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Abstract

The Gyrover is a single wheel gyroscopically stabilized
mobile robot developed at Carnegie Mellon University. An
internal pendulum serves as a counter weight for a drive
motor that causes fore/aft motion, while a tilt-mechanism
on a large gyroscope provides a mechanism for lateral
actuation. In this paper, we develop a detailed dynamic
model for the Gyrover, and use this model in an extended
Kalman filter to estimate the complete state. A linearized
version of the model is used to develop a state feedback
controller. The design methodology is based on a semi-
definite programming procedure which optimize the stabil-
ity region subject to a set of Linear Matrix Inequalities that
capture stability and pole placement constraints. Finally,
the controller design combined with the extended Kalman
filter are verified on the prototype.

1 Introduction

The concept of a single-wheel gyroscopically stabilized
robot was originally proposed by Brown and Xu [2, 7]. The
idea is to take advantage of the dynamic stability of a sin-
gle wheel, but augment it with a gyroscope to achieve static
stability. The self-stabilizing dynamics of a single wheel
can be illustrated as follows. Consider a single wheel
rolling down a hill. As soon as the wheel starts leaning
laterally, gyroscopic precession will cause it to turn in the
direction it is leaning, after which the resulting centrifugal
inertial effect will right it again.

Past research on the Gyrover focussed entirely on the
mechanical design. After some initial tests to verify the
concept, a simplified dynamic model was developed to
weigh the different design characteristics [2]: static stabil-
ity vs. high speed dynamic responsiveness, slope climbing
ability, etc. Based on this model, several generations of

Gyrovers have been built with gradually increasing sophis-
tication, reliability, and performance.

However, so far no attempt has been made at develop-
ing an automatic controller for the Gyrover. The Gyrover
has been controlled using a remote rontrol transmitter that
allowed the user to control the voltage of the drive motor
and the angle of the tilt-mechanism (see Section 2 and Fig-
ure 1). Due to the coupling between the fore/aft and lateral
motions and the lack of attitude sensing on the Gyrover, the
user has to develop a feeling for the dynamics of the robot,
estimate its current attitude by visual inspection, and pro-
vide the appropriate input commands. Because of the self-
stabilizing dynamics of the Gyrover, it is relatively easy for
a novice user to keep it from falling over, especially when
moving at moderate and high speeds. However, it is much
more challenging to track a desired trajectory, and near im-
possible to control the robot when it is out of sight.

To use the Gyrover for inspection tasks in which fine
control in remote locations is required, we need to de-
velop a controller that relieves the user from stability con-
cerns and provides an intuitive control interface. This pa-
per presents the development of such a controller.

We approach the problem in three stages. In the first
stage, described in Section 2, we develop a detailed dy-
namic model of the Gyrover. This model lies at the basis
for the subsequent derivations of the state estimator and
controller described in detail in Sections 3 and 4. Simula-
tion and experimental data to validate the model and con-
troller are shown in Section 5.

2 Gyrover Dynamics

As shown in Figure 1, the Gyrover consists of four
rigid bodies connected toeach other through a 3-degree-
of-freedom kinematic chain: the wheel, the pendulum, the
tilt-mechanism, and the gyroscope. The wheel is the only



Figure 1: Ccomponent diagram (left) and a side view snapshot (right) of the Gyrover.

body that is in contact with the environment. It consists of
a rim and two spherical polycarbonate domes that carry the
drive shaft. Around this shaft swings the main body of the
Gyrover, called pendulum. The pendulum includes a DC-
motor and transmission that drive the wheel shaft. With
gravity acting as reaction torque, this drive mechanism
generates forward acceleration for the Gyrover. The sec-
ond degree-of-freedom is formed by the tilt-servo, which
articulates the rotation axis of the gyroscope with respect
to the pendulum. This rotation axis is perpendicular to the
the main drive shaft and is located in the middle of the Gy-
rover. The torque generated by the tilt-servo causes lateral
motion of the wheel and at the same time induces a precess-
ing motion given by the gyroscopic precession equation:

� = J! � 


where� is the torque acting on the gyroscope,J! is its
angular momentum, and
 is the precession rate. For ex-
ample, when the forward velocity is zero, one can rotate
the Gyrover to the left by leaning it slightly to the left. The
gyroscopic effect stops the Gyrover from falling over and
simultaneously induces a positive rotation around the ver-
tical axis steering the robot to the left.

The final degree-of-freedom is the spin axis of the gy-
roscope. It is driven by a servo controlled motor that main-
tains a constant angular velocity of approximately15; 000
RPM. Because the motor is too small to generate any sud-
den change in angular velocity, we do not use this degree-
of-freedom for control purposes. In the remainder of the
paper, we will therefore assume that the angular velocity
of the gyroscope is kept constant.

The control of the Gyrover is achieved through the first
two degrees-of-freedom: the drive motor, and the tilt servo.

The derivation of the dynamic equations for the Gy-
rover is based on the Newton-Euler approach [5] Previ-
ous derivations of the dynamic equations were based on a

Lagrangian approach [7]. However, due to extensive sim-
plifying assumptions, these models are inappropriate for
control purposes. In our derivation we make the following
assumptions:

� all the components are rigid bodies,
� the wheel rolls without slipping,
� the friction model for the contact between the wheel

and the floor, and for the drive motor and transmission
includes Coulomb and viscous friction,

� the angular velocity of the gyroscope is constant,
� the wheel and gyroscope are axially symmetric,
� the floor is flat and horizontal,
� the wheel remains in contact with the ground.

Unlike the Newton-Euler dynamics for fixed base manip-
ulators, the Gyrover dynamics cannot be calculated nu-
merically in an iterative fashion. For fixed base manip-
ulators, the acceleration of the base is known and fixed,
so that the accelerations of the distal links can be com-
puted sequentially. Once all the accelerations are known,
the reaction forces can be computed in an inward iteration
from the end-effector towards the base. However, since
the accelerations of the wheel of the Gyrover are not fixed
but depend on the accelerations of the internal degrees-of-
freedom, one cannot evaluate the Newton-Euler equations
numerically. Instead, the complete dynamics need to be de-
rived symbolically after which the contact constraints can
be imposed. Kinematic and force constraints are both rel-
evant here. Rolling without slippping imposes constraints
on the wheel accelerations and torques. With the notation
listed in Table 1, the acceleration constraints are:

_v0 = _w0 � r + !0f � v0

!0f =
h
!0x; !0y; !0y

cos(�0)
sin(�0)

iT (1)

Rolling without slipping also imposes a constraint on the



�0 Lean angle of the wheel measured between
the rotation axis and the vertical.

!0x Roll angular velocity.
!0y Yaw angular velocity.
!0z Pitch angular velocity.
!0f Rotational velocity of the wheel frame (this

is different from!0 because the frame is de-
fined as having itsX-axis horizontal; it does
not rotate with the wheel)

v0 Translation velocity of the wheel
�1; w1 Angle and angular velocity of the pendulum

with respect to the wheel
�2; w2 Angle and angular velocity of the tilt mecha-

nism with respect to the pendulum.
w3 Angular velocity of the gyroscope with re-

spect to the tilt mechanism
�1 Torque exerted by the drive motor

�2;ref Reference position for the tilt mechanism.
Nx Contact torque in the globalX-axis.
Ny Contact torque in the globalY -axis.
Nz Contact torque in the globalZ-axis.

Table 1: Description of kinematic and dynamic variables
of the Gyrover.

torques acting on the wheel. If there is no friction, the
torques exerted onto the wheel at the point of contact,
(Nx; Ny; Nz), are zero [6]. In summary, the dynamics of
the Gyrover take the form:
2
6666664

�1
�2
�3
Nx

Ny

Nz

3
7777775
=M(�)

2
6666664

_w1

_w2

_w3

_!0x;rel

_!0y;rel

_!0z;rel

3
7777775
+

2
6666664

�1;nonlinear
�2;nonlinear
�3;nonlinear
Nx;nonlinear

Ny;nonlinear

Nz;nonlinear

3
7777775

(2)

However, due to the “rolling without slipping” constraint,
some independent variables(Nx; Ny; Nz) occur on the
left-hand side of Equation (2) while some dependent vari-
ables!0x;rel; !0y;rel; !0z;rel appear on the right-hand side.
This illustrates again the need for symbolic derivation of
the dynamic equations.

Even though Equation (2) captures the dynamic
behavior of the Gyrover completely, it is not in
state space form as is required for estimation and
control purposes. The state vectorX consists of
( �0; �1; �2; w1; w2; !0x; !0y; !0z). The derivatives of each
of these variables are obtained from Equations (1) and (2).

_�0 = !0x (3)
_�1 = w1 + !0z � !0y cot �0 (4)
_�2 = w2 (5)

x; u Plant state and control input vector.
x̂(kjl) Estimated plant state at timek given mea-

surements up to time stepl.
z(k) Plant measurements at timek.
Q(k) Covariance matrix for process noise.
R(k) Covariance matrix for output noise.

f(x; u; k) Nonlinear discrete-time model function.
rfx(k) Jacobian off(:; :; :) with respect to the

state vectorx at timek.
hx(x; k) Output function at timek.
rhx(k) Jacobian of the plant output with respect

to the state vectorx at timek.
P (kjl) State error prediction covariance at timek

given measurements up to timel.
S(k) Observation error covariance matrix.
W (k) Kalman gain matrix.

Table 2: Notation used in the EKF algorithm.

_w1 = _w1 (6)

_w2 = w2
c (u2 � �2)� wc

p
2w2 (7)

_!0x = _!0x;rel � !0y!0z + !0y!0y cot �0 (8)

_!0y = _!0y;rel + !0x!0z � !0x!0y cot �0 (9)

_!0z = _!0z;rel (10)

where the variables_!0x;rel, _!0y;rel, _!0z;rel, and _w1 are
computed by solving Equation (2). Equation (7) models
the dynamics of the tilt-servo system. The inputs to the
system are given by the vectoru = (�1; �2;ref).

3 State Estimator

There are five sensors mounted on the Gyrover:

� three rate gyros attached to the pendulum along the
axes of the pendulum frame,

� one encoder on the drive motor, and

� one potentiometer on the tilt servo.

Since there are eight state variables but only five sensors,
we need an observer to determine the full state vector. The
variation of the linear Kalman Filter for nonlinear systems,
called Extended Kalman Filter or EKF [3], is applied to es-
timate the state vector of the Gyrover. The EKF maximizes
the information that is extracted from multiple sensors in a
noisy environment, by taking the dynamics of the system
into account. Table 2 describes the notation used in the
EKF formulation of the observer problem. The following
equations summarize the EKF algorithm.



Prediction step.

x̂(kjk � 1) = f(x̂(k � 1jk� 1); u(k� 1); (k� 1))

P (kjk� 1) = rfx(k)P (k � 1jk � 1)rfxT (k) +Q

Correction step.

S(k) = rhx(k)P (kjk � 1)rhxT (k) + R(k)

W (k) = P (kjk� 1)rhxT (k)S�1(k)
P (kjk) = P (kjk� 1)�W (k)S(k)WT (k)

x̂(kjk) = x̂(kjk� 1) +W (k)[z(k)� h(x̂(kjk � 1))]

Combining the expression for the torques in Equation (2)
with the dynamic equations (3) to (10) we arrive at the ex-
pression forf(x; u; k):

x̂(kjk� 1) = [ �0 �1 �2 w1 w2 !0x !0y !0z ]
T

=

2
66666666664

�0 + Ts!0x

�1 + Ts(w1 + !0z � !0y
cos �0
sin �0

)

�2 + Tsw2

w1 + Ts _w1

w2 + Ts _w2

!0x + Ts( _!0x;rel � !0y!0z + !0y!0y cot �0)
!0y + Ts( _!0y;rel + !0x!0z � !0x!0y cot �0)

!0z + Ts _!0z;rel

3
77777777775

The output functionh(x̂; k), to be used in the correction
step of the EKF, is given by:

h(x̂; k) =

2
66664

w1

!1x

!1y

!1z

�2

3
77775 =

2
66664

w1

!0x cos �1 + !0y sin �1
�!0x sin �1 + !0y cos �1

!0z +w1

�2

3
77775

Computing the Jacobians. In order to use the EKF algo-
rithm, we need to compute the Jacobians off(x; u; k) and
h(x; k) with respect to the state and input vectors. While
the Jacobian,rhx(k) is relatively simple, finding the Jaco-
bian of the dynamics,rfx(k), is a non-trivialproblem. We
have implemented a computationally efficient scheme that
relies on symbolic pre-computation and numeric run-time
computations. Our current implementation runs at 250Hz
under QNXTMon a 486 CardioTMcomputer module located
on the Gyrover pendulum.

Noise. The dynamic and measurement noise in the sys-
tem is modeled in the EKF through the covariance matrices
Q andR, respectively. They are assumed to be uncorre-
lated zero-mean Gaussian noise. The following estimates

forQ andRwere selected based on sensor capabilities and
data from the real system:

Q = 10�6
�
:12 I3 0
0 4 I5

�
; R = 10�4

�
:62 I4 0
0 1

�

whereIn is then-order identity matrix.

4 Controller

A controller is designed to stabilize the Gyrover around
its upright position�0 = �=2. Linear state feedback based
on the linearized plant around the desired point is used.

4.1 Linearization Analysis

Linearizing the nonlinear dynamic equations of motion
about the unstable equilibrium point

�0 = �=2; �1 = 0:0046; �2 = 0; wc = 20�
!0x = !0y = !0z = w1 = w2 = 0; w3 = 15000 rpm;

results in the following decoupled state space representa-
tion for the system:

_Xi = Ai Xi + Bi ui; Yi = Ci Xi i = 1; 2:

WhereX1 = f�1; w1; !0zgT represents the longitudinal
motion,X2 = f�0; �2; w2; !0x; !0yg the lateral motion of
the Gyrover andu = (�1; �2;ref). The output vectors are
Y1 = fw1; !1zgT andY2 = f!1x; !1y; �2gT . The constant
matrices are:

A1 =

2
4 0 1 1
�44:32 0 0
�11:91 0 0

3
5

A2 =

2
66664

0 0 0 1 0
0 0 1 0 0
0 �400�2 �88:86 0 0

51:5 �49:3 6:5 �8:7 23:37
19:17 �28:3 102:5 �103:7 8:7

3
77775

B1 = [ 0; 14:52; �0:37 ]T

B2 = [ 0; 0; 400�2; 49:3; 28:3 ]T

C1 =

�
0 1 0
0 1 1

�
; C2 =

2
4 0 0 0 1 0:0046
0 0 0 �0:0046 1
0 1 0 0 0

3
5

The system is completely controllable and observable but
non-minimum phase. It has four poles at the origin, a pair
of poles at�44:4(1� j) and another pair at3:10�6� 48j.
The zeros of the transfer function from the second input to
!1y has three zeroes at�8;�1:4 10�4 and+7.



4.2 State Feedback Controller

To design the controller we optimize the size of the sta-
bility region subject to constraints on the inputs, states, and
closed loop poles. The optimization is carried out using a
semi-definite programming procedure. Stability and con-
strained regions are defined in terms of Linear Matrix In-
equalities(LMI) [1]. Closed loop poles are constrained to a
prespecified convex regionS(�; r; �) [4] as shown in the
figure below.

φ

r

α

Re

Im

By constraining the poles to
lie in a prescribed region, we
can achieve a satisfactory tran-
sient response. The con-
straints on the states are de-
rived from the plant mechan-
ical design. We optimize the
volume of the ellipsoid con-
tained in the stability region
using semi-definite program-
ming(sdp) [9] and find the
state feedback gain matrix.

The linearized dynamic system can be described as:

_x = Ax+B u; y = C x

wherex represents states of the system,u represents the
inputs to the system, andA;B;C are constant matrices.
Let the observer-based state feedback control law be

_̂x = A x̂+B u+ L (y �C x̂); u = K x̂

wherex̂ is the estimate of the state vector,L is the observer
gain matrix, andK is the controller gain matrix. We define
the Lyapunov functionV as

V = xT P1 x+ (x� x̂)T P2 (x� x̂); (11)

withP1; P2 both symmetric and positive definite. The Lya-
punov function defines the ellipsoid"C by V < C. The
volume of the ellipsoid is proportional to(detP1)�1=2 �
(detP2)�1=2. Maximizing the volume of"C is equivalent
to minimizing

log detP1 + log detP2 (12)

Stability is guaranteed if and only if

Q1A
T +AQ1 + Y T

1 B +BY1 + 2�Q1 < 0 (13)

Q2(A + LC)T + (A+ LC)Q2 + 2�Q2 < 0 (14)

whereQ1 = P�11 ,Q2 = P�12 and

Y1 = KQ1 (15)

Input constraints of the typekuk < � are specified by

�
Q1 Y T

1

Y1 �2I

�
� 0: (16)

State constraints of the formjaTxj < 1 are handled by

aTQ1 a < 1; (17)

whileS(�; r; �) add the following LMIs

� �rQ1 AQ1 +BY1
Q1A

T + Y T
1 BT �rQ1

�
< 0 (18)

�
sin� (Z + ZT ) cos � (Z � ZT )
cos � (ZT � Z) sin� (Z + ZT )

�
< 0 (19)

whereZ = AQ1 + BY1.
The packagesdpsol [9] was used to minimize the

objective function (12). It solves the convex minimiza-
tion problem using an interior-point algorithm in terms of
Q1; Q2 and Y1. Afterwards,K can be computed from
Equation (15). For this optimizationL is taken as the
steady state Kalman Filter gain matrix and the parameters
that define the pole placement region are selected as

� = 0:1; r = 50; � = 45 deg:

In summary, to find the state-feedback gain, we perform a
convex optimization procedure, minimizing (12) subject to
the constraints specified by Equations (13) to (19). The op-
timization procedure described give us the following con-
trol row vectors for each decoupled subsystem:

K1 = [�18:44; �3:31; 1:16 ]

K2 = [�0:0077; 1:001; 0:0019 0:0179; �0:0022 ]

with closed-loop poles in {�41:3,�3:59�2:76i, } for the
longitudinal motion and {�34; 45� 25:18i, -10.34, -1.37
and -0.1 } for the lateral motion.

5 Experimental Results

Input-outputdata sets from the prototype were collected
in several runs outdoors, on tiled-floor, and fed it to the
EKF algorithm. Figure 2 shows the behavior of the EKF
estimates compared to the real data from the Gyrover.
Figure 3 shows a control experiment in simulation, using
the nonlinear model of the system and the observer-based
control scheme discussed in section 4. This simulation also
allows to test the convergence of all the states of the EKF
to the ones in the nonlinear model, even those that cannot
be observed in a real experiment.
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Figure 2: Observer performance from prototype data.

6 Summary

In this paper a controller for the Gyrover is developed.
The Gyrover is a gyroscopically stabilized single-wheel
robot. Its dynamics are described by a set of highly nonlin-
ear coupled differential equations. However, our analysis
has shown that around an operating point at which the Gy-
rover is upright and the gyro axis horizontal, the dynamics
can be linearized into two decoupled systems (fore/aft mo-
tion and lateral motion). The decoupled system is control-
lable, and observable but non-minimum-phase. We have
derived and implemented an Extended Kalman Filter and
state feedback controller and have demonstrated accurate
estimation and control in simulation and experiments.
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