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Abstract

Gestures provide a rich and intuitive form of in-
teraction for controlling robots. This paper presents
an approach for controlling a mobile robot with hand
gestures. The system uses Hidden Markov Models
(HMMs) to spot and recognize gestures captured with
a data glove. To spot gestures from a sequence of
hand positions that may include non-gestures, we have
introduced a \wait state" in the HMM. The system
is currently capable of spotting six gestures reliably.
These gestures are mapped to robot commands under
two di�erent modes of operation: local and global con-
trol. In the local control mode, the gestures are inter-
preted in the robot's local frame of reference, allowing
the user to accelerate, decelerate, and turn. In the
global control mode, the gestures are interpreted in the
world frame, allowing the robot to move to the location
at which the user is pointing.

1 Introduction

An important aspect of a successful robotic sys-
tem is the Human-Machine Interaction. In the early
years of robotics, teach pendants were the most com-
mon mode of interaction. As software capabilities im-
proved, the ability to do o�-line programming proved
to be a signi�cant step forward. Interfaces to ma-
nipulator systems made further progress with the in-
troduction of user friendly programming paradigms
for sensor-based manipulation [7]. The current state-
of-the-art in manipulator interaction is based on an
iconic programming [2] and/or programming by hu-
man demonstration paradigm [4, 13]. The idea is to
transfer the burden of programming manipulator sys-
tems from robot experts to task experts. These task
experts have extensive knowledge and experience with
respect to the task, but may only have limited ex-
pertise in robotics. To enable these new users to in-

teract with the robot, the interface needs to be intu-
itive and have the ability to interpret the sometimes
vague speci�cations of the user. An example of such
a system is the gesture-based programming interface
developed by Voyles and Khosla [13]. The robot sys-
tem observes the operator unobtrusively while he/she
is demonstrating the task. The observations can be
based on vision, range sensing, data gloves, and tac-
tile sensing. The most challenging aspect of such a
task is to interpret the intent of the user, rather than
simply mimicking her actions. In order to capture in-
tent, Voyles and Khosla [14] proposed a novel \port-
based agent" architecture. This builds on the notion
of \port-based objects" introduced in [12] and uses a
multi-agent framework to determine the user's intent.
Capturing the intent of the user is an important re-
search issue for creating new programming and inter-
action paradigms for intelligent systems. Our research
in gesture-based programming is a step towards this
long-term goal.

As robots enter the human environment and come
in contact with inexperienced users, they need to be
able to interact with these users in a multi-modal
fashion|keyboard and mouse are no longer accept-
able as the only input modalities. In this paper, we
investigate the possibility of hand gestures as a rich in-
put modality for interacting with mobile robots. How-
ever, this is only a �rst step towards a comprehensive
multi-modal human machine interface for interaction
with multiple robots. Multi-robot systems require a
much richer form of interaction to allow the user to
specify concisely what the goals of the robot team
should be, and to provide additional feedback during
the execution with respect to grouping, formation, and
collaboration.

Nakamura et al. [9] developed a human-to-multi-
robot interface system, where interaction can occur
either at the level of an individual robot or a group of
robots. The interaction is performed through a mouse



and keyboard, and the robots are supervised by a CCD
camera mounted on the ceiling. However, the interac-
tion is not intuitive enough to be extended to non-
experts. Compared to a mouse and keyboard, hand
gestures have high redundancy to convey geometric
and temporal data. They are rich in vocabulary while
being intuitive to users. These features make hand
gestures an attractive tool to interact with robots.

We have developed a gesture spotting and recog-
nition algorithm based on a Hidden Markov Model
(HMM). HMMs are commonly used in speech and
handwriting recognition, and have recently been ap-
plied to gesture recognition [5, 11]. We purposely use
the term 'spotting' in addition to 'recognition' to em-
phasize the importance of spotting a gesture from a
sequence of data containing both gestures and non-
gestures. It is essential for a gesture-based robot con-
trol system to avoid sending inadvertent control sig-
nals to the robot.

Related research in the �eld of gesture-based
human-robot interaction includes work by Boehme et
al. [1] and Waldherr el al. [15]. Boehme developed
a system in which the robot reliably detects gestu-
ral cues given by the user. His work focuses on im-
proving the robustness of the interface by �rst iden-
tifying potential users through a multiple queue ap-
proach. Waldherr's system detects motion gestures
by combining neural network and template matching
approaches. Both systems are implemented on-board
the robot, and use a vision-based neural network ap-
proach to recognize the gestures. In our work, we use
a data glove and electro-magnetic 6DOF position sen-
sor, because they provide more reliable measurements
of the position and joints. Due to the cables attached
to the glove and the position sensor, the mobility of
the user is constrained. However, we envision that
the data glove's current limitation on mobility will be
overcome by technological advances in wearable com-
puting and personal localization systems.

2 System Description

Figure 1 illustrates the system setup. The system
consists of a mobile robot, a CyberGlove, a Polhemus
6DOF position sensor, and a geolocation system that
tracks the position and orientation of the mobile robot.

The CyberGlove and the Polhemus 6DOF position
sensor are both connected to the gesture server to spot
and interpret gestures. The user can either wave in a
direction for the robot to move, or point at the desired
destination in a 'point-and-go' fashion.

The system works in either a local control mode or
a global control mode. Under the local control mode,
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Figure 2: The conversion of velocity vectors (U _Xr0 ,
U _Yr0) to linear and angular velocities (Uvr ,

U!r)

the gesture server interprets gestures as if the user is in
the robot's local coordinate frame. Under the global
control mode, the user and the robot are both work-
ing in the universal coordinate frame. The gesture
server spots the gesture from the data stream and the
interpreter generates a desired velocity vector, (U _Xr0 ,
U _Yr0), or a desired position,(UXr0 , UYr0). They are
sent to the robot and converted to linear and angular
velocities, (Uvr,

U!r), on-board. The process is shown
in �gure 2. When a desired position, (UXr0 , UYr0), is
sent to the robot, a proportional control algorithm is
used to servo to that position.

Figure 3 shows the mobile robot used in this ex-
periment. It is equipped with 8 sonar sensors, 7 IR
obstacle detectors, a black and white pan-tilt cam-
era capable of transmitting a video signal via RF ra-
dio, stereo microphones, wireless Ethernet and an on-
board PC104-based i486 PC running the Linux op-
erating system. Both treads have wheel encoders and



Figure 3: The mobile robot used in the experiments

are independently controlled by a PID controller. The
robot's high-level control software can run on-board or
o�-board. For the gesture-based control experiment,
a gesture spotter and a gesture interpreter are run
o�-board. The responsibility of the on-board PC is
limited to executing motion and camera-control com-
mands. The robot, the gesture spotter/interpreter,
and the robot positioning system are all integrated
within CyberRAVE, a multiple client-server architec-
ture for distributed robots [3]. CyberRAVE provides
low-level primitives and drivers to aid the users in their
development of robot control programs.

A geolocation system provides the robot's location
and orientation, (UXr ;

U Yr;
U �r), in the universal co-

ordinates of the 3 by 6 meter workspace. A ceiling-
mounted camera tracks color markers on the robot us-
ing a CognaChrome vision system. Through a calibra-
tion procedure, the image positions of the markers are
mapped to the corresponding universal coordinates.
The geolocation server is capable of sending position
and orientation data at a rate of 10Hz to clients run-
ning the CyberRAVE interface.

The CyberGlove is a data glove that measures 18
joint angles of the �ngers and wrist at 30Hz. To deter-
mine the wrist position and orientation, we use a Pol-
hemus 6DOF positioning system that consists of the
transmitter and the receiver pair. The receiver placed
on the user's hand detects the magnetic �elds emitted
by the �xed transmitter and inductively tracks the po-
sition and orientation.

3 Gesture Recognition

To take advantage of the temporal component of
gestures, we chose to use an HMM-based recognizer.
An HMM recognizer classi�es time sequences of fea-
tures. For each new data point in a continuous stream
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of measurements, our HMM recognizer determines
which gesture is currently being executed. In this sec-
tion, we will present the process of data reduction and
gesture spotting, as is illustrated in Figure 4. For
readers unfamiliar with HMMs, we refer to Rabiner
and Juang [10] for an excellent tutorial on evaluation,
estimation, and decoding using HMMs as applied to
the problem of speech recognition.

3.1 Data preprocessing

To improve the speed and performance of gesture
classi�cation, we pre-process the 18 joint angle mea-
surements from the data glove in two stages. Dur-
ing the �rst stage, the 18-dimensional joint vector,
Ât, is reduced to a 10-dimensional feature vector, F̂t,
through the linear combinations listed in Table 1. This
feature vector is augmented with its �rst derivatives
to produce a 20-dimension column vector, D̂t:

D̂t =

"
F̂t

( F̂t�F̂t�1

�t
)

#
(1)

During the second stage, D̂t is reduced to a one di-
mensional codeword through vector quantization. The
algorithm by Linde, Buzo and Gray [6] is used to gen-
erate a codebook that maps the 20-dimensional input
vector to an integer codeword ranging from 0 to N�1.
We decided to use 32 codewords after considering the
level of detail required for accurate recognition and
after experimenting with a variety of values.

The codebook is trained o�-line. We collected a
representative sample of about 5000 measurements
containing gestures and non-gestures, covering the en-
tire space of hand movements. This subset of the en-
tire 20-dimensional gesture space corresponds to hand



Feature Description Joint Angle Formula
Thumb Curvature 6 (thumb 1st + 2nd)

Index Finger Curvature 6 (index 1st + 2nd)

Middle Finger Curvature 6 (middle 1st + 2nd)

Ring Finger Curvature 6 (ring 1st + 2nd)

Pinkie Curvature 6 (pinkie 1st + 2nd)

Finger Spread 6 (index$middle +
middle$ring +
ring$pinkie

Thumb Angle 6 (thumb$index)

Thumb Rotation thumb rotation

Wrist Pitch wrist pitch

Wrist Yaw wrist yaw

Table 1: De�nition of the feature vector.

positions and velocities that are physiologically feasi-
ble. The set D0::5000 is then partitioned into 32 clus-
ters. The algorithm by Linde, Buzo and Gray per-
forms the error minimization clustering by repeatedly
estimating the centroid of a cluster and splitting it
into two. For each of the �nal 32 clusters, the as-
sociated centroid in the 20-dimensional feature space
is recorded. At run time, a given feature vector is
mapped to the codeword with the closest centroid (as
measured in Euclidean distance). Consequently, each
measurement of the hand position is reduced to a code-
word, and a gesture becomes a time sequence of code-
words.

3.2 Gesture spotting using an HMM

After preprocessing the data, the gesture spotter
takes a sequence of codewords and determines which
of the six gestures the user is performing, or \none of
the above" if no gesture is being executed. The six
gestures we chose to recognize consist of:

� OPENING: Moving from a closed �st to a 
at
open hand

� OPENED: Flat open hand
� CLOSING: Moving from a 
at open hand to a
closed �st

� POINTING: Moving from a 
at open hand to in-
dex �nger pointing, or from a closed �st to index
�nger pointing

� WAVING LEFT: Fingers extended, waving to the
left, as if directing someone to the left

� WAVING RIGHT: Fingers extended, waving to
the right

Being able to reject motions that do not correspond
to any of these six gestures is very important. If ev-
ery stream of motion data would be classi�ed as one

of the six gestures listed above, almost any motion of
the �ngers would result in inadvertent robot actions.
Including the classi�cation \none of the above" allows
the user to perform other tasks while wearing the data
glove, without the HMM interpreting the hand mo-
tions as robot commands.

The algorithm described in this paper di�ers from
the standard forward-backward technique described in
Rabiner and Juang's tutorial [10] in two important
respects.

A �rst modi�cation allows us to classify continu-
ous streams of measurements. The correspondence
of an HMM, �, to an observation sequence O =
O1; O2; :::; OT can be quanti�ed as Pr(O j �), which is
the probability that the observation sequence is pro-
duced by the model. However, as the length of the
sequence grows, Pr(O1; O2; :::; O1 j �) decreases to
zero. A solution to this problem is to limit the ob-
servation sequence to the n most recent observations,
O = Ot�n; :::; Ot. The length of this sequence needs
to be determined by the user.

The second modi�cation allows us to reject hand
motions that do not match any of the six modeled
gestures. In the standard HMM recognition algo-
rithm, the gesture l with the largest con�dence level
Pr(O j �l) is selected, where �l is the model corre-
sponding to the gesture l. This means that one of six
gestures will always be selected, unless a threshold is
set to reject all six. However, a threshold that is large
enough to reject all non-gestures, may also exclude
gestures that are performed slightly di�erently from
the training gestures. This is unacceptable, because
di�erent users tend to execute gestures di�erently.

To overcome these problems, we used the HMM
gesture spotter illustrated in �gure 5. It contains a
\wait state" as the �rst node that transitions to all
the gesture models and itself with equal probability.
All these transition probabilities are all equal to make
the transition independent of the observation.

When a new observation is applied to the gesture
spotter, the probability of being in the state is updated
for all existing states. In other words, we update all
the Pr(it = qi j O; �l), the probability of being in
state qi at time t of the state sequence I(= i1i2:::it),
given the observation sequence O and the model �l of
gesture l. Next, the state probabilities are normalized
so that they sum to one. If the observation sequence
corresponds to any of the gestures, the probability of
being in the �nal state of the model for this gesture
will be higher than that for the other gestures. On
the other hand, if the observation sequence does not
belong to any gestures, the probability of being in the
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\wait state" will be the highest due to the normaliza-
tion. If the recent sequence of observations represents
a gesture, the earlier part of the sequence is trapped
in the \wait state" while subsequent observations raise
the correct gesture's probability. Therefore, the ges-
ture spotter selects the gesture that corresponds to the
last state with the highest score, or no gesture if the
\wait state" has the highest score.

3.3 Experimental veri�cation of the
HMM

Our implementation of the gesture spotter is based
on public domain HMM C++ code written by My-
ers and Whitson [8]. We modi�ed this code to cal-
culate the probability for multiple models simultane-
ously, and to handle a continuous data stream.

Before an HMM gesture spotter is able to classify
a sequence, it must be trained by the user. Train-
ing by multiple users is desirable to accommodate dif-
ferent ways in which users execute gestures. For ex-
ample, one user may execute WAVING RIGHT much
faster than another. For each of the six gestures, a
3-state HMM was trained separately using the Baum-
Welch algorithm. Because of its static nature, the
OPENED gesture has been modeled with only two
states. Thirty sample sequences were used to train
each gesture. Figure 6 shows the 3-state HMM used
to model the POINTING gesture.

To verify the proposed HMM, the system was eval-
uated on a continuous stream of test data containing
both gestures and non-gestures. To compare results,
we compared the HMM spotter with basic left-right
con�gurations that have variable windows of the n ob-
servations, as is illustrated in Figure 7. Unlike the
HMM with \wait state", this HMM does not have
a \wait state". HMMs from each gesture take a se-
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Figure 7: An HMM with a variable time window

quence of the n most recent data samples to classify a
gesture. The system then evaluates Pr(Ot�n::Ot j �l)
for all n to �nd the gesture l that produces the max-
imum score. The system was set to reject a sequence
as \none of the above" if Pr(Ot�n::Ot j �l) for all
gestures is less than 0.5.

On the test sequence of codewords mixed with ges-
tures and non-gestures, the HMM with \wait state"
recognized gestures with 96% accuracy (48 out of 50
gesture sequences recognized correctly), whereas the
HMM with variable window recognized all gestures.
However, the false-positive rate for the HMM with
variable window was 20.2 observations per 1000 sam-
ples, whereas the HMM with \wait state" had a false-
positive rate of only 1.6 observations per 1000. It is
important to keep in mind that this number does not
apply directly to the real data, since there may be
other factors contributing to the errors, such as vector



quantization.

4 Gesture interpretation

Once a particular gesture has been recognized, it
needs to be mapped to a corresponding robot action.
We have implemented two di�erent modes of inter-
action with the robot: local control and global con-
trol. In the local interaction mode, the user's gestures
are interpreted in the robot's local frame of reference.
For instance, pointing makes the robot move forward
regardless of whether the robot is facing towards or
away from the user. In the global interaction mode,
the position of the hand is measured in the universal
coordinate frame allowing us to interpret the gestures
with respect to the global frame of reference.

4.1 Local robot control

In the local robot control mode, the six gestures
have the following meaning:

� CLOSING: decelerates and eventually stops the
robot

� OPENING, OPENED: maintains the current
state of the robot

� POINTING: accelerates the robot

� WAVING LEFT/RIGHT: increase the rotational
velocity to move left/right

The purpose of the local control mode is to allow
the user to control the robot in a remote operation
scenario. The user watches the video image transmit-
ted from the robot's camera and controls the robot as
if he or she were sitting on it.

A CLOSING gesture is implemented by decreasing
both linear and angular velocity of the robot. Con-
tinuous execution of a CLOSING gesture eventually
stops the robot's movement. The choice to make the
CLOSING hand a stopping gesture was based on peo-
ple's natural reaction and the fact that it has the best
accuracy in gesture spotting (a CLOSING gesture has
100% accuracy in our recognition system). A POINT-
ING gesture accelerates the robot by increasing Uvr by
a �xed value. Successive pointing gestures cause the
robot to accelerate in the forward direction.

The WAVING LEFT and WAVING RIGHT ges-
tures are implemented as simple discrete steering com-
mands. When the gesture spotter detects WAVING
LEFT (or RIGHT), the gesture server tells the robot
controller to increase (or decrease) U!r by a �xed
value. Successive waving gestures cause the robot to
turn faster.

4.2 Global robot control

In the global robot control mode, the six gestures
have the following meanings:

� CLOSING: decelerates and eventually stops the
robot

� OPENING, OPENED: maintains the current
state of the robot

� POINTING: \go there"

� WAVING LEFT/RIGHT: directs the robot to-
wards the direction in which the hand is waving.

The global robot control mode provides close inter-
action between the user and the robot. The robot is
in sight of the user, and the user can point his or her
�nger to specify the destination for the robot or give it
an additional bias by waving hands to guide the robot.

The CLOSING gesture is implemented in a manner
similar to the local robot control mode. It cancels
the robot's destination if one exists, and brings (U _Xr0 ,
U _Yr0) to zero to stop the robot.

The POINTING gesture de�nes the destination for
the robot as the location where the straight line ex-
tending the index �nger intersects with the 
oor. The
robot controller generates the motion vector, (U _Xr0 ,
U _Yr0), based on the di�erence between its current po-
sition and the destination.

The interpretation of the WAVING LEFT and
WAVING RIGHT gestures depends also on the mo-
tion vector extracted from the Polhemus 6DOF posi-
tioning system placed on the hand. When a WAVING
LEFT (or RIGHT) gesture is recognized, the robot is
commanded in the direction perpendicular to the palm
of the hand when the hand is waving at its maximum
speed. When the robot encounters an obstacle while
heading towards its destination, the user can wave in
a particular direction to dodge the obstacle.

5 Summary and Future Work

In this paper, we have introduced and demon-
strated an architecture for gesture based control of
mobile robots. An HMM-based gesture spotter rec-
ognizes six dynamic hand gestures from a continuous
data sequence from a data glove. The HMM di�ers
from most traditional HMM recognizers because of
the inclusion of a \wait state" which allows it to e�ec-
tively reject hand motions that do not correspond to
any of the modeled gestures. This is very important
for avoiding inadvertent robot commands while wear-
ing the data glove. In our experiments, we veri�ed
that the HMM with a \wait state" produced an order



of magnitude fewer false positives than a traditional
HMM recognizer.

We envision gesture-based control to be of partic-
ular value for interacting with teams of robots. Con-
trolling individual robots can still be achieved using
a mouse or a joystick; there is a one-to-one mapping
between the joystick position and the robot velocity.
Multi-robot systems require a much richer form of in-
teraction. Instead of providing low-level control for
individual robots, the user needs to provide high-level
directives for the team as a whole. We will address
control of multi-robot systems in our future research.
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