter-
nate trajectories either pass through a posture that violates
a secondary task requirement, or get stuck at a singularity
and do not reach the end of the path.  In either case, the
requirement for fault tolerance is violated.  The sets of
acceptable postures  are indicated in white in Figure 8.
This white area is the intersection of the white areas in Fig-
ures 5, 6 and 7, in accordance with Equation (2).

In the second part of our algorithm, the acceptable pos-
tures are first grouped into disjoint regions.  Such a region,

, corresponds to a vertical white line segment with
abscissa  in Figure 8.  The number of disjoint regions is
usually small—maximum six for this example.  Once the
regions  have been determined, the connections with
the disjoint regions at time  are stored in a connectiv-
ity graph, which is shown in Figure 9.  As mentioned
before, the graph is very simple in general.  For this exam-
ple, there exists only one fault tolerant sequence of con-
nected regions.  A possible fault tolerant trajectory for this
sequence is shown in dashed line in Figure 8.  The corre-
sponding individual joint trajectories are depicted in Figure
10.
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Figure 8: A possible fault tolerant
trajectory (dashed line).  The white areas

are the sets of acceptable postures.

Figure 5: The set of postures tolerant to
a fault in joint 1 (in white).

Figure 6: The set of postures tolerant to
a fault in joint 2 (in white).

Figure 7: The set of postures tolerant to a
fault in joint 3 (in white).

The dark gray areas are postures that violate the secondary task requirements (joint limits and obstacles).
The light gray areas are postures for which the alternate trajectory violates the task requirements.  The black
curves are alternate trajectories, determined by keeping the angle of the failing joint constant.
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6  Summary

We have presented a fault tolerant trajectory planning
algorithm.  This algorithm guarantees fault tolerance on a
global scale, while also satisfying secondary kinematic task
requirements such as joint limits and obstacles.  The algo-
rithm consists of two main parts.  In the first part, the pos-
tures acceptable for a fault tolerant trajectory are
determined.  The computations are based on topological
information of the preimages of the Cartesian path and on
the characteristics of the redundancy resolution algorithm
which is used after a failure has occurred.  In the second
part of the algorithm, a connectivity graph is developed,
representing the topological structure of the set of accept-
able postures.  By searching this graph, a global fault toler-
ant trajectory is found.  A simple example for a 3-DOF
planar manipulator is used to explain the development of
the algorithm graphically.
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Figure 10: Fault tolerant trajectories for the
individual joints.


